
I5-D2

Use-cases on evolution

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Lisbon/I5-D2/D/PU/a1
Responsible editors: José Júlio Alferes and Wolfgang May
Reviewers: Nicola Henze and Michael Schroeder
Contributing participants: Dresden, Goettingen, Hannover, Lisbon, Munich,

Skoevde
Contributing workpackages: I5
Contractual date of deliverable: 28 February 2005
Actual submission date: 28 February 2005

Abstract
This report presents a set of use cases for evolution and reactivity for data in the Web and
Semantic Web. This set is organized around three different case study scenarios, each of them
is related to one of the three different areas of application within Rewerse. Namely, the sce-
narios are: “The Rewerse Information System and Portal”, closely related to the work of A3
– Personalised Information Systems; “Organizing Travels”, that may be related to the work
of A1 – Events, Time, and Locations; “Updates and evolution in bioinformatics data sources”
related to the work of A2 – Towards a Bioinformatics Web.

Keyword List
Languages for updates, ECA rules, Event languages, Reactivity, Evolution of data

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2005.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12175086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii



Use-cases on evolution

José Júlio Alferes1, Mikael Berndtsson2, François Bry3, Michael Eckert3,
Nicola Henze4 Wolfgang May5, Paula Lavinia Pătrânjan3, Michael Schroeder6

1 Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa
2 School of Humanities and Informatics, University of Skövde

3 Institut für Informatik, Ludwig-Maximilians-Universität München
4 Institut für Informatiomssysteme, Universität Hannover

5 Institut für Informatik, Universität Göttingen
6 Biotec/Dept. of Computing, TU Dresden

28 February 2005

Abstract
This report presents a set of use cases for evolution and reactivity for data in the Web and
Semantic Web. This set is organized around three different case study scenarios, each of them
is related to one of the three different areas of application within Rewerse. Namely, the sce-
narios are: “The Rewerse Information System and Portal”, closely related to the work of A3
– Personalised Information Systems; “Organizing Travels”, that may be related to the work
of A1 – Events, Time, and Locations; “Updates and evolution in bioinformatics data sources”
related to the work of A2 – Towards a Bioinformatics Web.

Keyword List
Languages for updates, ECA rules, Event languages, Reactivity, Evolution of data



iv



Contents

1 Introduction 1

2 Concepts and Requirements 3
2.1 Active Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Trigger-Like Local ECA Rules . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1.1 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.2 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.3 Condition and Action Part . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Local and Global ECA Rules . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Updates and Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Summary of the scenarios 9
3.1 Rewerse Information System and Portal . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Organising Travels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Updates in Bioinformatics Data Sources . . . . . . . . . . . . . . . . . . . . . . . 11

4 Rewerse Information System and Portal 13
4.1 Overview of Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Propagation of Updates: Upwards . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Information Propagation and Distribution: Downwards . . . . . . . . . . 15
4.1.3 Personalization and Presentation . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.4 Negotiations and Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.5 Composite Events and Composite Actions . . . . . . . . . . . . . . . . . . 16
4.1.6 Further Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Use Cases: XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Maintenance Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Dissemination Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.4 Personalization Use Cases: Local Evolution . . . . . . . . . . . . . . . . . 28
4.2.5 Reasoning and Evolution Use Cases . . . . . . . . . . . . . . . . . . . . . 28
4.2.6 Composite Events Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.7 Composite Actions Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Further issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



5 Organising Travels Scenario 39
5.1 Language issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Initial Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Gather information and plan trip . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Arranging the trip according to plan . . . . . . . . . . . . . . . . . . . . . 41
5.2.3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Adapt Plan to Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.1 Recognize changes affecting the plan . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 React to changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Updates and Evolution in Bioinformatics Data Sources 51
6.1 Bioinformatics and the Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Sample data sources and application . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 GoPubMed, ontology-based literature search . . . . . . . . . . . . . . . . 52
6.2.1.1 GeneOntology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.1.2 PubMed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.2 PDB and SCOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Organisation of Bioinformatics Data . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Reactivity/evolution scenario: GoPubMed, GO, PubMed, SCOP, and PDB . . . 54

7 Conclusions 57

vi



Chapter 1

Introduction

The Web and the Semantic Web, as we see it, can be understood as a “living organism”
combining autonomously evolving data sources, each of them possibly reacting to events it
perceives. The dynamic character of such a Web requires declarative languages and mechanisms
for specifying the evolution of the data.

This vision of the Web, as well as a state of the art overview of related areas, is described
in our previous work ([ABB+04, MAB04]). Rather than a Web of data sources, we envisage
of Web of Information Systems, where each such system, besides being capable of gathering
information (querying, both on persistent data, as well as on volatile data such as occurring
events), is capable of updating persistent data, communicating the changes, requesting changes
of persistent data in other systems, and being able to react to requests from other systems.

In this report we present three case study scenarios for such an evolving Web, each with a set
of use-cases. It is our goal that the scenarios and use-cases show the potential applicability of
the concepts and systems we are developing, and intend to develop within Rewerse. Moreover,
these use-cases should make it clear what are the goals and features a system for evolution in
the Web should have, and also to delimit the scope of what we intend to develop. In other
words, the set of use-cases should be such that it can serve as guidance, based on the example
scenarios, for the development of a language for evolution and reactivity on the Web, containing
a sufficiently rich set of cases for testing the various required features.

The choice of the case study scenarios had these goals in mind, but also the goal of fostering
a greater integration within the project Rewerse. Namely, it was our goal to have case study
scenarios close to the application areas being developed in the “Application Working Groups”
of Rewerse. This lead us to the development of three scenarios:

Rewerse Portal. This scenario is a joint activity of the working groups PRA (Project admin-
istration and presentation), TTA (Technology Transfer), I4 (Querying), I5 (Evolution &
Reactivity), and A3 (Personalization). Its targets are to develop a portal for:

• exchanging and collecting information about the project, its participants, and its
results;

• and for presenting and providing information about the project on the (Semantic)
Web.

Organising Travels. This scenario is concerned with planning travels based on information
gathered in the web, and acting on the web for the organization of such travels (e.g. by

1



buying train tickets, booking flights online, etc). The issue of reacting to happenings that
influence the initial plan, and re-planning accordingly, is also taken in consideration in this
scenario. In the use-cases it is made clear that location reasoning and the capability to
use different calendars and constraints over time notions is needed, and thus the potential
relation to work developed in WG A1 (events, time, and locations).

Updates and evolution in bioinformatics data sources. In bioinformatics there are many
publicly accessible data sources, which are often mirrored locally and integrated with other
data. The bioinformatics use case discusses four specific data sources, PubMed, a database
of 12.000.000 biomedical literature abstracts, GeneOntology, an ontology for moelecular
biology, with 19.000 concepts, PDB, a database with some 25.000 protein structures, and
SCOP, the Structure Classification of Proteins, which groups PDB structures accord-
ing to their evolutionary relationships. The scenario is concerned with mirroring these
data sources locally, keeping them consistent and integrating them, and its relation and
usefulness to the work being developed in working group A2 is clear.

These scenarios are detailed in Chapters 4, 5 and 6. Each of them illustrates different features
and aspects of Evolution and of Reactivity. Before presenting the scenarios, in Chapter 2 we
expose and briefly analyze some of these aspects that we find important to illustrate for Evo-
lution and Reactivity, and in Chapter 3, in order to better guide the reading, we summarizes
which aspects are worked out by which scenarios.

It is worth noting that in the scenarios we do not distinguish between Evolution and Re-
activity, though the deliverables in Rewerse were structured according to such a distinction.
As we see it, Evolution in the Web is concerned with (consecutive) modification of data and
propagation of modifications, whilst Reactivity is concerned with detection of changes, and
possibility to take actions (most likely updates, which determine evolution) in reaction to those
changes. In examples and, as such, in scenarios and use-cases, it is quite difficult, and perhaps
even unnatural, to decouple these two aspects of changes of data on the Web. Having exam-
ples simply concerned with dealing with modifications, and without concerns about how these
modifications where triggered, or having examples concerned with triggering of modifications
without concerns about how these modification are realised would not show the full potential of
Evolution and Reactivity, and would not make clear what the whole of the problems involved
are. Thus, we opted to describe use-cases for both Evolution and Reactivity, without separating
these two aspects.

2



Chapter 2

Concepts and Requirements

Web-applications dealing with evolution and reactivity usually have the following common
characteristics:

• They gather information, that is they query (persistent and volatile) data and reason with
them.

• They update persistent data, that is they modify data in Web resources (e.g. XML or RDF
data). Such modifications often have to happen in an all-or-nothing manner, posing a
requiring support for transactions.

• They react to changes in data, that is they communicate notifications about changes
in data (events), detect situations of interest (i.e. time-related patterns of events), and
execute reactions to such situations.

For realizing a system with these characteristics, we proposed in [ABB+04, MAB04] to use
active event-condition-action like (ECA) rules. More precisely, we assume that communication
in the Semantic Web takes place by peer-to-peer communication between resources, and that
this communication is based on messages and events (that both are represented or wrapped
in XML). Active rules, similar to event-condition-action rules, are used for communication
and for specification of the local behavior of Semantic Web nodes. Such a rule is triggered
by events, then optionally checks for conditions and finally takes appropriate actions (in most
cases, updating local information accordingly).

Events are either atomic events (e.g., updates in the local databases, received messages, or
happenings on the Web), or complex events formed as combinations of atomic ones (e.g. “when
A is updated, and then B is updated”) expressed in some event algebra. Moreover, events can
be either explicit (in case they are explicitly communicated, through event messages, to the
node or resource), or implicit (in case they are not explicitly communicated, and have to be
somehow automatically detected, such as local updates of data or system events, e.g. system
clock events). Conditions denote queries to one or several nodes and are to be expressed in the
a query language. Atomic actions are e.g. update requests or sending a message, and actions
can be grouped as transactions.

Gathering information is a matter of querying data that, though essential for Evolution and
Reactivity, is not the main subject of our study (and is studied elsewhere in Rewerse). So,
we assume that various query languages exist that make it possible for data to be queried,

3



and conditions to be tested in ECA-rules. The aspects of evolution and reactivity developed
by us should, as much as possible, be parametric on the query language. In the use-cases we
consider various possibilities such as XPath/XQuery (mostly in Chapter 4) and Xcerpt (mostly
in Chapter 5).

In the remainder of this chapter we analyse several relevant aspects of Evolution and Re-
activity via these rules for structuring the systematic choice and presentation of use-cases.
Namely, we analyse:

• rules: database triggers or high-level active rules,

• actions: explicit updates or actions,

• communication issues.

2.1 Active Rules

There are several abstraction levels on which active rules can be defined:

• programming language level: triggers as built-in constructs of a given database model,
like SQL triggers. Usually they are implemented inside the database. This level can e.g.
directly be based on the DOM Level 2/3 Events [DOM98].

• logical level – XML. Here ECA rules consist of distinguished event-condition-action parts
that are also marked up in XML/RuleML; one of the results of the research in I5 (jointly
with I1) should be an ECA-ML language.

This requires a definition of atomic update events on XML data; probably on the same
level and granularity as updates in XUpdate located by XSL patterns or by using an
update language like XChange1

• semantic level: RDF. Here, several aspects can (also independently) be lifted from XML:

– use XML-ECA rules on underlying RDF/OWL data,

– use RDF/OWL descriptions of events, conditions, and actions in the XML-ECA
framework,

– use an RDF/OWL ontology even on the rule level. (Conversely, rules in this ontology
can themselves use event/condition/action parts in XML, and even data in XML).

2.1.1 Trigger-Like Local ECA Rules

Trigger-like local ECA Rules have to react directly on the changes of the database, which is
assumed to be in XML or RDF format. While triggers in relational databases/SQL were only
able to react on changes of a given tuple or an attribute of a tuple, the XML and RDF models
call for more expressive event specifications according to the (tree or graph) structure.

1For more details on XChange, and its usage in this context, see Chapter 5.

4



2.1.1.1 XML

For modifications of an XML tree, the following atomic events could be considered:

• ON DELETE OF xsl-pattern: if a node matching the xsl-pattern is deleted,

• ON INSERT OF xsl-pattern: if a node matching the xsl-pattern is inserted,

• ON MODIFICATION OF xsl-pattern: if anything in the subtree is modified,

• ON UPDATE OF xsl-pattern: the value (text or attribute) of a node matching the xsl-pattern
is modified,

• ON INSERT INTO xsl-pattern: if a node is inserted (directly) into a node matching the
xsl-pattern,

• ON INSERT [IMMEDIATELY] BEFORE|AFTER xsl-pattern: if a node is inserted (immedi-
ately) before or after a node matching the xsl-pattern.

All triggers should make relevant values accessible, e.g., OLD AS ... and NEW AS ... (like in
SQL), both referencing the complete node to which the event happened, additionally INSERTED
AS, DELETED AS referencing the inserted or deleted node.

Similar to the SQL STATEMENT and ROW triggers, the granularity has to be specified for each
trigger; the following granularities are proposed here:

• FOR EACH STATEMENT (as in SQL),

• FOR EACH NODE: for each node in the xsl-pattern, the rule is triggered only at most once
(cumulative, if the node is actually concerned by several matching events) per transaction,

• FOR EACH MODIFICATION: each individual modification (possibly for some nodes in the
xsl-pattern more than one) triggers the rule.

For data-dependent information propagation, mainly FOR EACH NODE and FOR EACH MODIFICATION
are adequate.

The implementation of such triggers in XML repositories is probably to be based on the
DOM Level 2/3 Events [DOM98].

2.1.1.2 RDF

RDF triples, describing properties/values of a resource are much more similar to SQL. In
contrast to XML, there is no assignment of data with subtrees (which makes it impossible to
express “deep” modifications in a simple event; such things have then to be expressed in the
condition part).

• ON DELETE OF property [OF class],

• ON INSERT OF property [OF class],

• ON UPDATE OF property [OF class].

5



If a property is removed from/added to/updated of a resource of a given class, then the event
is raised.
Additionally,

• ON CREATE OF class is raised if a new resource of a given class is created.

Probably, also metadata changes have to be detected:

• ON NEW CLASS is raised if a new class is introduced,

• ON NEW PROPERTY [OF CLASS class] is raised, if a new property (optionally: to a speci-
fied class) is introduced.

All triggers should make relevant values accessible, e.g., OLD AS ... and NEW AS ... (like in
SQL), both referencing the original/new value of the property, RESOURCE AS ... and PROPERTY
AS ... refer to the modified resource and the property (as URIs), respective.
Trigger granularity is FOR EACH STATEMENT or FOR EACH TRIPLE.

2.1.1.3 Condition and Action Part

Since triggers are on the programming language level, the condition part is (as in SQL) either
a simple comparison, or, a boolean query in the appropriate query language (XQuery, Xcerpt,
or an RDF query language).

Similarly, the action part must specify an action that can be executed by the database,
usually an update or a program. In case that sending a message to the outside is supported,
this can also be done.

2.1.2 Local and Global ECA Rules

While “triggers” are restricted, programming-language concepts, general ECA rules provide an
abstract concept using an own language. Especially in our setting, they are usually separated
from the database. Thus, they do not react on “physical” events in the database, but on logical
events (that nevertheless are actually raised by events in a database).

ECA rules are marked up in the language that we will probably call ECA-ML (XML), or
even formulated more abstractly in RDF, using an OWL ECA ontology. In general, they use
sublanguages for events (EventML), conditions (allowing to embed XQuery), and (trans)actions
(embedding SOAP for service calls as atomic actions).

Local ECA Rules. Local ECA rules are more general than triggers. They still react on
local events only, but they use an own event language that is based on a set of atomic events
(that are not necessarily simple update operations) and that usually also allows for composite
events. Their event detection mechanism is not necessarily located in the database. Detection
of atomic logical events can be based on

• database triggers that generate events that are visible/detectable outside the database,
or

• they have to poll the database regularly if such an event occurred.

6



Global ECA Rules. Global ECA rules have to be used if a composite event consists of
subevents at different locations (or if the source of an event is not able to process local rules).
When considering global rules in the Web and in the Semantic Web

• “distributed” variants of the above local ECA rules, with events that explicitly mention
a database/node where the event is located (e.g., “change of xpath-expr at url”),

• rules that react on events in a set of known databases (e.g., “when a new researcher is
added at one of the participants nodes” (which itself is a dynamic set)),

• high-level rules of an application, that are not based on schema knowledge of individual
databases, often even not explicitly on a given database (e.g., “when a publication p
becomes known that deals with ...”). Here, Semantic Web reasoning comes heavily into
play even for detecting atomic events “somewhere in the Web”.

The capability to detect and react to composite events is needed for many Web-based
reactive applications, and is exemplified in the scenario of Chapter 5. However, to the best
of our knowledge, existing languages for reactivity on the Web do not consider the issues of
detecting and reacting to such composite events, and further developements are need in this
issue 2.

2.2 Updates and Actions

There are different ways how to express the actions to be taken.

Explicit updates: In this case the action is an explicit update statement e.g. described in
XUpdate, XQuery+Updates, XChange, or in an RDF Update language. This requires
knowledge of the underlying schema.

Explicit actions: In this case by calling a procedure/method (SOAP),

Semantic: This requires the declarative specification of what has to be changed, using an
RDF/OWL ontology of changes (to RDF data).

2.3 Communication

Peer-to-peer-communication in the Web and in the Semantic Web can be done in two distinct
ways:

• Push: a node informs registered nodes. A directed, targeted propagation of changes by
the push strategy is only possible along registered communication paths. It takes place
by explicit messages.

• Pull: resources that obtain information from a fixed node can pull updates by either
explicitly asking the node whether it executed some updates recently, or can regularly
update themselves based on queries against their providers. Communication is based on
queries and answers (that are in fact again sent as messages).

2[BKK04] considers “composite events”. However, this notion refers in [BKK04] to updates of several elements
of a single XML document.

7



We need this distinction also on two levels:

• application-level: how to communicate changes from one node to another? The basic
choice of using “push” or “pull” communication influences the design of the rules that
implement the communication.

• infrastructure level: how to communicate events and how to raise actions.

– Push (events): sending a message that contains the description of an event (e.g., the
phone number of person P has been changed to 1234), which can either be in an
agreed XML format, or in RDF. The receiving node must then decide how to react
on this event.

– Pull (events): seeing events as events “on the Web”, and other nodes must detect
these events by themselves (or supported by third-party event detection mecha-
nisms).

– Push (actions): sending a message that contains explicitly the action/service call to
be taken there. The action can be an explicit update, or a description of an action
in XML/SOAP or RDF.

– note that the contrary of “push actions” is not “pull actions”, but that actions are
not pushed, i.e., only local actions are allowed.

8



Chapter 3

Summary of the scenarios

Each of the three proposed scenarios is meant to illustrate different aspects of evolution and
reactivity, and to focus on different possible underlying languages (e.g. the scenarios on “orga-
nizing travel” focuses on Xcerpt and XChange, while the “Rewerse portal” scenarios focuses
more on XPath/XQuery and XUpdate). In this Chapter, to better guide the reading of the
report, we summarize which aspects are better illustrated in each scenario.

3.1 Rewerse Information System and Portal

The Rewerse Personalized Portal (Rewerse-IS&PP) scenario is a joint activity of several
working groups in the project, which all contribute with their specific expertise to build and
explore innovative (personalized) semantic information portals. We can distinguish between
technology providers for the Rewerse-IS&PP (currently working groups I5, A3), and users
(TTA, PRA). As technology providers for the scenario, the working group I5 focuses on the
dynamic and evolutionary aspects of the information system, while A3 is focussing on architec-
tures and personalization functionality for the portal (see deliverable A3-D3). Scenarios and
use-cases for the Rewerse-IS&PP have been developed in co-operation with working groups
TTA and PRA. Its targets are (i) exchanging and collecting information about the project, its
participants, and its results, and (ii) presenting and providing information on the (Semantic)
Web. The scenario consists of the following nodes:

• Participant’s nodes: The structure of the Web nodes of the participants is not dedicated
to their role as Rewerse participants, but is an XML or RDF repository that contains
data (e.g. names of participant, publications, interests, etc) about a research group. The
only relationship to Rewerse is given in a block of project-specific information (e.g.,
funding), and in the enumeration of working groups where a person is involved.

Thus, communicating data to the other nodes then relies on active rules that e.g. react if
an entry “Rewerse” is added to a person’s projects.

• Working group nodes: here, a common schema is used for all nodes (scenario: both in XML
and in RDF), and nodes contain information relative to the various working groups of
Rewerse, including information about participants, deliverables, coordinators, meetings,
etc.

9



• Central project node (scenario: both in XML and in RDF), containing general information
about the project. The externally visible functionality as a portal is associated with this
central node. In it, e.g. personalization is implemented.

The repositories can be either in XML or in RDF – only the rules must be formulated appro-
priately.

This is one scenario where we can have control over what is being developed, and can serve
as a good controlled environment, where both the ontology and the organization of the nodes
is known, to illustrate (and, afterwards, to test) evolution and reactivity aspects. In it we
illustrate in detail:

• some basic aspects of information propagation (both upwards from participants to working
groups and to the central node, and downwards from the central node all the way down
to participants);

• some communication issues, such as push and pull communication strategies;

• usage of trigger-like, local, and also global ECA rules;

• use of active rules (and reasoning) for negotiation, e.g. for agreeing on dates for meetings;

Though in this scenario we elaborate on some example involving complex (composite and cu-
mulative) events and composite actions and transactions, most of the focus on the use-cases is
on atomic events and simple actions.

Most of the use-cases are developed at the XML level, some considerations on lifting to the
RDF/OWL level being simply sketched at the end. Moreover the use-cases do not assume any
particular query or update language for XML data, and for illustrative purposes, XPath/XQuery
and XUpdate are mostly used.

3.2 Organising Travels

This scenario is concerned with planning travels based on information gathered in the web, and
acting on the web for the organization of such travels (e.g. by buying train tickets, booking
flights online, etc). The issue of reacting to happenings that influence the initial plan, and
re-planning accordingly, is also taken in consideration in this use-case.

This is a more general scenario, in a much less controlled environment. As such, the issue of
gathering information, and of reasoning on such information, plays in this scenario a much more
central role than in the previous one. Though the querying features are outside the specific
scope of our working group (I5), and are studied and developed elsewhere in Rewerse (in
working group I4), it is essential to consider them in the context of this scenario. As such, this
is a good scenario to illustrate and, afterwards, experiment with the integration of querying and
evolution aspects developed in Rewerse, this being a focus on the use-cases for this scenario.
Being so closely related with the work on queries, rather than what happens in the previous
scenario, in this one, all example are illustrated with query and update languages developed in
Rewerse; namely, the query language Xcerpt and the update language XChange are used in
examples.

Besides the greater integration with queries, this scenario is also more adequate to show
some aspects of complex events and transactions, and some examples of such are given in the
use-cases.

10



3.3 Updates in Bioinformatics Data Sources

The scenario describes four specific data sources, all with considerable volume of data, and ap-
plications that integrate them. The following aspects are specific to the bioinformatics scenario:

• The data is distributed and the original sites that publish data are typically outside the
control of the application. The remote databases are often cached.

• There are primary and secondary databases. The latter are based on the former.

• Data sources are updated at different intervals ranging from weekly to yearly updates.

• Data sources are published in various formats such as free text, relational database, or
XML.

• It is necessary to pose recursive queries over ontologies.

11



12



Chapter 4

Rewerse Information System and
Portal

In this Chapter we describe the Rewerse Information System and Portal as a scenario of a
(Semantic) Web application with the focus on evolution and reactivity. Using this scenario, we
partition evolution and reactivity into several aspects that can be investigated and combined
in a modular way. The scenario and the use-cases are described and analyzed first on the
Web (XML) level. Moving towards the Semantic Web (RDF/OWL) level, most of the aspects
of evolution and reactivity can be treated individually, often just by appropriate RDF/OWL
representations and mapping them to the underlying mechanisms.

The Rewerse Personalized Portal (Rewerse-IS&PP) scenario is a joint activity of several
working groups in the Project, which all contribute with their specific expertise to build and
explore innovative (personalized) semantic information portals. We can distinguish between
technology providers for the Rewerse-IS&PP (currently working groups I5, A3), and users
(TTA, PRA). As technology providers for the scenario, the working group I5 focuses on the
dynamic and evolutionary aspects of the the information system, while A3 is focussing on
architectures and personalization functionality for the portal (see deliverable A3-D3). Scenarios
and use-cases for the Rewerse-IS&PP have been developed in co-operation with working
groups TTA and PRA. Its targets are (i) exchanging and collecting information about the
project, its participants, and its results, and (ii) presenting and providing information on the
(Semantic) Web. The scenario consists of the following nodes:

• Participant’s nodes: The structure of the Web nodes of the participants is not dedicated
to their role as Rewerse participants, but is an XML or RDF repository that contains
data (e.g. names of participant, publications, interests, etc) about a research group. The
only relationship to Rewerse is given in a block of project-specific information (e.g.,
funding), and in the enumeration of projects where a person is involved.

Thus, communicating data to the other nodes then relies on active rules that e.g. react if
an entry “Rewerse” is added to a person’s projects.

• Working group nodes: here, a common schema is used for all nodes (scenario: both in
XML and in RDF).

13



• the central project node (scenario: both in XML and in RDF).

Note that the repositories can be either in XML or in RDF – only the rules must be formulated
appropriately.

The externally visible functionality as a portal is associated with the central node. There,
e.g. personalization is implemented.

Ontology. For the Rewerse Portal, an ontology of the Rewerse project - its organization,
working groups, persons, participants, etc., has been developed (see deliverable A3-D3).

Propagation of Updates/Materialization vs. View Definition. In the scenario, the
data integration aspect is mainly implemented by propagation of updates (i.e., materializing
and maintaining the integrated information) instead of a view-based integration (by mappings
in the global-as-view or local-as-view style). We prefer this for the following reasons:

• updates are infrequent, so the maintenance overhead is low,

• queries that each time involve contacting all WG and participants nodes and all partici-
pants are ineffective, and would depend too much on network accessibility,

• local consistency conditions (especially at the central node), e.g. on publications of multi-
ple coauthors, (note that this is also concerned with a notion of global consistency between
different nodes in the Web) are better supported with materialized data,

• local active rules to be fired upon updates can then be based on local events (both rules
on participant nodes upon e.g. new appointments, and rules on the central node upon
local updates).

Although the actual realization will be based in propagating and materializing information, we
will also illustrate rules that react on remote events by this scenario.

In the next section, we give an overview of how the various use cases are structured and
presented with respect to the relevant issues spelled out in Chapter 2. Section 4.2 then dis-
cusses the Portal Scenario data and use cases for the XML case. Here, we systematically list
the features that an ECA language for evolution and reactivity on the Web should provide.
Section 4.3 concludes this Chapter with a short summary of the requirements, related work,
and the lifting to the RDF/OWL level.

4.1 Overview of Use Cases

The use cases are partitioned into several aspects:

• maintenance of base data: simple propagation of updates from the participants and WGs
to the central node

• data-dependent flow of information and communication: appointments and to-do-lists
from the central node to the WGs and the participants, and from the WGs to participants,

• personalization and presentation,

14



• application-specific tasks: e.g., negotiations of dates for meetings.

So far, the use-cases are partitioned wrt. their role in the application. Some more use-cases
that use composite events are also discussed.
Below, we describe these situations, and the roles of evolution and reactivity.

4.1.1 Propagation of Updates: Upwards

Evolution in this aspect means user-driven updates to the scenario which are then propagated
(upwards) through the nodes, e.g.,

• Inserting a new person. Persons are inserted by the participants into their nodes. The
insertions are then propagated to the WGs where the person is associated and to the
central node.

• Analogous for deleting persons or changing information about a person (e-mail, phone,
fax etc.)

Here, the choice to which nodes a message has to be sent, is relatively simple. Communication
is then by reactivity:

• the updated node reacts on user-driven updates by sending appropriate messages to other
nodes, and then the other nodes react on the message (leading to local evolution again) ,
or

• other nodes react on the event (which is for them a remote event), again leading to
evolution.

Obviously, global evolution (of the information system) consists of local evolution in all nodes
which is coordinated by reactivity.

4.1.2 Information Propagation and Distribution: Downwards

Information from the project coordination office and from the WG coordinators is propagated
downwards, e.g., dates for meetings which are then added to the WG and participants’ nodes.

In case of a push communication, the subordinate node must determine to which nodes
the message/action must be sent/directed. If the action is an explicit update of a node, this
selection must be complete and correct, since the remote nodes are definitely updated. In case
that an informative message is sent that contains some information, the selection has only to
be complete, since the nodes can then decide by themselves what to do with the message; note
that this information may be broadcasted to all participant nodes.

In case of a pull communication, each node for which the event is relevant, must detect it
by its own and execute appropriate actions.

In the same way as above, global evolution (of the information system) consists of local
evolution in all nodes which is coordinated by reactivity. Here, the disseminated information
causes further reactions and evolution, e.g., when a new appointment or task becomes known
to a participant.

15



4.1.3 Personalization and Presentation

The scenario serves as an internal information system, and includes the portal that serves to
the external world for presentation of the project and its results.

Personalization takes place in at least two issues. First, for researchers in the project where
every researcher probably wants to have an own view of the project that includes his primary
WG (e.g., I5), some WGs where he is involved in (e.g., I4 and A3), and an overview of the
results of other WGs (e.g., I1 for general work on rule markup languages). Here, large parts
of the information that is required for personalization is already contained in the project data;
additionally, users should be able to define their own rules, and furthermore the system can
probably be adaptive. For external users, restricted rules could be definable, e.g., depending
on their research area.

Here, local evolution of the personalizated node/service results from local and remote events;
in our approach this takes place by reaction rules.

4.1.4 Negotiations and Policies

Fixing dates for meetings depends on a lot of constraints. Here, the use of a calendar together
with the personal schedules of prospective participants (e.g., exams, travels etc) can help to
select possible and preferable dates.

This task consists of (i) communication and (ii) reasoning. Communication e.g. comprises
to ask the participants’ nodes for the available dates of certain participants. Reasoning is then
applied for combining the available information and proposing a set of dates based on policies.
Policies are e.g. of the form “meetings must not include holidays in the country where the
meeting takes place”, or “if there is a time/place where several relevant persons meet for a
conference, then preferably a meeting should be associated with this event”. If an appointment
is made, it is communicated according to the description in Section 4.1.2.

Here, reactivity (for reasoning) plays a much more important role as in the first two situa-
tions for propagating and disseminating information. Evolution then results from reasoning.

4.1.5 Composite Events and Composite Actions

The previous sections show different aspects of ECA rules and of communication and detec-
tion of mostly atomic events. A separate section is devoted to the investigation of composite
events. This aspect is mainly concerned with providing powerful mechanisms for expressing
and controlling reactivity.

In the same way, the action part of ECA rules can contain transaction specifications. A
short section describes this well-known concept. This aspect is mainly concerned with providing
powerful mechanisms for specifying evolution.

4.1.6 Further Extensions

There are several extensions that can be added to the scenario for demonstrating additional
functionality. Some of them are mentioned below.

• a global bibliography/repository of relevant documents (including documents from outside
the project), possibly with annotations (cf. the Personal Reader),

16



• functionality for organizing travels to meetings: when the systems knows that a certain
person will attend the meeting, possible flight/train connections can already be proposed.
This includes strong connections to the Travel Planner scenario and calendar and geo-
graphical reasoning (WG A1).

4.2 Use Cases: XML

4.2.1 The Data

Consider the XML instances as below.

Participants’ nodes. Participants’ nodes have a simple structure, describing ther “technical
data” and one entry for each researcher, e.g. goettingen.xml:

<participant>
<name>Georg-August-Universitaet Goettingen</name>
<shortname>Goettingen</shortname>
<country>Germany</country>
<representative>Wolfgang May</representative>
<group>
<name>Databases and Information Systems</name>
<funding months="1-18" currency="Euro">12345.00</funding>
<expenses>

<expense reason="Kickoff Meeting">1234</expense>
<expense reason="I5 Meeting 12-2004">5678</expense>

</expenses>
<person type="researcher" id="WM">
<name>
<givenname>Wolfgang</givenname>
<familyname>May</familyname>

</name>
<title>Prof.</title>
<title>Dr.</title>
<title>Dipl.-Inform.</title>
<contact>
<email>may@informatik.uni-goettingen.de</email>
<phone>0551 39 14412</phone>

</contact>
<participation role="deputy coordinator">I5</participation>
<participation>I4</participation>
<participation>A3</participation>
<crossreader>I4-D1</crossreader>
<crossreader>I4-D2</crossreader>
<crossreader>A3-D2</crossreader>
</person>
<person type="researcher" id="EB">
<name>
<givenname>Erik</givenname>
<familyname>Behrends</familyname>

</name>
<title>Dipl.-Inf.</title>
<contact>
<email>behrends@informatik.uni-goettingen.de</email>
<phone>0551 39 14412</phone>

</contact>
<participation>I5</participation>

17



</person>
</group>

</participant>

Working Group Nodes. The Working Group nodes combine data of all participants’ nodes
as far as they concern the WG, and additionally contains WG information and materials (in-
cluding documents in pdf format).

<workinggroup>
<name>Evolution and Reactivity</name>
<ID>I5</ID>
<coordinator>Jose Alferes</coordinator>
<assistant>Alexandre Pinto</assistant>
<deputycoordinator>Wolfgang May</deputycoordinator>
:
people
:
<deliverable status="delivered">
<number>I5-D1</number>
<title>State of the Art</title>
<crossreader>Thomas Eiter</crossreader>
<crossreader>Gerd Wagner</crossreader>
<date>Sept-01-2004</date>
<availableat format="pdf">http:...</availableat>

</deliverable>
<deliverable status="working">
<number>I5-D2</number>
<title>Use Cases</title>
<crossreader>Nicola Henze</crossreader>
<crossreader>Michael Schroeder</crossreader>

</deliverable>
</workinggroup>

Note that names (i.e., cross-readers and coordinators) are stored as text. For global use, a
function is required that matches the detailed format of names as given in the person entries
with e.g. these entries, authors of publications etc. Since all entries concerning persons are
communicated with the project office, policies can be defined by rules that check if a matching
is possible, or a wrong name is used (e.g. “Alexander” instead of “Alexandre”). Here, also
actions can be taken by the central node to propagate the standard writings (as given in the
participant’s node) of names (e.g., adapting cross-reader entries). From the WG data, also WG
HTML pages can be generated.

Project Node. The Central Project Node combines data of all participants’ and working
group nodes, and additionally contains project information and materials (including documents
in pdf format).

<project>
<workinggroup>
<name>Evolution and Reactivity</name>
<ID>I5</ID>
<coordinator>Jose Alferes</coordinator>
<assistant>Alexandre Pinto</assistant>
<deputycoordinator>Wolfgang May</deputycoordinator>

18



<deliverable status="delivered">
<number>I5-D1</number>
<title>State of the Art</title>
<crossreader>Thomas Eiter</crossreader>
<crossreader>Gerd Wagner</crossreader>
<date>Sept-01-2004</date>
<availableat format="pdf">http:...</availableat>

</deliverable>
<deliverable status="working">
<number>I5-D2</number>
<title>Use Cases</title>
<crossreader>Nicola Henze</crossreader>
<crossreader>Michael Schroeder</crossreader>

</deliverable>
</workinggroup>
:
<participant>
<name>Georg-August-Universitaet Goettingen</name>
<shortname>Goettingen</shortname>
<country>Germany</country>
<representative>Wolfgang May</representative>
<url>http://dbis.informatik.uni-goettingen.de/...</url>
<group>
<name>databases and Information Systems</name>
<funding months="1-18" currency="Euro">12345.00</funding>
<expenses>
<expense reason="Kickoff Meeting">1234</expense>
<expense reason="I5 Meeting 12-2004">5678</expense>
:

</expenses>
<person type="researcher" id="WM">
<name>
<givenname>Wolfgang</givenname>
<familyname>May</familyname>
</name>
<title>Prof.</title>
<title>Dr.</title>
<title>Dipl.-Inform.</title>
<contact>
<email>may@informatik.uni-goettingen.de</email>
<phone>0551 39 14412</phone>
</contact>

</person>
<person type="researcher" id="EB">
<name>
<givenname>Erik</givenname>
<familyname>Behrends</familyname>
</name>
<title>Dipl.-Inf.</title>
<contact>
<email>behrends@informatik.uni-goettingen.de</email>
<phone>0551 39 14412</phone>
</contact>

</person>
</group>
</participant>
:

</project>

19



Globally, there is a lot of redundancy, e.g. contact data of persons are stored at the participant’s
node, at every WG node where the person is involved, and at the central node. Each node is
able to provide all relevant information for its “owner” as a standalone node.

Note that all syntax in this section is not normative, but only intended as a base for discus-
sion:

• the event language must contain a set of connectives that covers usual event algebra
connectives (especially, free variables and cumulative events)

• variables can be bound anywhere in the rule (e.g., after inside the event part, or after
evaluating the condition part),

• the action language must contain connectives e.g. similar to those of Concurrent Trans-
action Logic [BK94, BK95]

4.2.2 Maintenance Use Cases

Use Case 4.2.1 (Changing Phone Number) Phone numbers (or any other contact details)
are updated at the participants’ nodes. The updates have to be propagated to the WG nodes and
to the central node.

• by a trigger:

ON UPDATE OF phone AS $phone
LET $person := $phone/ancestor::person
... do something ...

(analogously for INSERT OF phone)
where do something can be of several forms:

– explicit remote updates (in case a language allows this), or

– send XUpdate messages to the WG node(s) where the person participates and the
central node.

• by a local ECA rule with an explicit remote update

<event>
<evt:atomic>
<change-of select="phone">
<variable name="phone" select="."/>
<variable name="person" select="$phone/ancestor::person"/>

</change-of>
</evt:atomic>

</event>
<action language="XQuery+Updates">
update http://...
set //person[matches(name,$person/name)]/phone := $phone

</action>

20



Note that <change-of select="phone"> includes deletion, insertion and modification of
a phone number.

• by a local ECA rule that sends an XUpdate message

<event>
// same as above

</event>
<action>
<sendmessage receiver="http://...">
<msg:contents language="XUpdate">
<xu:modifications version="1.0"

xmlns:xu="http://www.xmldb.org/xupdate">
<xu:update select=’{//person[matches(name,$person/name)]/phone}’>
$phone

</xu:update>
</xu:modifications>
</msg:contents>

</sendmessage>
</action>

• by an ECA rule at the WG node that detects remote events and then executes a local
update:

<event>
<evt:atomic>
<change-of select="http://...//person/phone">
<variable name="phone" select="."/>
<variable name="person" select="$phone/ancestor::person"/>

</change-of>
</evt:atomic>

</event>
<action language="XQuery+Updates">
update
set //person[matches(name,$person/name)]/phone := $phone

</action>

Use Case 4.2.2 (Association with Working Group) The associations of researchers with
Working Groups can be changed by the participants’ nodes, by the WG nodes, and by the central
node. In all cases, suitable propagation is required. This can again be done by triggers that react
directly on the update, or by event detection.

Below, non-local rules are given as ECA rules (note that upon the event, it is first checked
in the condition whether the new information is already stored in the other nodes – which would
be the case if the person has first been inserted in the WG node and then propagated downwards
to the participant’s node).

21



• ECA rule that detects a new participation entry at a participant’s page and propagates the
change to the WG node, by means of explicit updates:

<event>
<evt:atomic>
<change-of select="http://goe/rewersedata.xml//person/participation">
<variable name="participation" select="."/>
<variable name="person" select="$participation/ancestor::person"/>
<variable name="WGUrl">
// compute $WGUrl := url of the WG node

</variable>
</change-of>

</evt:atomic>
</event>
<condition language="XPath">

not $WGUrl//person[matches(name,$person/name)]
</condition>
<action>
<act:atomic language="XQuery+Updates">
update $WGUrl
// possibly strip person to contain only WG-relevant information
insert $person into $WGUrl//workinggroup
</act:atomic>
</action>

Note that the rule must be given for each participant node, or a global rule must be created
that reacts on the change at any of the participant nodes (see below).

• analogous rule, with the action updating the project node,

• or, instead of the two above, one rule that updates both the WG node and the project node.
In this case, the condition part is empty and the action part contains two conditional
actions:

<event> as above </event> <action>
<act:conj>
<act:cond test="not $WGUrl//person[matches(name,$person/name)]">
<act:atomic language="XQuery+Updates">
update $WGUrl
// possibly strip person to contain only WG-relevant information
insert $person into //workinggroup

</act:atomic>
</act:cond>
<act:cond test="not $ProjUrl//person[matches(name,$person/name)]

//participation=$participation">
<act:atomic language="XQuery+Updates">
update $ProjUrl

22



let $person2:=//person[matches(name,$person/name)]
insert <participation>$participation<participation>
into $person2

</act:atomic>
</act:cond>

</action>

• As stated above, such a local rule must be given for each participant node (push-propagation
of changes). Alternatively, a global rule can be used that reacts on the change at any of
the participant nodes. Here, the “event” is much more complicated to express since all
participant nodes have to be considered. One possibility is a large disjunctive event “update
of .. at url1 or url2 or ... or urln”. Since this set of urls can change over time, it is
useful to define it by a query against the database.

Then, assuming an event language that allows for existential quantification, the following
rule can be formulated:

<event>
<evt:forany>
<variable name="url" select="//participant/url"/>
<!-- bound to the set of all urls of current participants -->
<evt:atomic>
<change-of select="$url//person/participation">
<variable name="participation" select="."/>
<variable name="person" select="$participation/ancestor::person"/>

</change-of>
</evt:atomic>

</evt:forany>
</event>
<action>
<act:atomic language="XQuery+Updates">
insert $person into //workinggroup
</act:atomic>
</action>

Note that event detection must adapt to possible changes of participants urls (possibly by
another reactive rule).

• Another possibility is to constrain the urls in the condition part:

<event>
<evt:atomic>
<change-of select="person/participation">
<variable name="participation" select="."/>
<variable name="person" select="$participation/ancestor::person"/>
<variable name="url" select="... url where the change happens..."/>

</change-of>

23



</evt:atomic>
</event>
<condition>
$url in //participant/url

</condition>
<action>
<act:atomic language="XQuery+Updates">
insert $person into //workinggroup
</act:atomic>
</action>

Note that whereas the event part alone is hard to evaluate since all Web nodes have to be
monitored, whereas the condition part actually specifies a finite (and small) set of nodes
that are relevant. Thus, remote event detection in general requires additional reasoning.

Use Case 4.2.3 (Cross-Reader) Cross-Readers for deliverables are inserted by the WG co-
ordinator in the WG node. The information has to be propagated to the central node and to the
cross-reader’s participant’s node. Here, again, triggers, local ECA rules or global ECA rules
can be used.

Use Case 4.2.4 (Deliverable) If a deliverable is published, this is done either by a WG node
or by the project node. In both cases, some communication has to be done, and possibly further
actions at the project node should be taken automatically.

The above use cases dealt with the maintenance of the basic data of the scenario. In the
following sections, use cases that support specific tasks in this scenario are described.

4.2.3 Dissemination Use Cases

The knowledge about the project structure and the people is intended to be used for disseminat-
ing information in the project, e.g., to make appointments for meetings, and to keep to-do-lists
and deadlines.
For these tasks, there are two different approaches:

Centralized Portal: The “Portal” provides information about everything in the project.
Since the portal is personalized (see Section 4.2.4), each member of the project can have
his or her personal view that e.g. lists all upcoming relevant events and deadlines.

On the other hand, if a person then wants to have an overview of what he has to do
“today”, he has to visit the project portal, the local university portal (e.g. for faculty
meetings), possibly other project portals he is involved in, and his own schedule and
duties (e.g., reviews).

Decentralized Information: Here, the information is sent (as XML or RDF packets) to the
local nodes of the persons. Here, the participant’s node is seen as the interface to the
persons local environments. E.g., personal time planners can more easily be scripted to
contact this node (and the person subtree or resource) to receive project-related infor-
mation.

24



Thus, we again vote for a redundant approach which implements both a centralized portal and
also local availability of all relevant information in the participants’ nodes.

We consider both the “push” variant where nodes inform others about relevant issues, and
the “pull” variant where nodes have active rules that react on external events.

Use Case 4.2.5 (Meeting – Push) If a meeting is fixed, it is inserted either by the central
node or by a WG node (e.g., a meeting of I4 and I5, initiated by I4). Then, it must be
communicated (together with e.g. a Web page where the materials can be found) to appropriate
other nodes.

For this, an ontology of meeting information must be developed to characterize the meeting.
An entry could e.g. look as follows.

<meeting>
<title>I4/I5 meeting summer 04</title>
<place>Munich</place>
<date>7./8.6.2004</date>
// note: calendar reasoning is done in A1

<audience>
a query/description that results in all names of person
that are potentially interested, e.g., all members of I4/I5
and people from other WGs who cooperate in some topics.

</audience>
<webpage href="www.rewerse.net/.../"/>

</meeting>

If a meeting is inserted into a node, appropriate rules must be there to evaluate and propagate
this information. The insertion of meeting data in the project node e.g. triggers the following
rule that disseminates the meeting information towards the concerned WG nodes and partici-
pant’s nodes:

<event>
<evt:atomic>
<insert-of select="meeting">
<variable name="meeting" select="."/>

</insert-of>
</evt:atomic>

</event>
<action language="XQuery+Updates">
let $wgs := evaluate($meeting/audience)//wg
let $persons := evaluate($meeting/audience)//person
// send $meeting to $wgs nodes
// send $meeting to $persons’ participant nodes

</action>

The WG nodes must have a similar rule for handling incoming meeting information.
Note that a meeting can be propagated to a participant’s node via several WG nodes if the

participant belongs to several WGs. Similarly, it can be propagated to participants’ nodes both

25



directly from the central node and from WG node(s). Rules have to check if information has
already arrived by another way.

Use Case 4.2.6 (Meeting – Pull) In the “pull” case, the WG nodes have a rule that reacts
on insertions of meetings on the central node:

<event>
<evt:atomic>
<insert-of select="http://centralnode//meeting">
<variable name="meeting" select="."/>
</insert-of>
</evt:atomic>

</event>
<condition language="XQuery">
evaluate($meeting/audience)//wg = $mywg

</condition>
<action language="XQuery+Updates">
insert $meeting into //workinggroup

</action>

In the same way, deadlines are inserted by the Project Office into the central node and are
propagated to the WGs and persons.

Use Case 4.2.7 (Progress Reports) The deadline for the progress report is inserted into
the central node, and then communicated to the WGs nodes. From there, the persons are called
to send input (by mail, probably 10 days before the deadline), and the coordinator is called to
produce the report. The coordinator then puts the report in the WG node. An active rule then
publishes the report on the WGs Web page, and removes the deadline entry from the WG node
and from the coordinator’s person entry in the participant’s node.

Depending on “push” or “pull” strategy, (i) the WG node sends the report to the central
node, or (ii) the central node reacts on the remote event on the WG node:

• sending by WG node: similar to above.

• If the reports are collected by the central node, similar to the first “remote” rule given in
Use-Case 4.2.2, this rule must react on remote events on any of the working group nodes.
Here, we hardcode this as a disjunctive event:

<event>
<evt:disj>
<evt:atomic>
<insert-of select="http://url-of-wg-i1//progressreport">
<variable name="report" select="."/>

</insert-of>
</evt:atomic>
:
<evt:atomic>

26



<insert-of select="http://url-of-wg-i5//progressreport">
<variable name="report" select="."/>

</insert-of>
</evt:atomic>
:

</evt:disj>
</event>
<action language="XQuery+Updates">
insert $report into //documents

</action>

Another rule can e.g. notify the project office when all progress reports (of a given period) have
been received. Now, we have a conjunction of events.

• This can be expressed as a conjunctive event:

<event>
<evt:conj>
<evt:atomic>
<insert-of select="http://url-of-wg-i1//progressreport[@nr=’1-2005’]"/>
</evt:atomic>
:
<evt:atomic>
<insert-of select="http://url-of-wg-i5//progressreport[@nr=’1-2005’]"/>
</evt:atomic>
:
</evt:conj>

</event>
<action>
// send message to project office

</action>

• ... or by universal quantification:

<event>
<evt:forall>
<variable name="url" select="//WG/url"/>
<!-- bound to the set of all urls of WGs -->
<evt:atomic>
<insert-of select="$url//progressreport[nr=’1-2005’]">
</insert-of>
</evt:atomic>
</evt:forall>

</event>
<action>

27



// send message to project office
</action>

So far, still only data-driven communication about established facts takes place. In Section 4.2.5,
we discuss use-cases that e.g. deal with making appointments and actually preparing meetings.

4.2.4 Personalization Use Cases: Local Evolution

Here, primarily two kinds of events are considered:

• personalization-specific events that are raised by interaction of the user,

• events in the database; e.g., a person becoming a coordinator, or adding a new research
topic to a person’s entry in the person entry in a participant’s node.

Since the details of use cases depend heavily on the personalization ontology, examples cannot
be very concrete here.

Use Case 4.2.8 (Coordinator) When a person becomes a coordinator, his personal view of
the project changes, e.g., deadlines of the WG, project meetings etc. become more relevant.

In a latter stage, also external events on the Web that give hints to the personalization reasoner
can be taken into consideration.

4.2.5 Reasoning and Evolution Use Cases

Use Case 4.2.9 (Planning a Meeting) For planning a meeting, a request is inserted in the
central node or in a WG node.

<request-for>
<meeting>
<title>I4/I5 meeting summer 05</title>
<date>between 15.5.2005 and 1.7.2005</date>
<audience>

a query/description that results in all names of persons
that are potentially interested, e.g., all members of I4/I5
and people from other WGs who cooperate in some topics.

</audience>
<webpage href="www.rewerse.net/.../"/>
</meeting>
</request-for>

The request is propagated to the WGs and participants in the same way as in Section 4.2.3
above. All requests are also propagated to the central portal where an interface is prepared
where the users indicate whether they plan to attend and enter preferable, impossible dates etc.
(even the place can be negotiated?). The data is collected and processed by the central portal
(using local active rules for collecting and reasoning; here also calendar reasoning has to be
applied, e.g., concerning public holidays and fairs at meeting places). Additional rules are used

28



for sending reminders to people who do not answer. The organizer of the event then uses the
portal for fixing date and place, and transforming the request into a fixed meeting entry. Then,
travels are planned and funding is organized.

Use Case 4.2.10 (Travel Planning) After fixing a meeting, the central node can also act
as a travel agency and search for flights and train connections for people who will attend the
meeting. This issue also provides a link to the “Travel Planning” scenario.

A rule is needed that reacts on messages when people confirm their interest in participation
in a meeting. With a suitable planning, it is e.g. possible to schedule people from neighboring
places for the same flights/trains.

Use Case 4.2.11 (Funding) If a member of a group should participate in a WG meeting,
and the participant’s funding is already spent for this period, organize additional funding by
WG money.
This can be done by a (global) ECA rule:

<event>
<evt:atomic>
<insert-of select="meeting">
<variable name="meeting" select="."/>
<variable name="persons" select="eval($meeting/persons)"/>
</insert-of>

</evt:atomic>
</event>
<condition>
// for each person, check if funding is available
// bind variable <nonfunded> to persons without funding

</condition>
<action>
// specification of appropriate actions to be taken

</action>

Since the portal is also used to present the project and its participants on the Web, it should
also inform about the dissemination of results of the project throughout the world.

Use Case 4.2.12 (External References to Rewerse Outcomes) In case that some results
of the project (courses, case-studies, samples) are used or referenced somewhere else, such in-
formation can be added to the presentation

<course>
<title>Advanced Topics of Semantic Web Reasoning<title>
<author>...</author>
<cited-in href="http://..."/>

</course>

29



An interesting issue here is that events like “University at XY uses course materials” have
actually to be detected on the (Semantic) Web (e.g., via google). Thus, event detection in this
general case means to know how to map the description of an event to queries against the
(Semantic) Web.

4.2.6 Composite Events Use Cases

Basic Event Combinators. Composite events are usually defined by Event Algebras (see
Deliverable I5-D1 [ABB+04]). Common operations are sequential composition, alternatives/disjunctive
events, iteration (so far, similar to regular expressions over ground atomic events).
In the above use-cases, we already identified disjunctive and conjunctive events (in Use Case 4.2.7),
and that quantification is often needed as an extension of disjunction and conjunction:

• existential quantification in Use Case 4.2.2,

• universal quantification in Use Case 4.2.7,

So far, the constructs are similar to those from predicate logics.

Negated Events. Following the connectives from predicate logics, what about negation?
When considering event algebras for reactive rules on the Web, “negative events” have to be
related to a time interval where an event does not occur. Often this is used in the form of “until”,
and several ternary connectives in the style of “when E1 happened, and then E3 but not E2 in
between, then do something” have been proposed. E.g. the event algebras in [CKAK94, Sin95].
support such notions.

Use Case 4.2.13 (Progress Report Late) For each progress report, a deadline is specified
when it must arrive, e.g.,

<todo type="progressreport" number="1-2005" deadline="28.2.2005"/>

Then, there is a rule that states that if for any WG, the progress report has not been checked in
until noon at the day of the deadline, a message is sent to the WG’s coordinator:

<event>
<evt:forany>
<variable name="url" select="//WG/url"/>
<evt:seq>
<evt:atomic>
<insert-of select="//todo[@type=’progressreport’]/">
<variable name="number" select="./@number"/>
<variable name="deadline" select="./@deadline"/>
</insert-of>
</evt:atomic>
<evt:not>
<evt:atomic>
<insert-of select="$url//progressreport[@number=$number]"/>
</evt:atomic>

30



</evt:not>
<evt:temporal test="time=$deadline,12:00"/>

</evt:seq>
<evt:forany>
</event>
<action>...</action>

Note that the use of negation raises safety requirements on variables much in the same way
as it happens in Logic Programming. Negation has then to be further investigated for composite
events (possibly only allowed for some of them?)

Cumulative Events. Another important kind of events are “cumulative events” where series
of (similar) events are accumulated into one, collecting data. Also, “aperiodic” and “cumulative
aperiodic” events as in [CKAK94] should be considered.

We consider the following task: the project office makes a poll where an answer is needed
from each WG coordinator. Then, there are different ways how to deal with it. Simple rules
apply for making the poll known to the relevant persons (push to the participants’ nodes or
pull by them, or a rule at the central node that simply sends a mail to the people). Incoming
responses are stored in the database as contents of the poll element; they are evaluated after
the deadline.

<poll identifier="...">
<persons>

a query/description that results in all names of WG coordinators.
</persons>
<question>

some text
</question>
<deadline>28.2.2005</deadline>
<answer>
<person>John Doe</person><text>yes</text>
</answer>
:

</poll>

Use Case 4.2.14 (Polls: Basic Rules) Polls are evaluated as follows:

1. when a poll entry is inserted, evaluate the set of recipients and send them a mail,

<event>
<evt:atomic>
<insert-of select="poll">
<variable name="poll" select="."/>
</insert-of>
</evt:atomic>

</event>

31



<action>
// send mail containing poll/@id to all persons in $poll/persons

</action>

2. when a response comes in, store it in the database,

<event>
<evt:atomic>
<incoming_message>
<variable name="message" select="."/>

</incoming_message>
<evt:atomic>

</event>
<condition language=XQuery>
// check if incoming message contains an answer to an open poll
// with id $poll_id

</condition>
<variable name="sender" select="$message/@sender"/>
<variable name="poll_id" select="$message/contents/@reference_to"/>
<variable name="answer" select="$message/contents/text"/>
<action language="XUpdate">
<xu:modifications version="1.0"

xmlns:xu="http://www.xmldb.org/xupdate">
<xu:append select=’{//poll[id=$poll_id]}’>
<answer>
<person>{$sender}</person><text>{$answer}</text>

</answer>
</xu:append>
</xu:modifications>

</action>

3. when the deadline is over (note that this is actually a sequential event: inserting a poll
and the temporal event of the deadline), query the database and inform the project office
about the result; in case that answers are missing, send another mail to these persons.

<event>
<evt:seq>
<evt:atomic>
<insert-of select="poll">
<variable name="poll" select="."/>

</insert-of>
</evt:atomic>
<evt:temporal test="time=$poll/deadline"/>
</evt:seq>

</event>
<action>

32



<variable name="receivers" select="evaluate($poll/persons)"/>
<variable name="answered"
select="//poll[id={$poll/id}]//answer/person"/>

<act:conj>
<act:atomic> send message with answers to project office</act:atomic>
<act:forall>
<variable name="missing"
select="receivers - answered"/>

<act:atomic> send reminder to $missing</act:atomic>
</act:forall>
</act:conj>

</action>

Note that this also involves a complex action, namely the one that sends reminders to all
those whose answer is missing.

Alternative:

2’ replace (2) by “when a response comes in, store it in the database, check if all persons
answered, if yes, inform the project office about the result immediately”.

A cumulative event is one that collects data from a sequence of events. Its specification must
at least contain the following information:

• what events to collect,

• what data to collect from them,

• when the cumulative event is detected (i.e., when it “reports” and the event sequence can
proceed).

A more detailed look shows that we need two “until”s: one that ends the cumulative part with
the first occurrence of the reporting event, and one that ends with each subsequent occurrence
of the subsequent event, until another condition occurs that finally stops the cumulative event.
E.g.,

cumulative(detect=e1(x),report=e2,refresh=true/false,until=e3)

does the following until e3 is detected: whenever e2 is detected, report all x that have occurred
(i) if bool = false: then since the beginning of the detection of the cumulative event, (ii) if
bool = true: since the last report. In case that until is not set, until=report.

Use Case 4.2.15 (Polls: Cumulative Events) The same activity can be carried out with-
out actually storing answers, but handling them in a cumulative event (that collects the an-
swers):

• when a poll entry is inserted, evaluate the set of recipients and send them a mail,

• if first, a poll is issued, and then a set of answers answer(person,answer) comes in, collect
the set of persons and the set of answers until the deadline (atomic events: poll, answer,
deadline). The overall detection of this composite event results in a small XML instance
that contains the collected information.

33



<event>
<evt:seq>
<evt:atomic>
<insert-of select="poll">
<variable name="poll" select="."/>
<variable name="poll_id" select="create_id()"/>
<variable name="deadline" select="$poll/deadline"/>
<variable name="persons" select="eval($poll/persons)"/>
</insert-of>

</evt:atomic>
<evt:cumulative>
<variable name="answers"/> // variable that holds collected data
<evt:detect>
<evt:atomic>
<incoming_message>
// with reference to $poll_id
<append variable="answers"> //possibly similar to XUpdate?
<answer person="$message/sender" text="$message/text"/>

</append>
</incoming_message>
<evt:atomic>
</evt:detect>
<evt:report>
<evt:temporal test="time=$deadline"/>
</evt:report>
// there is no <until> part, thus <until> defaults to <report>

</evt:cumulative>
</evt:seq>
<event>

Note that detecting the above cumulative event “consumes” the deadline event and ends with it.
This rule can again be refined such that it informs the project office already in case that all
answers are complete before the deadline:

<event>
<evt:seq>
:
<evt:cumulative>
:
<evt:report consume="false">
<evt:disj>
<evt:temporal test="time=$deadline"/>
<evt:cond>all persons have answered</evt:cond>
</evt:disj>
</evt:report>

</evt:cumulative>

34



</evt:seq>
<event>

It seems to be reasonable to be able to specify if report and until should consume the event, or
not.

Conditions in Intermediate States When considering rules and information, also the use
of conditions upon the states during detection of composite events have to be considered.
Especially, pre- and postconditions are relevant (e.g., in a banking context “a money transfer
that lead to a negative balance”). As long as only simple rules like triggers are considered, such
conditions can always be put in the WHEN part, evaluating OLD and NEW values. When composite
events or conditions that are also concerned with information from other nodes are considered,
there are two possibilities:

• bind variables to values in the atomic events, and state conditions on these variables in
the condition part, or

• allow conditions in the event algebra. For this, atomic events can be extended with
precondition and postcondition elements.

We do not present here a use-case for conditions in intermediate states, which we find better
suited for scenarios with transactions like banking or travel planning. However, to make it clear,
we propose the syntax:

<event>
<evt:seq>
<evt:atomic>
<evt:precondition language="XQuery">

// a boolean XQuery query;
// here, also variables can be bound

</evt:precondition>
<insert-of ... />
<evt:postcondition language="XQuery">

// a boolean XQuery query;
// here, also variables can be bound

</evt:postcondition>
</evt:atomic>
:

</evt:seq>
</event>

4.2.7 Composite Actions Use Cases

Here the usual connectives for defining transactions have to be provided:

• sequential composition,

• alternative composition, based on branching,

35



• parallel composition,

• iteration until a given condition is satisfied (including cumulative variables that are e.g.
used for final actions).

For a more high-level specification of evolution and reactivity, the following constructs should
be expressible:

• implicit existential alternatives: “exists an x of a given set for which ... must be executed”.
(as a rule that specifies a constraint – the actual activity planning must then use additional
reasoning which x should do the task)

• universal quantification over a set of items; here it should be possible to specify “ordered”
or “unordered”,

Use Case 4.2.16 (Meeting: Dinner/Existential Quantification) If a WG meeting is sched-
uled and participants have registered, some restaurant (with enough space and opened in this
evening etc.) must be booked for the dinner (the set of restaurants can be specified as a query
against the Semantic Web).

Use Case 4.2.17 (Collecting Registrations and Booking Hotels) The following use case
illustrates cumulative events and cumulative actions:
Event: the deadline of the summer school, here as “if the registrations for the summer school
until a deadline are collected”.
Action: “Starting with the largest hotel in the city book as much rooms as possible, until enough
rooms for all participants are reserved”. At the end return a table of hotels and number of
booked rooms.

Furthermore, when defining transactions, these probably do also not simply consist of actions,
but also of waiting, evaluating conditions etc. (which is implicitly already present in alternative
composition). Here, the following features will turn out to be useful:

• updates of actions rules, possibly with negation of action (names) allowing for e.g. for-
bidding an action for some time as a reaction on some event (e.g., when defining and
applying policies), or delaying the addition of an action rule

• evaluating queries and tests,

• temporal constraints: “... a must be executed before the deadline t”.

Use Case 4.2.18 (Forbidding Actions until Event) If once a restaurant has been booked
for a dinner, and people complained about the quality, this restaurant must not be booked again
until its owner changes.
Note that this introduces events in the action part “not book it again until the event ‘change
of owner’ (which is an event somewhere on the (Semantic) Web) occurs”. This ECA rule can
be seen as one that as consequence has the negation of the action of booking dinner for that
particular restaurant.

Similarly, the “until” condition can be a query – which has then internally to be translated
into an event, or a query that is evaluated in case the questionable action should be evaluated

36



Use Case 4.2.19 (Forbidding Actions until Condition) If once a restaurant has been booked
for a dinner, and people complained about the price, this restaurant must not be booked again
until the price of a pizza is less than 10 Euro.

Here, the constraint can be checked by waiting for the event “pizza price changed”, or by
querying the pizza price when a restaurant is to be chosen.

Use Case 4.2.20 (Delaying addition of Rules) After inviting a participant for cross-reading
a given deliverable of the project, a rule should be added stating that after (and if) that par-
ticipant accepts the invitation, any incoming information regarding the deliverable should be
communicated to the that participant.

Here, the addition of an ECA rule, triggered by incoming information about a particular
deliverable and communicating that information to the participant, is to be delayed until the
participant accepts the invitation

4.3 Further issues

Requirements. As usual, detection of composite events will be based on internal algorithms
(graph-based, residuation, automata – which is essentailly the same). Steps of these internal
algorithms will be based on atomic events. Thus, for all atomic events, it must be possible to
define a trigger that detects the atomic event and supplies values of variables and for checking
pre- and postconditions. Possibly, the event algebra processor has then to state other remote
queries to evaluate distributed pre- and postconditions.

Since the constructs discussed above contain variables, quantifiers, cumulative events etc.,
the event detection mechanism must be able to hold actual data (prospectively in XML). On
the other hand, with this, there is no need for a history database.

Related Work. In addition to a considerable amount of work on event algebras [CKAK94,
Sin95] and process algebras (CCS [Mil83], CSP [Hoa85]), which have especially to be considered
when defining the action parts), especially the Transaction Logic approach [BK94] has to be
mentioned. It provides a comprehensive clear and concise syntax and model-theoretic semantics
for temporal relationships covering states, events and actions. Its logic-programming style rule
semantics can be interpreted bottom-up, where it corresponds to ECA rules, or top-down where
it can be used for planning.

Use case 4.2.15 can be defined in a Transaction Logic style not as an ECA rule but as a
constraint. Using quantifiers, this could e.g. look like

poll(text,persons) :-
∀X ∈ $persons:
((t=deadline ⊗ receive answer(X,poll id,answer)) ∨
((not (t=deadline ⊗ receive answer(X,poll id,answer)))
∧ ( receive answer(X,poll id,answer) ⊗

send question(X, poll id, text) ⊗ t=deadline)))
⊗ ∀X ∈ $persons: send question(X, poll id, text)
⊗ (poll id := insert poll(text,persons) ∧ $persons := evaluate(persons))

meaning, that poll(text,persons) is specified to be executed by the above rule body. Note that
either a temporal implication is needed, or a possibility to bind variables (safety requirement:
variable must be bound in an earlier state). Additionally, “negated” events are needed.

37



For negated action, and updates of ECA rule, the work on update languages in logic pro-
gramming [APPP02, EFST01, Lei03] is also relevant.

RDF/OWL For the RDF level, the scenario and use-cases are the same, mapped to RDF/OWL.

1. rules over RDF data,

2. atomic events described in RDF (i.e., mainly in form of changes of tripels),

3. composite events in RDF,

4. ECA rules in RDF.

All the above cases can be seen as just “lifting” the XML case to RDF/OWL. For RDF/OWL,
a specification of atomic events and updates must be based on an RDF query language. Thus,
concrete samples can only be given when there is data and an RDF query language. From the
ECA point of view, expressing an event algebra as terms, in XML, or in RDF is just syntactic
sugar plus RDF/OWL-inherent reasoning.

As lots of previous work shows (cf. [ABB+04]), unlike e.g. the Boolean Algebra for logics,
there is not a standard event algebra. Indeed, a bunch of different event algebras with different
event combinators have been defined.

When expressing composite events in an OWL event ontology, this should be as much
general as possible, trying to cover all event algebras. As such, it should contain a set of basic
combinators, and a way to express derived combinators. Event detection then requires to map
given events to appropriate actual event algebras, and to use their event detection mechanisms
for actually detecting events.

38



Chapter 5

Organising Travels Scenario

Planning and booking travels, staying up to date with changes in the plan (e.g. due cancellations
of flights or overbookings of hotels), and (if necessary) adapting to such changes is a time
consuming task. E-business on the Web has made planning and booking of travels, e.g. a
researcher’s trip to a conference, a lot easier. A researcher can now compare offers on the Web
and book simply with his or her credit card. But still, this requires a lot of human interaction.
Booking requires updates, posing a requirement for evolution of data on the Web.

However, reasoning-capable applications do not have the capability to detect situations
requiring an adaption of the initial plan. The first step towards filling this gap consists in
recognising the features that a system supporting reactive planning should have. It is our
conviction that the best way of doing this is by looking at real life applications, i.e. by developing
use cases for this application domain.

In this Chapter we develop a use case for evolution and reactivity on the Web, called
Organising Travels. It is an application of Web-based reactive travel planning and support.
In realising such an application two subtasks need to be considered : 1. initial planning and
2. reacting to happenings that influence the plan. These subtask are explained in Section 5.2
and 5.3, respectively. Note that the task of travel planning and support does not involve a
single system. Instead, in order to save time and perfectly manage trips, several systems must
cooperate to realise 1. and 2., e.g. flight and train schedules, passenger notification system,
hotel reservation service.

5.1 Language issues

In order to exemplify arrangements that are needed for travelling and the adaption of the initial
plan to changes, in this scenario we use the reactive language XChange [BFPS04, BP05], as the
language is currently under development by members of the Rewerse’s participant Munich.
XChange is a high-level language for programming reactive behaviour on the Web, that builds
upon the Web query language Xcerpt [SB04, BBSW03], developed in the Rewerse Working
Group I4, “Reasoning-Aware Querying”, and provides advanced, Web-specific capabilities, such
as propagation of changes on the Web (change) and event-based communication between Web
sites (exchange). Xcerpt is a pattern and rule-based language for querying Web contents (i.e.
persistent data).

39



The language XChange supports the concept of transactions, which are needed when exe-
cuting updates like reservations on the Web. An XChange transaction specification is a group
of update specifications and/or explicit event specifications (expressing events that are con-
structed, raised, and sent as event messages) that are to be executed in an all-or-nothing
manner. An XChange update specification is a (possibly incomplete) pattern for the data to
be updated, augmented with the desired update operations. Besides the events mentioned
in Chapter 2 considers Transactional events (transaction commit, transaction abort, transac-
tion request), which are local events needed in order to support the concept of transactions in
XChange.

An XChange program is located at one Web site and consists of one or more (re)active ECA
rules of the form Event query – Standard query – Transaction/Raised events. Every occurrence
of an event is queried using the event query (introduced by keyword ON). If an answer is found
and the standard query (introduced by keyword FROM) has also an answer, then the action is
executed (i.e. a transaction is executed – keyword TRANSACTION, or explicit events are raised
and sent to one or more Web sites – keyword RAISE). There are two kinds of XChange rules:
event-raising rules (i.e. the head of the rules specifies explicit events) and transaction rules (i.e.
the head of the rules specifies transactions).

To this end, it is important to distinguish between event and standard web queries. By
standard queries, we mean queries to persistent data (data of Web resources) and can be ex-
pressed using a query language like XQuery or Xcerpt. To query volatile data, event queries are
used. Standard and event queries can be very similar. However, event queries are more likely to
refer to time or event sequences. In fact, event queries need to be evaluated in an incremental
manner, as data (events) that are queried are received in a stream-like manner and are not
persistent. For every incoming event that might be relevant to a Web site and could contribute
as a component to an event query instance specified in the rules of the Web site’s reactive
program(s), a partial instantiation of the involved event queries is realised. An instance of a
specified composite event query is detected when instances for all specified component event
queries have been detected.

Regarding which data can be updated, we follow the metaphor of speech vs. written text :
speech for volatile (events) data, and written text for persistent data. Speech cannot be mod-
ified. If one has communicated some information in this way one can correct, complete, or
invalidate what one has told – through further speech. In contrast, written text can be updated
in the usual sense. Likewise, volatile data (events) is not updatable but persistent data (Web
content) is updatable. To inform about, correct, complete, or invalidate former volatile data,
new event messages (data containing information about events that have occurred) are com-
municated between Web sites. Since events are volatile, like speech, a Web site cannot pose
event queries against events that have been received by another Web site. Otherwise, events
would have to be made persistent – confusing the clear picture volatile vs. persistent data and
thus potentially making programming more complicated.

Communication of events between the same or different Web sites is done by Event messages.
An event message is a representation of the information related to an event that occurred.
E.g. an event message contains at least the following information: raising-time (the time of
the event manager of the Web site raising the event), reception-time (the time at which a
site receives the event), sender (the URI of the site where the event has been raised), and
recipient (the URI of the site where the event has been received). Thus, an event message

40



is an XML document having a root labelled e.g. event and the above described parameters as
child elements.

5.2 Initial Planning

The initial planning subtask of organising trips consists of two phases:

1. gathering the information about transportation, overnight stays etc, required for the trip,
and developing itineraries (a travel plan) based on this information, and

2. arranging (booking) the trip according to this plan.

5.2.1 Gather information and plan trip

Generally, when planning a trip one knows the location(s) he/she wants to visit and a time
period for doing this. In most cases the time period is not fixed at time points level, i.e. one
might return late in the evening or next day in the morning, but it is likely to be constrained
by working hours or appointments. Thus, the gathering of information for planning a trip in-
volves finding flights and train connections, finding suitable hotels, considering weather forecast,
and/or planning entertainment.

Another issue that sometimes plays a role in planning a trip is the amount of money that
one is willing to pay for all the arrangements. This presupposes searching for cheapest accom-
modation and transportation means that conforms one’s expectation. Moreover, limited time
discounts can also be taken into consideration. (Note that such discounts might not be persis-
tent Web data. Instead they can be sent as notifications by a Web-based information service.
In a sense, this is already common today: via e-mail newsletters many low-cost airlines offer
short-term discounts.)

For realising systems that are able to accomplish this part of initial planning, the following
are required:

• Web query languages with advanced reasoning capabilities, e.g. for searching for the cheap-
est suitable hotel;

• support for receiving volatile data, e.g. discount information;

• query and reasoning with volatile data.

5.2.2 Arranging the trip according to plan

Gathering all the needed information on e.g. flights, train connections, hotels, prices represents
the premises for planning a trip. After settling for a plan by choosing transportation means,
accommodation, and (perhaps) entertainment, one needs to arrange the trip according to the
plan, i.e. book flights, reserve seats in trains, make hotel reservations, buy tickets.

Booking a flight on the Web, for example, does not necessarily entail a successful execution
of the desired reservation. Possible reasons for failures include system down-times, network
communication problems, or problems caused by concurrency and time-delays, e.g. if the last
seat on a flight was sold while we were still planning. As a consequence, reservations that are
“related” should be executed in an all-or-nothing manner. E.g. booking a hotel reservation

41



without a flight reservation is useless. Note that the order in which such reservations (that
represent actually updates to data of some Web resources) are executed needs also to be taken
into consideration. Usually one might want to realise the flight reservation before the hotel
reservation. Under some circumstances, e.g. if there is a big trade fair in a city, so hotel beds
sparse, other execution orders are also sensible.

Systems that could arrange a trip on the Web according to a given plan require:

• communication of data between systems that (in some sense) cooperate to arrange a trip;

• updates to persistent data (i.e. local and remote persistent data items);

• some support for transactions (i.e. for executing updates in an all-or-nothing manner).

5.2.3 Scenario

Mrs. Smith uses a travel organiser that plans her trips and reacts to happenings that could
influence her schedule. One of the travel organiser’s tasks is to plan Mrs. Smith’s vacation in
Italy. Mrs. Smith wants to visit Milan, Venice, Florence, and Rome. The trip should begin on
5th of March 2005 and end on 20th of March 2005.

1. Gathering of and reasoning with information

• Searching for suitable flights from Munich to Rome and back. Schedules and price tables
of several airlines have to be queried and compared. Only flights departing on 5th of
March 2005 and arriving on 20th of March 2005 before 21:30h are of interest. Moreover,
the search is constrained by a price limit of EUR 400.

• Querying schedules and prices for train or flight connections for Rome – Florence – Milan
– Venice – Rome. Like searching for flights between Munich and Rome, queries have time
and price constraints.

• Querying hotel reservation services’ data to find suitable hotels in the cities Mrs. Smith
wants to visit. Suitable here refers to the quality of services (e.g. at least 2 stars), the
prices (e.g. price per night should be cheaper than EUR 70), the time period for which
single rooms are available for booking (e.g. Mrs. Smith wants to book a hotel in Rome
from 5th of March 2005 until 8th of March 2005), and the location of the hotels (e.g. a
quite area near to a metro station).

• Receiving notifications from different kind of information systems, like weather forecast
services, or services announcing exhibitions. Reasoning with notifications’ data and data
of Web resources is needed for planning departures and arrivals but also for planning
entertainment. For example,

– if a notification is received informing that between 11th and 14th of March 2005 in
Venice is going to rain, the vacation could be planned so as to leave for Venice on
15th of March 2005.

– weather forecast information can be used together with exhibition notifications in
order to plan visiting an exhibition on a rainy day.

42



Some use-case examples are given that intend to give flavours of how such a scenario can
be implemented.

Example 5.1 The following two XML documents are fragments of two larger documents rep-
resenting a flight timetable and a hotel reservation offer. At http://airline.com:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<flights>
<last-changes>2005-03-02</last-changes>
<currency>EUR</currency>
<flight>

<number>AI2011</number>
<from>Munich</from>
<to>Rome</to>
<date>2005-03-05</date>
<departure-time>06:40</departure-time>
<arrival-time>08:20</arrival-time>
<class>economy</class>
<price>93</price>

</flight>
<flight>

<number>AI2021</number>
<from>Munich</from>
<to>Rome</to>
<date>2005-03-05</date>
<departure-time>09:10</departure-time>
<arrival-time>10:45</arrival-time>
<class>economy</class>
<price>138</price>

</flight>
</flights>

At http://hotels.net:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<accomodation>
<currency>EUR</currency>
<hotels>

<city>Rome</city>
<country>Italy</country>
<hotel>
<name>Altavilla</name>
<category>2 stars</category>
<price-per-room>69</price-per-room>
<phone>+39 1 88 8219 213</phone>
<no-pets/>

</hotel>
<hotel>
<name>Giardino d Europa</name>
<category>3 stars</category>
<price-per-room>70</price-per-room>
<phone>+39 1 82 8156 135</phone>

</hotel>
<hotel>
<name>Villa Florence</name>
<category>3 stars</category>
<price-per-room>95</price-per-room>
<phone>+39 1 77 8123 414</phone>

43



</hotel>
</hotels>

</accomodation>

The gathering of information for planning travels can be realised e.g. by using the Web
query language Xcerpt. As already mencioned, Xcerpt is a pattern and rule-based language
for querying Web contents (i.e. persistent data). Xcerpt uses query patterns for querying
Web contents, and construction patterns for constructing new data items. Terms are used for
denoting query patterns (i.e. query terms), construction patterns (i.e. construct terms) and also
for denoting data items of Web contents (i.e. data terms).

Example 5.2 The following Xcerpt query term is used to query the data at http://airline.com
about flights from Munich to Rome.

in { resource { "http://airline.com" },
flights {{ var F ; flight {{

from {"Munich"}, to {"Rome"} }}
}}

}

In the term syntax (used here as it is more readable as the Xcerpt’s XML syntax), an ordered
term specification is denoted by square brackets [ ], an unordered term specification by curly
brackets {}.

Construct-query rules relate a construct term (introduced by the keyword CONSTRUCT) to a
query (introduced by the keyword FROM) consisting of AND and/or OR connected query terms.
Queries or parts of a query may be further restricted by arithmetic constraints in a so-called
condition box (introduced by the keyword where).

Example 5.3 The following Xcerpt rule gathers information about hotels in Rome that have
a price limit.

CONSTRUCT
answer [ all var H ordered by var P ascending ]

FROM
in { resource { "http://hotels.net" },

accomodation {{
hotels {{ city {"Rome"},

var H ; hotel {{
price-per-room { var P } }}

}}
}}

} where var P < 80
END

An Xcerpt program consists of one or more rules. Xcerpt rules may be chained to form
complex query programs, i.e. rules may query the results of other rules. More on Xcerpt can be
found in [Sch04] and at http://xcerpt.org.

2. Arranging the trip

• Booking a flight from Munich to Rome and back, and a suitable hotel in Rome. (These
reservations are updates to some Web resources that need to be executed in all-or-nothing
manner, i.e. as a transaction.)

44



• Making train reservations and corresponding hotel reservations in order to visit also Flo-
rence, Milan, and Venice.

In order to exemplify arrangements that are needed for travelling and the adaption of the
initial plan to changes (see Section 5.3) we use the reactive language XChange

Use Case 5.2.1 The following XChange transaction rule is used to book a flight from Munich
to Rome and back and a hotel in Rome:

TRANSACTION
and [
update {
in { resource {"http://airline.com/reservations"},
reservations {{

insert reservation { var F1, var F2, name {"Christina Smith"} }
}}
}
},

update {
in { resource {"http://hotels.net/reservations"},
reservations {{

insert accomodation { var H,
name {"Christina Smith"},
from {"2005-03-05"}, until {"2005-03-07"}

}
}}
}

}
]

FROM
and {
in { resource {"http://airline.com"},
flights {{
var F1 ; flight {{

from {"Munich"}, to {"Rome"},
date {"2005-03-05"}

}},
var F2 ; flight {{

from {"Rome"}, to {"Munich"},
date {"2005-03-20"}

}}
}}

},
answer [[ position 1 var H ; hotel {{ }} ]]
}

END

Note that the updates, i.e. the flight and hotel reservations, are to be both executed (specified
by the keyword and) and in the specified order (given by the usage of square brackets). Similar
to the flight and hotel reservation in Example 4., the desired train reservations can be specified
using the language XChange.

45



5.3 Adapt Plan to Changes

5.3.1 Recognize changes affecting the plan

Events such as changing weather conditions, delays of flights or trains, and cancellations of
flights can affect the arrangements made in the initial planning phase of organising a trip.
Recognising such changes in very short time is the premise for adapting the initial plan, e.g.
by booking another flight. Recognising changes involves communication of change notifications
and detection of situations of interest.

Consider a personal travel organiser that plans trips for its owner and has also the capability
to react to changes that might influence arranged plans. (A personal travel organiser is an
example of a system for travel planning and support.)

There are two possible strategies for making the travel organiser aware of changes (events):

• pull strategy, i.e. the travel organiser periodically queries the data from remote Web
sites (e.g. flights schedule) in order to determine whether simple changes of interest have
occurred;

• push strategy, i.e. the Web-based information systems inform the travel organizer about
changes that have taken place either locally or remote (case in which the systems have
been notified about these changes).

Both strategies are useful. For propagating changes, a push strategy has several advan-
tages over a strategy of periodically pulling: It allows faster reaction to events, as an event
is communicated as soon as possible as opposed to a detection at the next periodical pull. It
saves resources, both locally and on the network. Locally, a client interested in some change
of Web data does not have to store the old Web page to detect differences (changes) from the
new version. On the network, a push strategy can reduce network traffic, since communication
only takes place when a change has happened, and only the changes in information have to be
communicated.

The push strategy is used throughout the Organising Trips use case in order to notify infor-
mation systems about events that have occurred. After receiving notifications about changes
that might affect already made arrangements, the personal travel organiser needs to detect
situations of interest, i.e. possibly time related combinations of simple happenings that might
have an impact on already made plans.

Systems having the capability to recognize changes that might affect trip plans require:

• means for communicating notifications;

• event queries for detecting situations of interest;

• reasoning on events and persistent data.

5.3.2 React to changes

Of great importance in developing travel planning and support systems is the capability to au-
tomatically react to changes (to situations of interest). Based on the events that have occurred,
on the detected situations of interest, actions need to be executed in order to adapt plans to
these changes. Example of actions are reordering travel destinations, notifying affected friends
and colleagues, finding and booking other flights (if necessary: booking overnight stays).

46



Systems having the capability to react to changes that affect already made plans require:
reaction capabilities.

5.3.3 Scenario

Consider the scenario introduced in Section 5.2.3. After carrying out the tasks introduced in
Section 5.2.3, the necessary arrangements for a vacation’s initial plan have been made.

Mrs. Smith’s travel organiser has the capability to detect changes that might affect the
initial plan. Examples of such changes are:

1. The flight booked for Mrs. Smith from Rome to Munich on 20th of March 2005 has a
delay. In such a case, the new arrival time and Mrs. Smith appointments need to be
taken into consideration, before deciding how to react to such an event.

2. The flight booked for Mrs. Smith from Rome to Munich on 20th of March 2005 has been
cancelled. In such a case, there are two possibilities:

(a) the airline provides an accommodation for the night of 20th to 21st of March 2005;

(b) the airline does not provide such an accommodation.

The possibilities require different reactions. In the case of flight cancellation, the travel
organiser could wait for a notification regarding accommodation only a fixed amount of
time (e.g. it waits 2 hours from the reception time of the notification regarding the flight
cancellation).

3. A train, for which Mrs. Smith has a reservation, has a delay.

For detecting changes like the ones presented above, the travel organiser needs to have the
capability to:

• detect notifications (i.e. primitive events);

• detect time-related combinations of notifications (i.e. composite events). For example,
event 2 followed by event 2b represents a time dependent conjunction of events.

• detect composite events that have occurred in a specified time interval (note that such a
time interval could also be given as a duration, e.e. 2 hours);

• compare time notions (e.g. in case of event 1., the arrival time should be before 5:00h on
21st of March 2005 ).

Example 5.4 Assume that a flight has been cancelled. The control point that has observed this
event raises it and sends to http://airline.com the following event message (i.e. notification):

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<xchange:event>
<xchange:sender>

control://controlpoint-A20
</xchange:sender>
<xchange:recipient>

http://airline.com

47



</xchange:recipient>
<xchange:raising-time>

2005-03-20T10:15:00
</xchange:raising-time>
<cancellation>
<flight>

<number>AI2021</number>
<date>2005-03-20</date>

</flight>
</cancellation>

</xchange:event>

Note the use of the xchange namespace for the keyword event and for the parameters of an
XChange event message.

Use Case 5.3.1 The site http://airline.com has been told to notify Mrs. Smith’s travel
organiser of delays or cancellations of flights she travels with.

RAISE
xchange:event {
xchange:recipient {"organiser://travelorganiser/Smith"},
cancellation-notification { var F }
}

ON
xchange:event {{
xchange:sender {"http://airline.com"},
cancellation {{
var F ;flight {{ number {"AI2021"},

date {"2005-03-20"} }} }}
}}

END

The use case examples are intended to give flavours of the XChange constructs and thus
abstract away from a particular communication protocol. In the previous example organiser
denotes a communication protocol ( e.g. the protocol used by a mobile personalised organiser).

Use Case 5.3.2 The travel organiser of Mrs. Smith uses the following rule: if the return flight
of Mrs. Smith is cancelled then look for and book another suitable flight. The rule is specified
in XChange as:

TRANSACTION
in { resource {"http://airline.com/reservations"},
reservations {{
insert reservation { var F, name {"Christina Smith"} }
}}

}
ON
xchange:event {{
xchange:sender {"http://airline.com"},
cancellation-notification {{
flight {{ number {"AI2021"}, var D ;date {"2005-03-20"} }}
}}

}}
FROM
in { resource {"http://airline.com"},
flights {{
var F ;flight {{

48



from {"Rome"}, to {"Munich"},
var D, departure-time { var T }

}}
}}

} where var T after "17:30"
END

One of the novelties introduced by the language XChange is the processing of composite
events. To this aim, XChange offers composite event queries. An XChange event query may
be atomic, i.e. one event query term that refers to a single event, or composite. XChange
composite event queries are used for detecting e.g. conjunctions, disjunctions, temporal ordered
conjunctions, negation of events in a finite time interval.

Use Case 5.3.3 If no other suitable return flight is found and the airline does not provide an
accommodation, then book for Mrs. Smith a cheap hotel and inform her secretary about the
changes in her schedule:

TRANSACTION
and [
in {
resource {"http://hotels.net/reservations"},
reservations {{
insert reservation { var H, name {"Christina Smith"},

from { var S }, until { var M ;"2005-03-20"} }
}}

},
in {

resource {"diary://diary/secretary"},
diary {{ var M,
news {{ insert my-hotel { phone { var Tel },

remark {"My flight has been cancelled!},
request{"Please cancel my appointments for" + var M} }

}} }}
}

]
ON
and {
xchange:event {{

xchange:sender {"http://airline.com"},
cancellation-notification {{

flight {{
number {"AI2021"},
date { var S ;"2005-03-20"} }}

}}
}},
without xchange:event {{

xchange:sender {"http://airline.com"},
accomodation-granted {{ hotel {{ }} }}

}} before "18:00"
}

FROM
in { resource {"http://hotels.net"},
accomodation {{
hotels {{ city {"Rome"},

var H ;hotel {{
phone { var Tel } }}

}} }}
}

49



END

Note the XChange event query (specified in the ON part of the rule) that is used to detect
the conjunction of the occurrence of an atomic event (i.e. the flight cancellation) and the non-
occurrence of another atomic event (i.e. the accommodation notification) that is limited by a
time point (i.e. before 18:00).

50



Chapter 6

Updates and Evolution in
Bioinformatics Data Sources

Bioinformatics data is growing at tremedous rates and there are over 500 online databases and
tools available. These databases can be classified as primary and secondary, which are derived
from one or more primary databases. Users of such data sources keep local copies of these
primary and secondary databases and often derive tertiary data sources. Keeping local and
remote databases in sync and consistent is an important problem, which requires techniques to
deal with evolution and reactivity.

6.1 Bioinformatics and the Semantic Web

Biology is changing rapidly as technological breakthroughs generate masses of data (see Fig.
6.1). Public databases contain over 1 000 000 protein sequences, over 25 000 protein structures,
and over 12 000 000 scientific articles. These data are made accessible over the Web in numerous
formats ranging from flat files to XML and RDF. At the same time, biologists are developing
ontologies to standardise data and their annotation. Currently, the most prominent ontology is
the GeneOntology (GO, www.geneontology.org), which has been designed for the annotation of
genes. Over the past years GO has developed into the main ontology in molecular biology and
it comprises over 19.000 terms organised in three subontologies for cellular location, molecular
function and biological process.

Based on this data explosion in biology and on the pressing need to integrate data, an
NSF and EUs strategic research workshop found that bioinformatics could play the role for the
semantic web, which physics played for the web. The W3C also focuses on semantic web and
the life sciences with a workshop held in October 2004 and working groups put in place. The
reason that bioinformatics data can play an important role for the semantic web is that

• there are masses of information,

• there are masses of publicly accessible online information,

• data is more and more often published in XML,

• data standards are accepted and actively developed,

51



1965 1970 1975 1980 1985 1990 1995 2000 2005
0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

10,000,000

11,000,000

12,000,000

Number of PubMed Abstracts

Year

Figure 6.1: Superlinear growth of publicly accessible bioinformatics data. The graphs show
the growth in the number of scientific papers being published, the growth of the number of
protein sequences in the main sequence database UniProt and the growth of protein structures
depoisted in the Protein DataBank.

• much valuable information is scattered (as production cheap and hence not centralised),

• systems integration and interoperation are prime concerns

• there are ontologies, which are referenced by many data sources.

In the light of these developments technology handling evolution of data and reactive agents,
which integrate data, is important to develop the core of a Bioinformatics Semantic Web popu-
lated by a number of sample data sources. Evolution and reactivity play a role in demonstrating
novel, reasoning-based solutions dealing with the following problems:

• Rules for mediation and to formulate complex queries

• Consistent integration of Bioinformatics data

• Adaptive portals for molecular biologists

6.2 Sample data sources and application

6.2.1 GoPubMed, ontology-based literature search

The main application under development uses ontologies to explore literature search results.
Current approaches to literature search are based on keyword searches and results are presented
as lists. Such approaches have two shortcomings: (a) in order to choose the keywords lead-
ing to good results users need to understand the domain very well; (b) list presentations are
linear and thus do not capture multiple views of the results. Furthermore, list-based presen-
tation encourages users to pursue only a few top hits, while more relevant papers may remain
unexplored.

GoPubMed, a tool developed by TU Dresden in the A2 group, uses the GeneOntology
(GO), a vocabulary for molecular biology, to structure large amounts of relevant literature.
GoPubMed submits keywords to PubMed, extracts GO-terms from the retrieved abstracts,
and presents the relevant sub-ontology for browsing. GoPubMed has a number of advantages.
First, instead of pursuing only top hits, users get a high-level overview of the whole search result.
Second, users are not forced to view multi-dimensional and thus often incomparable articles
in a one-dimensional list. Instead they explore different search result “categories”, which are

52



hierarchically ordered and therefore allow for fast navigation from general to specific concepts.
Third, the use of GO enables one to derive general keywords relevant to the search although
they are not mentioned in the article at all, as they are derived indirectly from the GO. Forth,
our approach and system are general and can be applied to other ontologies and text bodies.

Consider the following example: A researcher wants to know which enzymes are inhibited by
levamisole. A keyword search for “levamisole inhibitor” in PubMed produces well over 100 hits
in PubMed. To find out about specific functions, we have to go through all these papers. We are
interested in the relevant enzymatic functions. From the first titles it immediately is evident that
levamisole inhibits alkaline phosphatase. A less well-known fact is however still buried in the
abstracts. An abstract with low rank states that levamisole also inhibits phosphofructokinases.
Without knowing specific activities, which a user is interested in, refining a keyword is also
difficult. E.g. a search for “levamisole inhibitor enzymatic activity” produces only 5 hits:
enough to learn about alkaline phosphatase, not enough to learn about the phosphofructokinase.

The two main data sources underlying GoPubMed are GeneOntology and PubMed, which
are summarised below and described in more details in deliverable A2-D2.

6.2.1.1 GeneOntology

GeneOntology, www.geneontology.org, is a controlled, hierarchical vocabulary. GO has been
designed for the annotation of genes. It comprises over 19.000 terms organized in three sub-
ontologies for cellular location, molecular function and biological process. GO was initially
created to reflect gene function of fruitflies, but has expanded to encompass many other genomes
as well as sequence and structure databases. The hierarchical nature of GO allows one to quickly
navigate from an overview to very detailed terms. As an example, there are maximally 16 terms
from the root of the ontology to the deepest and most refined leave concept in GO.

GO is available in free text, XML and as database. The XML version is updated on a
monthly basis. The deliverable A2-D2 contains further details on GO.

6.2.1.2 PubMed

PubMed, the main biomedical literature database references over 12.000.000 abstracts. It has
grown by some 500.000 in 2003 alone. Besides biology it covers fields such as medicine, nursing,
dentistry, veterinary medicine, the health care system, and the preclinical sciences. PubMed
contains bibliographic citations and author abstracts from more than 4,600 biomedical journals
published in 70 countries. Abstracts date back to the mid-1960’s. Coverage is worldwide, but
most records are from English-language sources or have English abstracts. PubMed is available
in XML.

6.2.2 PDB and SCOP

Two other sources, which are widely used in the A2 group are PDB, the protein databank, and
SCOP, the structure classification of proteins.

PDB is a repository of the atomic coordinates of proteins and nucleic acids. Entries contain
among others, besides the coordinates, the resolution at which the coordinates have been ob-
tained, the authors, who submitted the data, literature references, the species the data is coming
from. PDB structures are classified according to their evolution by SCOP. SCOP contains four
main structural classes, which are refined into some 1000 structural families of proteins. PDB

53



is updated every week, SCOP every 6 months. PDB is available as XML and flat file, SCOP
as flat file.

6.3 Organisation of Bioinformatics Data

GeneOntology, PubMed, and PDB are examples of primary data sources and SCOP and GoP-
ubMed are secondary. Consider Fig. 6.2. The primary databases are hosted at remote sites,
which are updated at some interval with additions, deletions, and modifications of entries. Other
sites, such as GoPubMed, then derive secondary databases from the primary ones. Whenever
the primary database A is updated then the secondary databases should be updated, too. How-
ever, sometimes this is not possible as a secondary database, which a user wishes to use, is also
remote, such as SCOP. I.e. there is a local tertiary database F depending on the local copy E
of the remote secondary database B, which is derived from A. While F and E can be managed
locally, A and B are outside the power of the local site. This can lead to problems, when A
removes data, but B does not include the update instantly.

Remote site Local site

Secondary DB

Secondary DB

Secondary DBPrimary DB

Copy of 
Secondary DB

Tertiary DB

A

F

D

E

C

B

Figure 6.2: Typical organisation of bioinformatics data.

6.4 Reactivity/evolution scenario: GoPubMed, GO, PubMed,
SCOP, and PDB

As the data sources are distributed, as there are dependencies between them, as they are
updated at different intervals, there are requirements for dealing with evolution and reactivity.

Use Case 6.4.1 (Caching and Actuality of data in GoPubMed, PubMed, and GO)
GoPubMed is a distributed application: A query entered in GoPubMed is submitted on-the-fly

54



to the remote PubMed site, which returns relevant articles. These are then annotated by GoP-
ubMed with relevant terms from the GO, a local copy of which is residing at the GoPubMed site.
To integrate the three sources, the GoPubMed application needs to exhibit reactive behaviour.
On the event of a user query, a request is sent to PubMed. On the event of an answer from
PubMed, a local cache is consulted. If the abstracts are not cached, then GoPubMed sends
another message to PubMed requesting the abstracts. On receipt of them, they are annotated.
Finally, the results are compiled an presented to the user. Overall, there are different distributed
data sources, which are communicating with each other using event-condition-action rules.

Use Case 6.4.2 (Mirroring, Actuality, and Consistency of data in SCOP and PDB)
The original SCOP data is published on a website hosted in Cambridge. A researcher may have
a copy of SCOP on his laptop besides a copy hosted at his university. The copy on the laptop
is not up-to-date, so that the researcher usually uses the remote database, but when offline he
is forced to use the local laptop copy. The researcher wants to transparently access SCOP and
this access needs to handle the preference of the remote SCOP copy over the local SCOP copy.

A reactive agent acts as a wrapper of the original SCOP site and data and upon the event
of a new release it informs a local agent, who updates the local SCOP copy.

Updates of PDB can lead to inconsistencies as SCOP is derived from PDB and as PDB is
updated weekly, while SCOP is only updated every six months. If a PDB entry gets withdrawn
between two SCOP releases, then the constraint is violated that every SCOP entry should have
a PDB entry it is derived from. The constraint can be satisfied if we know which PDB entry
replaces a withdrawn PDB entry. Then the local SCOP copy can be updated accordingly.

To summarise, the above applications require infrastructure, which supports the develop-
ment of distributed applications, whose behaviour is programmed by event-condition-action
rules. These rules need to be tightly integrated with the underlying databases and access to
XML documents. Access to web services is also desirable. As hierarchies such as GO and SCOP
are used, rules are needed to reason over them.

55



56



Chapter 7

Conclusions

In this report we have presented a set of use cases for evolution and reactivity on the Web. These
use cases will now serve as guidance for the definition of models, languages and architectures
for dealing with reactivity, and for testing forthcoming implementations.

The choice of the use cases was made with several goals in mind. First, it was our intention
to provide a set capable of illustrating all of the features and concepts that we find important
for a reactive and evolving Web. Second, it should make clear that the aspects of evolution
and reactivity that we intend to develop are, as much as possible, parametric on the underlying
languages for querying and for making the local changes in data. Third, the choice of the use
cases should be such that collaboration with other working groups of Rewerse is potentiated.

With these goals in mind, we presented three different case study scenarios, in three different
application areas, each more related to each of the Application Work Groups of Rewerse.

In the “Rewerse Portal” scenario we illustrate many of the details and basic features of
evolution and of a reactive language for the Web. In this scenario, since it is mostly internal
to Rewerse, we may have control over what is the information in place, and so it may serve
as a very good testbed for the basic features of our developments. Moreover, it is a scenario
which is of interest to other working groups (namely A3, TTA and PRA, as explained above),
and this way it will be an opportunity for collaboration between these working groups.

The “Organising Travels” scenario reveals some extra features and constructs that a lan-
guage for evolution and reactivity on the Web should have. Namely, it better shows some
aspects of complex events and transactions, and highlights the need for a good integration
with query languages. Also, the need for location reasoning and the capability to use different
calendars and constraints over time notions is made obvious. Thus, a strong motivation exists
for cooperation and integration of research results between the Rewerse Working Groups re-
garding evolution and reactivity (I5), reasoning-aware querying (I4), and Web-based decision
support for temporal, event, and geographical data (A1) [BBL+04].

Finally, the “Bioinformatics” scenario illustrates the practical need of some evolution and
reactivity features for the work in working group A2, for maintaining actuality and consistency
of data in large data sources in the area of bioinformatics. The need for collaboration with A2
in this case is clear.

57



58



Bibliography

[ABB+04] J. J. Alferes, J. Bailey, M. Berndtsson, F. Bry, J. Dietrich, A. Kozlenkov, W. May,
P. L. Pătrânjan, A. Pinto, M. Schroeder, and G Wagner. State-of-the-art on evolu-
tion and reactivity. Technical Report IST506779/Lisbon/I5-D1/D/PU/a1, REW-
ERSE, September 2004.

[APPP02] J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A
language for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.

[BBL+04] S. Berger, F. Bry, B. Lorenz, H. J. Ohlbach, P.-L. Pătrânjan, S. Schaffert, U. Schw-
ertel, and S. Spranger. Reasoning on the Web: Language Prototypes and Perspec-
tives. In Proc. of European Workshop on the Integration of Knowledge, Semantics
and Digital Media Technology, London, U.K, pages 157–164. IEE, 2004.

[BBSW03] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: From Pattern-
Based to Visual Querying of XML and Semistructured Data. In Int. Conf. on Very
Large Databases (VLDB), 2003.

[BFPS04] F. Bry, T. Furche, P.-L. Pătrânjan, and S. Schaffert. Data Retrieval and Evolution
on the (Semantic) Web: A Deductive Approach. In Workshop on Principles and
Practice of Semantic Web Reasoning. Springer, 2004.

[BK94] A. J. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer
Science, 133(2):205–265, 1994.

[BK95] A. J. Bonner and M. Kifer. Concurrency and communication in transaction logic.
In ICDT’95: Advances in Logic-Based Languages, 1995.

[BKK04] M. Bernauer, G. Kappel, and G. Kramler. Composite Events for XML. In 13th Int.
Conf. on World Wide Web. ACM, 2004.

[BP05] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Applications of
the Language XChange. In 20th Annual ACM Symposium on Applied Computing
(SAC’2005). ACM Press, 2005.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events
for active databases: Semantics, contexts and detection. In Proceedings of the 20th
VLDB, pages 606–617, 1994.

[DOM98] Document object model (DOM). http://www.w3.org/DOM/, 1998.

59

http://www.w3.org/DOM/


[EFST01] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative
update specifications in logic programs. In Bernhard Nebel, editor, Proceedings
of the seventeenth International Conference on Artificial Intelligence (IJCAI-01),
pages 649–654, San Francisco, CA, 2001. Morgan Kaufmann Publishers, Inc.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Lei03] J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press, 2003.

[MAB04] Wolfgang May, José Júlio Alferes, and François Bry. Towards generic query, update,
and event languages for the Semantic Web. In Principles and Practice of Semantic
Web Reasoning (PPSWR), number 3208 in LNCS, pages 19–33. Springer, 2004.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267–310, 1983.

[SB04] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In Int. Conf. Extreme Markup Languages, 2004.

[Sch04] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the
Web. Dissertation, 2004.

[Sin95] Munindar P. Singh. Semantical considerations on workflows: An algebra for inter-
task dependencies. In Intl. Workshop on Database Programming Languages, elec-
tronic Workshops in Computing, Gubbio, Italy, 1995. Springer.

[xqu01] World Wide Web Consortium, http://www.w3.org/TR/xquery/. XQuery: A Query
Language for XML, Feb 2001.

Acknowledgement

This research has been co-funded by the European Commission and by the Swiss Federal Office
for Education and Science within the 6th Framework Programme project REWERSE num-
ber 506779 (cf. http://rewerse.net).

60

http://rewerse.net

	Introduction
	Concepts and Requirements
	Active Rules
	Trigger-Like Local ECA Rules
	XML
	RDF
	Condition and Action Part

	Local and Global ECA Rules

	Updates and Actions
	Communication

	Summary of the scenarios
	Rewerse Information System and Portal
	Organising Travels
	Updates in Bioinformatics Data Sources

	Rewerse Information System and Portal
	Overview of Use Cases
	Propagation of Updates: Upwards
	Information Propagation and Distribution: Downwards
	Personalization and Presentation
	Negotiations and Policies
	Composite Events and Composite Actions
	Further Extensions

	Use Cases: XML
	The Data
	Maintenance Use Cases
	Dissemination Use Cases
	Personalization Use Cases: Local Evolution
	Reasoning and Evolution Use Cases
	Composite Events Use Cases
	Composite Actions Use Cases

	Further issues

	Organising Travels Scenario
	Language issues
	Initial Planning
	Gather information and plan trip
	Arranging the trip according to plan
	Scenario

	Adapt Plan to Changes
	Recognize changes affecting the plan
	React to changes
	Scenario


	Updates and Evolution in Bioinformatics Data Sources
	Bioinformatics and the Semantic Web
	Sample data sources and application
	GoPubMed, ontology-based literature search
	GeneOntology
	PubMed

	PDB and SCOP

	Organisation of Bioinformatics Data
	Reactivity/evolution scenario: GoPubMed, GO, PubMed, SCOP, and PDB

	Conclusions

