178 research outputs found

    Transformations for non-ideal uniform circular arrays operating in correlated signal environments

    Get PDF
    The Davies transformation is a method to transform the steering vector of a uniform circular array (UCA) to one with Vandermonde form. As such, it allows techniques such as spatial smoothing for direction-of-arrival (DOA) estimation in a correlated signal environment, developed originally for uniform linear arrays, to be applied to UCAs. However, the Davies transformation can be highly sensitive to perturbations of the underlying array model. This paper presents a method for deriving a more robust transformation using optimization techniques. The effectiveness of the method is illustrated through a number of DOA estimation examples

    Widely Linear State Space Filtering of Improper Complex Signals

    Get PDF
    Complex signals are the backbone of many modern applications, such as power systems, communication systems, biomedical sciences and military technologies. However, standard complex valued signal processing approaches are suited to only a subset of complex signals known as proper, and are inadequate of the generality of complex signals, as they do not fully exploit the available information. This is mainly due to the inherent blindness of the algorithms to the complete second order statistics of the signals, or due to under-modelling of the underlying system. The aim of this thesis is to provide enhanced complex valued, state space based, signal processing solutions for the generality of complex signals and systems. This is achieved based on the recent advances in the so called augmented complex statistics and widely linear modelling, which have brought to light the limitations of conventional statistical complex signal processing approaches. Exploiting these developments, we propose a class of widely linear adaptive state space estimation techniques, which provide a unified framework and enhanced performance for the generality of complex signals, compared with conventional approaches. These include the linear and nonlinear Kalman and particle filters, whereby it is shown that catering for the complete second order information and system models leads to significant performance gains. The proposed techniques are also extended to the case of cooperative distributed estimation, where nodes in a network collaborate locally to estimate signals, under a framework that caters for general complex signals, as well as the cross-correlations between observation noises, unlike earlier solutions. The analysis of the algorithms are supported by numerous case studies, including frequency estimation in three phase power systems, DIFAR sonobuoy underwater target tracking, and real-world wind modeling and prediction.Open Acces

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC)

    Applications of Floquet Analysis to Modern Phased Array Antennas

    Get PDF
    Next generation radar technology is based on phased array technology and provides remarkable scanning flexibility and spatial search capability for the multifunction weather and air surveillance radar systems. The future weather radar is comprised of thousands of antenna elements and requires strict polarization purity, grating lobe free system, low sidelobe levels, suppressed surface waves, low cross-polarization, with beam shape requirements. To address these demands is a serious challenge. Over the past few decades, phased array radar technology has been a tremendous advancement in search for future radar technology. With the blessing of modern computational electromagnetic tools, the theory behind the electromagnetic and circuit-level behavior of large-scale phased array system opened the door to analyze the wide variety of multi-layered, complex system of large arrays. However, numerous challenges still remained unsolved for large scale development. One such challenge in integrating a large phased array is the threat of grating lobes that are introduced by unavoidable disturbances to the periodic structure at the seams between mechanical sub-array modules. In particular, gaps in the ground plane may interrupt the natural currents between elements, leading to radiation from periodic sources that are spaced at regular distances that are typically many wavelengths apart. In order to quantify these grating lobe effects, an appropriate analysis framework and accurate model are of utmost importance. The model must capture all surface wave and mutual coupling between elements, and the analysis must have a clear formulation that allows for the calculation of worst-case grating lobe levels as well as differences in active reflection as a function of location within a sub-array. To accurately predict those effects, this dissertation work applied a modern method called Floquet framework, coupling with full wave solver to explore the grating lobe effects in infinite arrays of sub-arrays, with each physical sub-array potentially separated from the others by a gap or discontinuity in the ground plane. Calculations are then performed to extract active reflection coefficients and grating lobe levels from the resulting Floquet mode scattering parameters. Additionally, this Floquet framework is expanded from broadside to any scan angles in space. In the mathematical framework, the surface equivalence theorem based on Huygens’s equivalence principle is applied to authenticate its findings. From the simulation results, it is evident that the grating lobe amplitude level emerged to around 30 dB in the E-plane scan and E- plane grating lobes for a patch array. This is due to natural current disruption in between sub-arrays in the ground plane gap and it is very strong in the E-plane, leading to the potential for low-level grating lobe effects. The other planes and scan angles show less significant effects. It was found that the measurements qualitatively follow the simulated results. The Floquet-based method may therefore be used as a good approximation for a worst-case scenario where all gap-based perturbation effects are identical on each sub- array. This can be used for system-level planning to inform a mechanical solution to the electrical connection between sub-arrays. Another fundamental and paramount challenge for phased array antenna is scan blindness. Scan range of the printed phased arrays is limited by the phenomenon known as scan blindness, which is induced by coherent coupling between the substrate waves/surface waves and the array’s space harmonic fields. Near the scan blindness angle, a phased array system fails to function as a radiator or receiver because of strong excitation of substrate Transverse Electric (TE) and Transverse Magnetic (TM) waves and coupling of desired radiating energy to these unwanted substrate waves. Moreover, this dissertation work, with the aid of Floquet framework, accurately and more precisely captures the surface wave phenomena and its behavior using Electromagnetic Bandgap (EBG) structures to aim to reduce the surface wave excitation in an intelligent way. The reduction of surface waves can be beneficial in several ways to the next generation of digital phased arrays. First, the radiation efficiency will increase due to reduced surface wave excitation. Second, due to decreased surface waves the diffraction from the edges will also be decreased, leading to decreased back radiation and interference with the main pattern in the forward region. Finally, reduction of surface wave excitation ultimately reduces coupling between adjacent antenna elements. Furthermore, cylindrical radiating phased array radars have a unique challenge. Due to their conformal nature, they support cylindrical surface waves and cylindrical creeping waves. These modes have detrimental effects on the overall pattern quality and lead to “phase mode blindness” like as planar equivalent “scan blindness”. This dissertation seeks to explain, address, and mitigate these surface and creeping wave effects and ultimately suppress “phase mode blindness” using cylindrical EBG structure

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    • …
    corecore