2,426 research outputs found

    Transforming XML to RDF(S) with Temporal Information

    Get PDF
    The Resource Description Framework (RDF) is a model for representing resources on the Web. With the widespread acceptance of RDF in various applications (e.g., knowledge graph), a huge amount of RDF data is being proliferated. Therefore, transforming legacy data resources into RDF data is of increasing importance. In addition, time information widely exists in various real-world applications and temporal Web data has been represented and managed in the context of temporal XML. In this paper, we concentrate on transformation of temporal XML (eXtensible Markup Language) to temporal RDF data. We propose the mapping rules and mapping algorithms which can transform the temporal XML Schema and document into temporal RDF Schema and temporal RDF triples, respectively. We illustrate our mapping approach with an example and implement a prototype system. It is demonstrated that our mapping approach is valid

    XQOWL: An Extension of XQuery for OWL Querying and Reasoning

    Full text link
    One of the main aims of the so-called Web of Data is to be able to handle heterogeneous resources where data can be expressed in either XML or RDF. The design of programming languages able to handle both XML and RDF data is a key target in this context. In this paper we present a framework called XQOWL that makes possible to handle XML and RDF/OWL data with XQuery. XQOWL can be considered as an extension of the XQuery language that connects XQuery with SPARQL and OWL reasoners. XQOWL embeds SPARQL queries (via Jena SPARQL engine) in XQuery and enables to make calls to OWL reasoners (HermiT, Pellet and FaCT++) from XQuery. It permits to combine queries against XML and RDF/OWL resources as well as to reason with RDF/OWL data. Therefore input data can be either XML or RDF/OWL and output data can be formatted in XML (also using RDF/OWL XML serialization).Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Publishing Linked Data - There is no One-Size-Fits-All Formula

    Get PDF
    Publishing Linked Data is a process that involves several design decisions and technologies. Although some initial guidelines have been already provided by Linked Data publishers, these are still far from covering all the steps that are necessary (from data source selection to publication) or giving enough details about all these steps, technologies, intermediate products, etc. Furthermore, given the variety of data sources from which Linked Data can be generated, we believe that it is possible to have a single and uniïżœed method for publishing Linked Data, but we should rely on diïżœerent techniques, technologies and tools for particular datasets of a given domain. In this paper we present a general method for publishing Linked Data and the application of the method to cover diïżœerent sources from diïżœerent domains

    Use-cases on evolution

    Get PDF
    This report presents a set of use cases for evolution and reactivity for data in the Web and Semantic Web. This set is organized around three different case study scenarios, each of them is related to one of the three different areas of application within Rewerse. Namely, the scenarios are: “The Rewerse Information System and Portal”, closely related to the work of A3 – Personalised Information Systems; “Organizing Travels”, that may be related to the work of A1 – Events, Time, and Locations; “Updates and evolution in bioinformatics data sources” related to the work of A2 – Towards a Bioinformatics Web

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning

    GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RML mappings

    Get PDF
    A lot of geospatial data has become available at no charge in many countries recently. Geospatial data that is currently made available by government agencies usually do not follow the linked data paradigm. In the few cases where government agencies do follow the linked data paradigm (e.g., Ordnance Survey in the United Kingdom), specialized scripts have been used for transforming geospatial data into RDF. In this paper we present the open source tool GeoTriples which generates and processes extended R2RML and RML mappings that transform geospatial data from many input formats into RDF. GeoTriples allows the transformation of geospatial data stored in raw files (shapefiles, CSV, KML, XML, GML and GeoJSON) and spatially-enabled RDBMS (PostGIS and MonetDB) into RDF graphs using well-known vocabularies like GeoSPARQL and stSPARQL, but without being tightly coupled to a specific vocabulary. GeoTriples has been developed in European projects LEO and Melodies and has been used to transform many geospatial data sources into linked data. We study the performance of GeoTriples experimentally using large publicly available geospatial datasets, and show that GeoTriples is very efficient and scalable especially when its mapping processor is implemented using Apache Hadoop

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP
    • 

    corecore