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Abstract

Complex signals are the backbone of many modern applications, such as power systems,

communication systems, biomedical sciences and military technologies. However, standard

complex valued signal processing approaches are suited to only a subset of complex signals

known as proper, and are inadequate of the generality of complex signals, as they do not

fully exploit the available information. This is mainly due to the inherent blindness of the

algorithms to the complete second order statistics of the signals, or due to under-modelling

of the underlying system. The aim of this thesis is to provide enhanced complex valued,

state space based, signal processing solutions for the generality of complex signals and

systems.

This is achieved based on the recent advances in the so called augmented com-

plex statistics and widely linear modelling, which have brought to light the limitations

of conventional statistical complex signal processing approaches. Exploiting these devel-

opments, we propose a class of widely linear adaptive state space estimation techniques,

which provide a unified framework and enhanced performance for the generality of complex

signals, compared with conventional approaches. These include the linear and nonlinear

Kalman and particle filters, whereby it is shown that catering for the complete second or-

der information and system models leads to significant performance gains. The proposed

techniques are also extended to the case of cooperative distributed estimation, where

nodes in a network collaborate locally to estimate signals, under a framework that caters

for general complex signals, as well as the cross-correlations between observation noises,

unlike earlier solutions. The analysis of the algorithms are supported by numerous case

studies, including frequency estimation in three phase power systems, DIFAR sonobuoy

underwater target tracking, and real-world wind modeling and prediction.



4

Acknowledgment

I would like to thank everyone who helped and supported me during my time at Impe-

rial. In particular I would like to express my gratitude to Prof. Danilo Mandic for his

supervision, technical support, and unflagging enthusiasm.

This work has also benefited greatly from the advice and discussions I have had

over the years with many close friends. I would also like to thank my friends who have

made my experiences inside and outside Imperial interesting and memorable.

I would like to reserve my biggest gratitude for my family, and thank them for

their guidance and support.

This research was part of the University Defence Research Centre (UDRC) at Im-

perial College London, sponsored by the MoD and DSTL (Project Code: C3).



5

Contents

Copyright 2

Abstract 3

Acknowledgment 4

Contents 5

List of Figures 8

Statement of Originality 11

Publications From This Thesis 12

Chapter 1. Introduction 14

Chapter 2. Background 20

2.1 History of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Motivations for Complex Valued Signal Processing . . . . . . . . . . . . . . 22

2.2.1 Examples of Complex Valued Signals . . . . . . . . . . . . . . . . . . 22

2.2.2 Other Benefits of Complex Valued Processing . . . . . . . . . . . . . 25

2.3 Complex Statistics and Widely Linear Estimation . . . . . . . . . . . . . . . 27

2.3.1 Second Order Statistics of Complex Signals . . . . . . . . . . . . . . 29

2.3.2 Complex White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Widely Linear (Augmented) Complex Estimation . . . . . . . . . . . 33

2.3.4 Benefit of Widely Linear Complex Estimation . . . . . . . . . . . . . 36

2.4 Degree of Complex Impropriety . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 3. Complex Valued Kalman Filters 42

3.1 The Augmented Complex Kalman Filter (ACKF) . . . . . . . . . . . . . . . 43

3.1.1 CCKF and ACKF Duality Analysis . . . . . . . . . . . . . . . . . . 45

3.1.2 Mean square error performance analysis . . . . . . . . . . . . . . . . 47

3.1.3 Duality Analysis of ACKF and real valued KF . . . . . . . . . . . . 51



Contents 6

3.1.4 Posterior Cramer-Rao bound (PCRB) . . . . . . . . . . . . . . . . . 54

3.2 The Augmented Complex Extended Kalman Filter . . . . . . . . . . . . . . 56

3.3 The Augmented Complex Unscented Kalman Filter . . . . . . . . . . . . . . 59

3.3.1 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Complex autoregressive process . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Multistep ahead prediction . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Bearings only tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 4. Widely Linear Frequency Estimation in Three-Phase Power

Systems 75

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Widely linear (augmented) Complex LMS (ACLMS) . . . . . . . . . 77

4.2 Widely Linear Frequency Estimation . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Robust Tracking Using the Innovation Process . . . . . . . . . . . . . . . . 84

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 5. Distributed Widely Linear Complex Kalman Filters 95

5.1 Diffusion Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.1 Distributed Complex Kalman Filter . . . . . . . . . . . . . . . . . . 97

5.1.2 Distributed Augmented Complex Kalman Filter . . . . . . . . . . . 100

5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Duality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Mean And Mean Square Analysis . . . . . . . . . . . . . . . . . . . . 106

5.3 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Filtering an Autoregressive Process . . . . . . . . . . . . . . . . . . . 110

5.3.2 Projectile Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 6. Exploiting Sparsity in Widely Linear Estimation 116

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.1 Complex Least Mean Square (CLMS) . . . . . . . . . . . . . . . . . 117

6.1.2 Augmented CLMS (ACLMS) . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Regularised ACLMS (R-ACLMS) . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Regularised Widely Linear Gradient Descent . . . . . . . . . . . . . 120

6.2.2 Cost Function Bias Analysis . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.3 Mean Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 123



Contents 7

6.3 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Chapter 7. Conclusions 129

7.1 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 Complex Signals in Transform Domains . . . . . . . . . . . . . . . . 132

7.2.2 Higher Order Propriety . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.3 Complex Signals in Communication Systems . . . . . . . . . . . . . 133

7.2.4 Complex Valued Imaging . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.5 Complex Biomedical Engineering . . . . . . . . . . . . . . . . . . . . 133

Appendix A. Particle Filtering and Augmented Complex Statistics 134

A.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.1.1 Generalised Multivariate Complex Gaussian Distribution . . . . . . 135

A.2 Complex Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.2.1 Conventional Complex PF (CCPF) . . . . . . . . . . . . . . . . . . . 136

A.2.2 Augmented Complex PF (ACPF) . . . . . . . . . . . . . . . . . . . . 138

A.2.3 Augmented Complex Gaussian PF (ACGPF) . . . . . . . . . . . . . 142

A.3 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.3.1 Complex autoregressive process . . . . . . . . . . . . . . . . . . . . . 143

A.3.2 Bearings only tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendix B. An Enhanced Sonobuoy Bearing Estimation Technique 149

B.1 New State Space Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.1.1 Noise Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.2.1 Signal Model: Sinusoid . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.2.2 Signal Model: Autoregressive . . . . . . . . . . . . . . . . . . . . . . 156

B.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 158



8

List of Figures

2.1 An illustration of the importance of phase in pictures. The Figures (a) and (b) are the

original images, while figure (c) consists of the magnitude information from (a) and the

phase information from (b), and vice versa for Figure (d). The visual perceptions of (c) and

(d) are largely dominated by the phase information. . . . . . . . . . . . . . . . . . . . . . . 28

2.2 A geometric view of circularity via a real-imaginary scatter plot of zero-mean complex white

Gaussian distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 A real-imaginary scatter plot of zero-mean complex white uniform distributions with zero

pseudocovariances (both are proper). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 A geometric view of circularity via a real-imaginary scatter plot of white complex Gaussian

processes at different degrees of noncircularity (η), with orthogonal real and imaginary parts. 40

3.1 Performance of the complex UT and augmented complex UT . . . . . . . . . . . . . . . . . 64

3.2 Steady-state performance comparison between CCKF and ACKF for the AR(1) filtering

problem: (a) circular observation noise and a noncircular state noise with varying degrees

of noncircularity; (b) circular state noise and noncircular observation noise with varying

degrees of noncircularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Steady-state performance comparison between CEKF, CUKF and their corresponding

widely linear (augmented) versions for the AR(1) filtering problem: (a) circular observa-

tion noise and a noncircular state noise with varying degrees of noncircularity; (b) circular

state noise and noncircular observation noise with varying degrees of noncircularity. . . . . 70

3.4 Multistep ahead prediction of real-world Wind data and the Lorenz attractor using CCKF,

CLMS and their corresponding widely linear versions . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Performances of CUKF and ACUKF with second order noncircular state noise (K = 0.9) . 72

4.1 An illustration of the trajectory of Clarke voltage vk for different operating conditions. For a

balanced system, characterised by Va,k = Vb,k = Vc,k, the trajectory of vk is circular, while,

for unbalanced systems, such as in the case of a 100% single-phase voltage sag illustrated

by the ellipse in the figure (+), the trajectory of the output voltage becomes noncircular. . 80

4.2 Observation noise distributions after the three phase (independent, Gaussian and real val-

ued) noises na,k, nb,k and nc,k undergo Clarke’s αβ transformation. . . . . . . . . . . . . . . 82

4.3 Geometric and phasor views of Type C and D voltage sags. The real-imaginary plots

illustrate the noncircularity of Clarke’s voltage in unbalanced conditions. The parameters

of the circularity plot (ellipse) help identify the type of fault (voltage sag). . . . . . . . . . . 87



List of Figures 9

4.4 Frequency estimation for a system which is balanced up to 0.1s, after which the system

becomes unbalanced due to the occurrence of voltage sags of differing natures. . . . . . . . 88

4.5 Initial transient behaviour for the simulations in Figure 5 (first 5ms), where all the Kalman

filters where initialised as Ma
k|k = 10I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Frequency estimation for a balanced system in the presence of doubly white circular Gaussian

noises at 20dB SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Frequency estimation when phase voltages are contaminated with in-phase harmonics at

10% p.u. for the 3rd and 5% p.u. for the 5th harmonics. . . . . . . . . . . . . . . . . . . . . 89

4.8 Frequency estimation for a power system which experiences a 5Hz/s rise and decay in system

frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Mean square error (MSE) and bias analysis for an unbalanced system undergoing a voltage

sag (Type D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.10 Frequency estimation for a system which experiences a temporary step change in frequency

from 50Hz to 52Hz in the presence of white circular Gaussian noises at 35dB SNR. In (a) the

frequency is estimated using SS3 and SS4 with fixed state and observation noise variances,

while in (b) the state noise variance was set according to the innovation power using the

methodology described in Section 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.11 An initially balanced system experiences a series of voltages sags, all in the presence of

complex doubly white measurement noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.12 Frequency estimation for a real-world three-phase system, where an initially balanced system

experienced a single-line short with earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.13 Frequency estimation for a real-world unbalanced three-phase system, where two lines ex-

perience a short with earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 An illustrative example of a distributed network topology. . . . . . . . . . . . . . . . . . . . 99

5.2 A distributed network with N = 10 nodes used in the simulations. . . . . . . . . . . . . . . 111

5.3 Steady state performance comparison for filtering the AR(2) process in the cases of: (a)

circular observation noises and a noncircular driving noise with varying degrees of noncir-

cularity; (b) circular state noise and noncircular observation noises with varying degrees of

noncircularity, whereby all nodes have same degree of observation noise noncircularity. . . . 112

5.4 A distributed network with N = 20 nodes used in the simulations. . . . . . . . . . . . . . . 113

5.5 projectile tracking simulations: (a) Average performance (of all the nodes) for a trial run of

the diffusion algorithms; (b) Transient performance of the centralised and diffusion algorithms.114

6.1 Comparison between the l1- and l2-norm regularised cost functions for different values of γ.

The standard cost function is achieved by setting γ = 0. . . . . . . . . . . . . . . . . . . . . 120

6.2 Coefficient convergence of the ACLMS and R-ACLMS for a strictly linear system with a

noncircular input signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Performance comparison between the CLMS, the widely linear ACLMS, the l1- and l2-norm

regularised ACLMS (R-ACLMS) for strictly and widely linear systems with a circular input

vector E{xkx
T
k } = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Performance comparison between the CLMS, the widely linear ACLMS, the l1- and l2-norm

regularised ACLMS (R-ACLMS) for strictly and widely linear systems with a noncircular

input vector E{xkx
T
k } = 0.6I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Performance comparison between the different algorithms for the prediction of real-world

Wind data at different prediction horizons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



List of Figures 10

A.1 Steady-state performance comparison between the conventional complex particle filter

(CCPF) and the augmented complex particle filter (ACPF) for the AR(1) filtering problem:

(a) circular observation noise and a noncircular state noise with varying degrees of noncir-

cularity; (b) circular state noise and noncircular observation noise with varying degrees of

noncircularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Performance of standard and augmented complex filters for BOT problem with noncircular

state and observation noises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.1 A geometric view of the three sonobouy sensors (top view). . . . . . . . . . . . . . . . . . . 151

B.2 Performance comparison between the proposed augmented complex state space approach

and the arctan estimator for the case where the target source signal is a sinusoid. . . . . . . 156

B.3 Performance comparison between the proposed augmented complex state space approach

and the arctan estimator for the case where source signal is an autoregressive process with

(a) a Gaussian; (b) a uniform driving noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



11

Statement of Originality

I declare that the content embodied in this thesis is the outcome of my research under the

guidance of my thesis adviser Prof Danilo P. Mandic. Any ideas or quotations from the

work of other people, published or otherwise, are fully acknowledged in accordance with

the standard referencing practices of the discipline. The material on this thesis has not

been submitted for any degree at any other academic or professional institution.



12

Publications From This Thesis

Patent

A patent application regarding frequency estimation and fault identification in three phase

power systems and smat-grids - UK Patent Application No. 1217737.4 (ref: 6279), October

2012.

Journal papers

[1] D.H. Dini, D.P. Mandic, S.J. Julier, “A Widely Linear Complex Unscented Kalman

Filter,” IEEE Signal Processing Letters, vol.18, no.11, pp.623-626, Nov. 2011

[2] D.H. Dini, C. Jahanchahi, D.P. Mandic, “Widely Linear Complex and Quaternion

Valued Bearings Only Tracking,” IET Signal Processing Special Issue on: Multi-Sensor

Signal Processing for Defence, vol.6, no.5, pp.435-445, July 2012

[3] D.H. Dini, D.P. Mandic, “Class of Widely Linear Complex Kalman Filters,”

IEEE Transactions on Neural Networks and Learning Systems, vol.23, no.5, pp.775-786,

May 2012

[4] D.H. Dini, D.P. Mandic, “Widely Linear Modeling for Frequency Estimation in

Unbalanced Three-Phase Power Systems,” IEEE Transactions on Instrumentation and

Measurement, vol.62, no.2, pp.353-363, Feb. 2013

[5] D.H. Dini, P.M. Djuric, D.P. Mandic, “The Augmented Complex Particle Fil-

ter,” IEEE Transactions on Signal Processing, vol.61, no.17, pp.4341-4346, Sept. 2013



Publications 13

Conference papers

[6] D.H. Dini, D.P. Mandic, “Analysis of the Widely Linear Complex Kalman Filter,”

Proceedings of Sensor Signal Processing for Defence (SSPD), Sep. 2010

[7] D.H. Dini, D.P. Mandic, “Widely Linear Complex Extended Kalman Filters,”

Proceedings of Sensor Signal Processing for Defence (SSPD), Sep. 2011

[8] D.H. Dini, D.P. Mandic, “Widely Linear State Space Models for Frequency Es-

timation in Unbalanced Three-Phase Systems,” Proceedings of IEEE 7th Sensor Array

and Multichannel Signal Processing Workshop (SAM), 2012, pp.9-12, 17-20 June 2012

[9] D.H. Dini, D.P. Mandic, “An Enhanced Bearing Estimation Technique for DI-

FAR Sonobuoy Underwater Target Tracking,” Proceedings of Sensor Signal Processing

for Defence (SSPD), Sep. 2012

[10] D.H. Dini, D.P. Mandic, “Cooperative Adaptive Estimation of Distributed

Noncircular Complex Signals,” Proceedings of ASILOMAR, pp.1518-1522, 4-7 Nov. 2012

[11] D.H. Dini, D.P. Mandic, “Exploiting Sparsity in Widely Linear Estimation,”

Proceedings of the 10th International Symposium on Wireless Communication Systems

(ISWCS), vol., pp.1-5, Aug. 2013



14

Chapter 1

Introduction

W
E live in an information age. The recent advances in sensor and computing

technologies have not only vastly increased the availability of data, but also the

capabilities to robustly deal with large data sets. Moreover, as technology continues to

evolve, the need to make sense and inferences from ever more complex data takes ever

greater precedence, and next generation techniques and solutions for achieving enhanced

performance become paramount.

Another facet of modern technology is the reliance on multiple sensors, whereby

measurements from a number of sensors, often with overlapping information, need to be

simultaneously processed to enhance performance and increase system capabilities. How-

ever, in distributed systems consisting of sensor spread over a certain geographical region,

such centralised methodologies requires large communication overheads, and distributed

estimation frameworks, which relies on cooperation between neighbouring sensors, are

often preferred to reduce the computational and communication overheads.

Typically, real-world data are corrupted by noise and interferences, exhibit laten-

cies and coupling, and are nonstationary; and hence do not directly yield to analysis

and information extraction. This necessitates mathematical data processing techniques

that simultaneously facilitate the extraction of useful information, and the suppression of

redundant interferences.

Signal processing is such a discipline, offering a mathematical framework for in-
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formation retrieval from noisy corrupted data, and forms the backbone of many modern

technologies, including communications and bio-medicine. Signal processing encompasses

a large array of techniques ranging from image and audio processing to data compres-

sion and weather forecasting, however, as the need for more advanced data processing

technologies increases, so does the requirement for the development of next-generation

signal processing solutions capable of meeting the challenges of efficient, low-cost, fast and

accurate data processing frameworks.

This thesis is on the subject of signal processing, and more specifically adaptive

filters. Unlike other signal processing techniques, adaptive filters operate and optimise

their performance in real-time with the arrival of new information, which has made them

ubiquitous in many time-constrained technologies, such as satellite navigation, wireless

communication, electrical smart-grids and brain-computer-interfaces. The aim of this re-

search is focused on the development a novel theoretical framework and enhanced practical

solutions for adaptive processing of complex valued signals, that is, signals with real and

imaginary components.

Complex numbers are not artificially constructed concepts, but occur naturally

when solving real valued problems. Although complex numbers came to prominence in

the 16th century, they were not fully mainstream in the science community until the

19th century, when their geometrical interpretation was described and their usefulness in

dealing with trigonometric identities identified.

Complex signals arise in a numerous real-world practical applications, as well as

in transform domains such as Fourier and wavelet, where real valued data becomes com-

plex after processing. The complex domain has distinct advantages including providing a

convenient representation of bivariate data, and a natural way for preserving the charac-

teristics of signals and the transformations they undergo, such as phase and magnitude

distortions in communication systems.

Complex signal processing is the enabling technology behind applications, such

as mobile communication and magnetic source imaging, however, standard, widely used,

solutions inherently assume proper signal distributions. This is generally inadequate, given
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that real-world signals almost invariably improper, and treating all signals as proper leads

to algorithms that are unable to fully utilised the available information.

The work presented here is based on recent developments in the statistics of complex

variables, called augmented complex statistics, and is used in conjunction with widely

linear adaptive signal processing, to enable optimal processing for the generality of complex

signals, both proper and improper. Augmented complex statistics allows for full utilisation

of the available second order statistics of complex signals. Further, the effects of improper

signals on the behavior of various algorithms, where second order propriety are normally

assumed, is also examined. A number of widely linear (augmented) complex algorithms are

proposed and analysed here, and their behavior are illustrated in a number of application

employing real-world and synthetic data.

These include the gradient descent based least mean square together with the adap-

tive state space based Kalman and particle filtering techniques, which allow the modelling

and estimation of nonstationary systems, and proposes solutions to enhance the perfor-

mance of these techniques for improper data sources and widely linear system models.

This thesis is organised as follows. Each technical chapter and appendix starts

with an introduction clearly detailing the original contribution of the author to the work

contained within. Chapter 2 deals the background theory regarding complex signals, while

Chapter 3 is the first technical chapter, and presents complex valued Kalman filters which

are second order optimal for the generality of complex data. Chapter 4 concerns the

application of the proposed Kalman filters for frequency estimation in unbalanced three

phase power systems, whereas Chapter 5 extends the work in Chapter 3 to the case of

distributed state space estimation in the presence of correlated measurement noises. In

Chapter 6 some convergence issues of the gradient descent based augmented complex

LMS (ACLMS) algorithm are addressed. Lastly, the chapter in Appendix A, explores the

benefits of utilising density functions which cater for improper distributions within the

framework of complex valued particle filters, while, the chapter in Appendix B proposes a

new solution to the DIFAR sonobuoy bearing estimation problem for underwater acoustic

sources based on the algorithms introduced in Chapter 3.
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Novel Contributions

The main contributions of this thesis are presented in the following Chapters, however,

concise summaries along with the relevant publications are presented below.

1. We introduce a class of widely linear complex Kalman filters, namely the aug-

mented complex Kalman filter (ACKF), augmented complex extended Kalman filter

(ACEKF) and augmented complex unscented Kalman filter (ACUKF), suited to the

generality of complex signals, and analyse their performances under proper and im-

proper signals. For rigour, a theoretical bound for the performance advantage of

widely linear Kalman filters over their strictly linear conventional complex Kalman

filters (CCKFs) is provided. The analysis also addresses the duality with bivariate

real valued Kalman filters, together with several issues of implementation, and the

Cramer-Rao lower bound (CRLB) for the widely linear Kalman filters is established.

Our mean square analysis shows that the performance of CCKF is unaffected by the

impropriety of the state and observation signals, however, the mean square char-

acteristics of the complex extended Kalman filter (CEKF) and complex unscented

Kalman filter (CUKF) are a functions of the impropriety of the state noise impro-

priety [1].

2. We revisit real-time frequency estimation in three phase power systems from a state

space point of view, in order to provide a unified framework for frequency tracking in

both balanced and unbalanced system conditions. We achieve this by using widely

linear complex valued Kalman filters which are faster converging and more robust to

noise and harmonic artifacts than the existing methods . It is shown that the Clarke’s

transformed three phase voltage is circular for balanced systems and noncircular for

unbalanced ones, making the proposed widely linear estimation perfectly suited to

both identify the fault and to provide accurate estimation in unbalanced conditions,

critical issues where standard models typically fail. Our analysis and simulations

show that the proposed approaches outperform the recently introduced widely linear

stochastic gradient based frequency estimators, based on the augmented complex
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least mean square (ACLMS) [2].

3. We introduce cooperative sequential state space estimation in the domain of aug-

mented complex statistics, whereby nodes in a network collaborate locally to esti-

mate improper complex signals. For rigour, a distributed augmented (widely linear)

complex Kalman filter (D-ACKF) suited to the generality of complex signals is in-

troduced, allowing for unified treatment of both proper (rotation invariant) and

improper (rotation dependent) signal distributions. Our analysis and simulations

show that unlike existing distributed Kalman filter solutions, the D-ACKF caters

for both the improper data and the cross-correlations between the observation noises

at neighbouring nodes, encountered when nodes are exposed to common noise (e.g.

jamming noise), thus providing enhanced performance in real-world scenarios [3].

4. The distribution of complex random signals is typically improper, and conventional

strictly linear models are only second order optimum for signals with proper distribu-

tions, while widely linear models are optimum for both proper and improper signals.

Widely-linear models, however, are over-parameterised when the underlying system

is strictly-linear, requiring twice the number of parameters to be estimated compared

to strictly-linear models. This effects widely linear adaptive algorithms, such as the

augmented complex least mean square (ACLMS) and augmented complex recursive

least squares (ACRLS), and leads to slow convergence. We here address the prob-

lem of the over-parameterisation of the ACLMS through the use of regularised cost

error functions. The conjugate weight regularised ACLMS (R-ACLMS) algorithm

is presented and shown to converge faster than the ACLMS, while offering similar

steady-state performance for strictly linear systems [4].

5. Current complex valued particle filters (PFs) have assumed (implicitly or explicitly)

circular signal distributions, which for noncircular signals leads to suboptimal per-

formance. We employ augmented complex statistics, and propose the augmented

complex PF (ACPF) and the augmented complex Gaussian PF (ACGPF) for the

sequential estimation of complex states in both circular and noncircular noise, and

show through simulations the advantages for the proposed solutions [5].
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6. We address the DIFAR sonobuoy bearing estimation problem for underwater acoustic

sources. The standard arctangent based approach utilises the orthogonality between

the observation noises for the different channels to form the bearing estimates, and

ignores the correlation structure of the actual source signal. We propose a new state

space technique, which exploits the correlations structure in the source signal to

achieve enhanced performance, particularly in low signal-to-noise (SNR) conditions,

compared to the standard arctangent estimator [6].
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Chapter 2

Background

This chapter presents a background on complex numbers and a few topics on complex

valued signal processing. This chapter contains a summary of the introductory chapters

in [7], together with some works from [8] [9] [10] [11]. For more a complete overview of

this subject, see the above references and the other works cited within this Chapter.

2.1 History of Complex Numbers

The concept of a “new number” has often arose because of a need to solve a practical

problem. For instance to solve for the diagonal of a unit length square (
√
12 + 12 =

√
2),

irrational numbers needed to be introduced, whereas calculating the circumference of

a circle required the use of the irrational π. Likewise complex numbers came from the

necessity to solve equations involving the square root of negative numbers such as x2 = −4.

Complex numbers arose to prominence in the 16th century when the Italian math-

ematicians Niccolo Fontana Tartaglia and Gerolamo Cardano sought to find closed form

solutions to the roots of cubic and quartic polynomials. This led to expressions involving

the square roots of negative numbers. They realized that even when only searching for

real solutions, the manipulation of square roots of negative numbers was often required.

For instance, Tartaglia’s cubic formula

x3 − x = 0 (2.1)
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has the following solution

1√
3

(
(
√
−1)

1
3 +

1

(
√
−1)

1
3

)
(2.2)

and when the three cube roots of −1 are substituted into this expression the three real

roots, 0, 1 and −1 are found. Rafael Bombelli was the first to explicitly address these seem-

ingly paradoxical solutions of cubic equations and developed the rules for manipulating

complex numbers. In solving for the roots of

x3 − 15x− 4 = 0 (2.3)

he was able to show that

(
2 +

√
−1

)
+
(
2−

√
−1

)
= 4 (2.4)

whereby, it was necessary to perform calculations in the field of complex numbers C in

order to compute the real roots.

Complex numbers gained notoriety in the 18th century, as it was noted that com-

putations involving trigonometric expressions could be simplified by utilising complex

expressions. Abraham de Moivre, for example, used formal manipulation of complex ex-

pressions to show that identities relating trigonometric functions of an integer multiple of

an angle could be re-expressed as powers of trigonometric functions of that same angle

using the formula which bears his name, that is

(cos θ + j sin θ)n = cosnθ + j sinnθ. (2.5)

In 1748 Leonhard Euler went further and proposed the well-known Euler formula:

cos θ + j sin θ = ejθ (2.6)

which reduces trigonometric identities to their simple exponential equivalents.

Complex numbers, however, did not become part of the mainstream until their
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geometrical interpretation was described by Caspar Wessel in 1799. Carl Friedrich Gauss

rediscovered these interpretations several years later and popularised it, and as a conse-

quence the theory of complex numbers received a notable expansion. Although, the ideas

behind the geometric representation of complex numbers had appeared as early as 1685,

in Wallis’s De Algebra Tractatus.

2.2 Motivations for Complex Valued Signal Processing

Complex valued signals and algorithms have proven to be useful in a wide range of theoret-

ical and practical applications. The complex domain is the natural home for the represen-

tation and processing of numerous commonly encountered data, however, the usefulness

of complex valued signals is generally application dependent. Next some applications,

motivations and benefits behind complex valued systems and signals are discussed.

2.2.1 Examples of Complex Valued Signals

Fourier Analysis. The Fourier series decomposes periodic functions or signals into the

sum of simple oscillating functions, namely complex exponentials. Fourier series were

introduced by Joseph Fourier (1768 − 1830) for the purpose of solving the heat equation

in a metal plate. The real valued function f [x] with a finite number of discontinuities and

extrema has a Fourier series representation given by

f [t] =
+∞∑

n=−∞
cne

jωnt (2.7)

where the Fourier coefficients {cn} are computed as

cn =
1

T

∫ t2

t1

f [t]e−jωntdt (2.8)

and T = t2 − t1 is the period of the function f [t].

The Fourier series along with the Fourier transform are perhaps the most widely

used form of complex representation of real valued data. The original concept of Fourier



2.2 Motivations for Complex Valued Signal Processing 23

analysis has been extended over time to apply to more abstract and general situations, and

the general field is often known as harmonic analysis. The applications of Fourier analysis

are many and vary from filter bank design to modern cell phones or radio scanners.

Phasors. In mathematics and signal processing, a phase-vector (“phasor”) is a very

useful technique for conceptualising sinusoidally oscillating quantities. A phasor can be

seen as a rotating vector. For instance, Euler’s formula indicates that a sinusoidal signal

x[t] = |x| cos[ωt+ φ] can be represented as

x[t] = ℜ{|x| ejφ · ejωt} (2.9)

where the operator ℜ{·} denotes the real part of a complex number. The phasor can refer

to either |x| ejφ ·ejωt or just the complex constant |x| ejφ. In the latter case, it is understood

to be a shorthand notation, denoting the amplitude and phase of the underlying sinusoid

function.

Phasors are used for the analysis of systems involving oscillating signals, such as

three phase alternating current (AC) power systems, where three phasors, of equal mag-

nitude and phases at 0, 120 and 240 degrees, are used to represent the three oscillating

voltages. Phasor representations of the polyphase AC circuit variables allows for balanced

systems to be simplified and unbalanced systems to be dealt with as algebraic combi-

nations of symmetrical systems. This approach greatly simplifies the work required in

calculating voltage drops, power flows, and short-circuit currents.

Analytic signals. Signals with no negative-frequency components are known as ana-

lytic. The analytic representation of a real valued function or signal facilitates mathe-

matical manipulations, and offers a convenient way to obtain phase and instantaneous

frequency information. The idea behind analytic signals is to remove the redundant fre-

quency spectrum, that is due to the symmetry of the Fourier transform (spectrum) of

real-valued function, the negative frequency components can be discarded without loss of

information.

For a real valued signal x[t] with a Fourier transform X[f ], the function Xa[f ]
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defined as

Xa[f ] =





2X[f ], if f > 0

X[f ], if f = 0

0, if f < 0

= X[f ] · 2u[f ] (2.10)

only contains the non-negative frequency components of X[f ], where u[f ] is the Heaviside

step function. The inverse function exists due to symmetry of the spectrum of X[f ], that

is

X[f ] =





1
2Xa[f ], if f > 0

Xa[f ], if f = 0

1
2X

∗
a [|f |], if f < 0

(2.11)

where (·)∗ is the complex conjugate operator. The complex valued time domain represen-

tation of Xa[f ] is the analytic version of x[t], and is given by

xa[t] = F−1{Xa[f ]}

= F−1{X[f ]} ∗ F−1{2u[f ]}

= x[t] + j
(
x[t] ∗ 1

πt

)
(2.12)

where the symbol ∗ denotes the convolution operator and x[t]∗ 1
πt is the Hilbert transform

of x[t].

Analytic representations of real signals are commonly utilised in signal process-

ing and communication systems, whereby complex envelopes facilitates modulation and

demodulation techniques together with the analysis of signals properties.

Native complex signals. Some signals can be seen as naturally complex, where an

in-phase and a quadrature component is the natural representation which enables the full

relationship between two components to be taken into account. Examples include radar
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and directional processes as well as many communication signals such as binary phase shift

keying (BPSK), quadrature phase shift keying (QPSK) and quadrature amplitude mod-

ulation (QAM). The MRI (magnetic resonance imaging) signal is also naturally complex

because two orthogonal detectors are used to capture the images.

The complex domain can also be used to capture the magnitude and phase rela-

tionship between two real-valued signals. For example, wind signals have magnitude (wind

intensity) and phase (wind direction), and have a natural complex representation.

2.2.2 Other Benefits of Complex Valued Processing

In addition to the examples above, signal processing in the complex domain has several

distinct features and advantages; some of which are discussed below.

More powerful statistics. Recent developments in complex statistics have shown that

statistics in C are not simple extensions of statistics in R. The notions of proper and

improper complex random variables, gives more degrees of freedom and hence greater

potential for improved performance compared with standard modelling in C. For example

in blind source separation and extraction problems, complex signals with varying degrees

of impropriety can be separated.

Simultaneous modelling and fusion of two variables. Complex domain modelling

of directional processes, such as wind, not only provides a convenient representation, but

also provides sequential data fusion. The magnitude and phase, which are of different

natures, are fused to into a single scalar quantity.

Visualisation. Whereas real valued functions are represented by two dimensional graphs,

complex functions are represented by four dimensional graphs (two axis for the real and

imaginary parts of the function argument and two axis for the real and imaginary parts of

the evaluated function). Hence to visualise a complex function, the two dimensional func-

tion argument is plotted against either the phase or magnitude of the evaluated function

or the graph is colour coded to suggest the fourth dimension.
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Compact and natural representation. The complex number x = a+jb can be thought

of as a single entity that satisfies all the standard rules of algebra. For algorithms such

as the least mean square (LMS) or recursive least squares (RLS), where the desired signal

(training signal) is a scalar, a complex version of these algorithms allows the desired signal

to become bivariate because a scalar complex signal consists of real and imaginary parts.

To account for a bivariate desired signal in real valued LMS and RLS algorithms, two

filters need to be implemented.

An alternative domain. The complex domain offers an alternative to the real domain

for formulating solutions. This is useful in numerous application, such as deriving recursive

expressions to problems, which are necessary in adaptive filters. For example, consider

the recursive expression for an exponential:

ejωk = ejωejω(k−1)

where k is the time index. The recursive nature of the real valued equivalent to this

expression is not as intuitive, that is

ejωk = (cos[ω] + j sin[ω])(cos[ω(k − 1)] + j sin[ω(k − 1)])

= cos[ω] cos[ω(k − 1)]− sin[ω] sin[ω(k − 1)] + j cos[ω] sin[ω(k − 1)] + j sin[ω] cos[ω(k − 1)]

Similarly, the recursive forms for sinusoids, for example cos[ωk] = 1/2ejωk +1/2e−jωk, are

more elegantly expressed as complex exponentials. Further, the complex domain can be

considered a generalisation of the real domain, in that when the imaginary part vanishes,

the two domains are equal.

Homomorphic filtering. Typically noise is additive, that is the observation consists of

the summation of a signal and noise. However, there are often cases involving multiplica-

tive noise, where the observation consists the product of a signal and noise. One approach

for dealing with multiplicative signals is through homomorphic filtering, whereby the log-

arithm of the product is used to separate the signals, for example lnxy = lnx+ ln y. For

real valued variables, the logarithm does not exist for x ≤ 0 or y ≤ 0, while the logarithm
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of a nonzero complex signal z = |z|ejθ is always defined as ln z = ln |z|+ jθ.

Derivative approximation. The first order Taylor series approximation of a real valued

function f [·] with a real argument a is defined as

f ′[a] =
f [a+ h]− f [a]

h
+O[h]

where h is the real valued argument increment. On the other hand, the Taylor series

approximation for a complex valued argument is given by

f [a+ jh] = f [a] + jhf ′[a]− 1

2!
h2f ′′[a]− 1

3!
jh3f ′′′[a] + · · ·

where f ′′[·] and f ′′′[·] are the second and third order derivatives. Equating the imaginary

parts yields

f ′[a] =
ℑ{f [a+ jh]}

h
+O[h2]

The operator ℑ{·} is the imaginary part of a complex number. Observe that there is no

difference operation and the error is an O[h2] operation when the argument is complex val-

ued, hence the derivative is be better approximated by utilising a complex representation,

given that h << 1 is typically chosen.

The importance of phase information. In a number of real world applications, the

phase information is more important the magnitude information, e.g. image processing.

Consider Figure 2.1 showing two original images along with the cases where their phase

spectra are interchanged prior to taking the inverse Fourier transform. It is clear that

most of the meaningful information is contained in the phase, as the appearance of the

phase exchanged images are dominated by the phase information.

2.3 Complex Statistics and Widely Linear Estimation

The distribution of signals dictate the signal processing techniques and the nature of the

estimators suited to dealing with them. For example, the optimal estimator, in the mean
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(a) Image I1: Buffalos (b) Image I2: Elephants

(c) I3 = F−1
{∣∣F(I1)

∣∣ exp(j∠F(I2))
}

(d) I4 = F−1
{∣∣F(I2)

∣∣ exp(j∠F(I1))
}

Figure 2.1: An illustration of the importance of phase in pictures. The Figures (a)
and (b) are the original images, while figure (c) consists of the magnitude information
from (a) and the phase information from (b), and vice versa for Figure (d). The visual
perceptions of (c) and (d) are largely dominated by the phase information.

square error sense, for a linear Gaussian process is linear, while for nonlinear or non

Gaussian processes the optimal estimator is generally untenable. Hence a thorough un-

derstanding of the distribution of complex signals, plays a fundamental role in developing

the right algorithms for different problem sets. In this section, the statistical moments of

complex signals are discussed with special emphasis on the second order moments.
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2.3.1 Second Order Statistics of Complex Signals

Second order statistics plays an important role in signal processing. Typically, the esti-

mation error does not directly yield to minimisation due to non-convexity, and we seek to

minimise convex functions of the estimation error. Among the possible choices, it is the

mean square error (MSE) and its approximates which are often the default choice, given

that for an unbiased estimator the MSE is equal to the error variance (power), while for

biased estimator it is equal to sum of the error variance and the squared bias - thus MSE

is essentially a second order statistical moment. From a practical view point, lower MSE

corresponds to better estimation performance.

The prominence of complex signals necessitates the need for a deeper understanding

of their statistics. The second order statistical properties of a zero mean1 complex vector

z = x+ jy has conventionally been characterised by its covariance matrix Rz = E{zzH},

where (·)H indicates the complex-conjugate transpose operator. However, this is insuf-

ficient for a complete second-order description, and another moment function known as

the pseudocovariance (also referred to as the relation function or complementary covari-

ance) Pz = E{zzT }, where (·)T is the transpose operator, is also necessary. It is only

for the special class of complex signals known as second order proper orcircular, that is,

those with rotation invariant probability distributions, characterised by a vanishing pseu-

docovariance, that their covariance function suffices to give the complete second order

description. The covariance matrix captures the information regarding the total power of

the signal, while the pseudocovariance captures the information about the power difference

and cross-correlation between the real and imaginary parts of the signal.

The term circularity comes from the following remarks. It is clear that the covari-

ance of z and its rotated version z̄ = zejθ are equal for any real number θ. However, the

pseudocovariances of z and z̄ are equal if and only if

Pz = E{zzT } = Pz̄ = E{z̄z̄T } = ej2θE{zzT } = ej2θPz (2.13)

1The zero mean assumption simplifies the mathematical processing without loss of generality.
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(a) Circular distribution
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(d) Correlated noncircular

Figure 2.2: A geometric view of circularity via a real-imaginary scatter plot of zero-
mean complex white Gaussian distributions.

which leads to the solution Pz = 0. A circular signal is a signal whose second order

statistics are invariant for any phase rotation, thus the pseudocovariance vanishes for

circular signals.

At this point it is worth noting that signals with zero pseudocovariances do not

necessarily have circular distributions, however, signals with circular distributions always

have zero pseudocovariances as shown in (2.13). Gaussian signals are a special case for

whom a vanishing pseudocovariance implies circularity and vise-versa is also true.

To illustrate this point consider Figure 2.2 which shows a geometric view of the

circularity of complex Gaussian distributions with identical variances with varying pseu-

docovariances. Figure 2.2a shows a circular signal with zero pseudocovariance, while the

remaining figures have the same pseudocovariance magnitude. On the other hand, Fig-

ure 2.3 show a uniform distribution and its 45 degree rotated version, both have zero
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(b) Rotated uniform distribution

Figure 2.3: A real-imaginary scatter plot of zero-mean complex white uniform distri-
butions with zero pseudocovariances (both are proper).

pseudocovariances, but are noncircular.

To differentiate between these scenarios, for the remainder of this thesis, we will

use the term proper to refer to all signals with vanishing pseudocovariances, and the term

circular to refer to signals with rotation invariant distributions, which also implies zero

pseudocovariances. Hence, the term proper is more general, and circular is as a special

case of proper. Further, for real valued signals the covariance and pseudocovariance are

equal, and as such real signals are always improper (noncircular).

The covariance matrix Rz by its definition is positive semi-definite, while the pseu-

docovariance matrix Pz is symmetric. To illuminate this, consider the decomposition of

these two matrices in terms of the covariances and cross-correlations between the real and

imaginary parts of the complex vector z = x+ jy, namely

Rz = E{zzH}

= Rx +Ry + j(Ryx −Rxy) (2.14)

Pz = E{zzT }

= Rx −Ry + j(Rxy +Ryx) (2.15)

where Rx = E{xxT }, Ry = E{yyT } and Rxy = Ryx
T = E{xyT }. Based on (2.15), ob-

serve that for a complex signal to be circular, that is Pz = 0, implies two strict conditions
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on the real (x) and imaginary (y) parts of the signal, namely

1. x and y have identical covariances: Rx = Ry

2. x and y are orthogonal: Rxy = 0

If either of these conditions is not met, the complex signal is then improper.

2.3.2 Complex White Noise

The concept of white noise is critical in signal processing, as it allows for modelling of

uncertainties in systems. However, the framework for defining complex white noise is not

a straight forward extension of real white noise. A wide sense stationary signal z[k] is white

if its covariance function cz[τ ] = E{z[k]z∗[k− τ ]} is a Dirac delta function or equivalently

its power spectrum Γz[f ] = F{cz[τ ]} (the Fourier transform of cz) is constant, that is

cz[τ ] = aδ[τ ] ⇔ Γz[f ] = a = constant (2.16)

The definition of whiteness also enforces constraints on the pseudocovariance function

pz[τ ] = E{z[k]z[k − τ ]} or the spectral pseudocovariance Pz[f ] = F{pz[τ ]} (the Fourier

transform of pz), through the relationship between the covariance and pseudocovariance

functions, see (2.14) and (2.15). It can be shown that given the power spectrum, the

spectral pseudocovariance satisfy the following conditions [8]:

Γz[f ] ≥ 0

Pz[f ] = Pz[−f ]

|Pz[f ]|2 ≤ Γz[f ]Γz[−f ] (2.17)

Hence, if a signal is second order stationary and white we have

cz[k] = cδ[k]

|Pz[f ]|2 ≤ Γz[f ]Γz[−f ] = a2 (2.18)
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which implies that the absolute square of the spectral pseudocovariance is a constant

with a value between zero and a2. The spectral pseudocovariance function Pz[f ] is often

assumed to be zero, which means that the white signal is proper. However, for a non-zero

pseudocovariance function Pz[f ], we can have improper white noise. Therefore we can

define two types of stationary complex white noises:

1. Proper white noise characterised by a constant power spectrum and a vanishing

pseudocovariance function. The real and imaginary parts of the signal have equal

variance and are uncorrelated, that is

cz[τ ] = aδ[τ ] and pz[τ ] = 0 (2.19)

While the frequency domain equivalent is given by

Γz[f ] = a = constant

Pz[f ] = 0 (2.20)

2. Doubly white noise characterised by

cz[τ ] = aδ[τ ] and pz[τ ] = bδ[τ ]

where the only condition on the pseudocovariance function is |b| ≤ a. The power

spectrum and the spectral pseudocovariance are then given by

Γz[f ] = a = constant

Pz[f ] = b = constant (2.21)

2.3.3 Widely Linear (Augmented) Complex Estimation

To introduce an optimal second order estimator for the generality of complex signals,

consider the minimum mean square error (MSE) estimator of a real valued random vector

y in terms of an observed real vector x, that is, ŷ = E{y|x}. For zero-mean, jointly
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normal y and x, the optimal estimator is linear, that is

ŷ = Ax (2.22)

The aim is then to find the coefficient matrix A that minimises the MSE given by

Σl = E{[y −Ax][y −Ax]H} (2.23)

Differentiating Σl with respect to A, and setting the derivative to zero yields the solution

A = RyxR
−1
x (2.24)

where Ryx = E{yxH}. Standard, ‘strictly linear’ estimation in C assumes the same model

but with complex valued y = yr + jyi and x = xr + jxi, and the resulting solution has

the same form: A = RyxR
−1
x but is complex valued. Observe that this solution does not

incorporate the pseudocovariance of the data, and is hence blind to the propriety of the

signals.

Next consider the bi-variate estimation problem, whereby the aim is to estimate

each of yr and yi based on xr and xi, that is

ŷr = E{yr|xr,xi} (2.25)

ŷi = E{yi|xr,xi} (2.26)

Substituting in the complex representations for xr = (x + x∗)/2 and xi = (x − x∗)/2

yields

ŷr = E{yr|x,x∗} (2.27)

ŷi = E{yi|x,x∗} (2.28)

which highlights that y needs to be estimated in terms of both x and its conjugate x∗.

The optimal complex estimator can be derived formally by considering the problem of
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estimating y as E{y|x,x∗}. The MSE is then given by

Σwl = E{[y −Bx−Cx∗][y −Bx−Cx∗]H} (2.29)

Next differentiating Σwl with respect to B and C, and setting the derivatives to zero

results in the widely linear complex estimator2, that is

ŷ = Bx+Cx∗ (2.30)

where the coefficient matrices are given as

B = RyxD+PyxE
∗

C = RyxE+PyxD
∗

with D = (Rx −PxR
∗−1
x P∗

x)
−1 and E = −(Rx −PxR

∗−1
x P∗

x)
−1PxR

∗−1
x .

The widely linear estimator (2.30) is optimal for the generality of complex signals,

both proper and improper, as it caters for the covariance and pseudocovariance of the

data. Observe that when y and x are jointly proper Pyx = E{yxT } = 0, and x is

proper Px = 0, the widely linear linear solution degenerates to the standard strictly linear

solution (2.22), that is C = 0.

For convenience of representation, the widely linear model can be cast into an

augmented representation3:

ŷ = Bx+Cx∗ = Wxa (2.31)

where xa = [xT ,xH ]T is the augmented input vector, and W = [B,C] the optimal coeffi-

cient matrix. Further, the full second order information of the input x is contained in the

2The term ”‘widely linear”’ indicates that the new estimator is a linear function of both x and x
∗, while

the standard strictly linear estimator is a linear function of only x.
3The term ‘widely linear’ model is associated with the signal generating system, whereas the

term“augmented statistics” describe statistical properties of measured signals. Both the terms are used to
name the resulting algorithms.
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augmented covariance matrix

Ra
x = E{xaxaH} =



Rx Px

P∗
x R∗

x


 (2.32)

and as such, estimation based on Ra
x incorporates both the covariance and pseudocovari-

ance information. The augmented estimator then takes the form

A = Ryxa [Ra
x]

−1 (2.33)

where Ryxa = E{yxa} is the cross correlation between y and the augmented input xa.

2.3.4 Benefit of Widely Linear Complex Estimation

The MSE performance difference between widely linear modelling over strictly linear mod-

elling can be expressed as

∆ = Σwl −Σl (2.34)

After some tedious algebraic manipulations and following the approach in [9], the MSE

difference between the two estimators becomes [1]

∆ = (Pyx −RyxR
−1
x Px)(R

∗
x −P∗

xR
−1
x Px)

−1(Pyx −RyxR
−1
x Px)

H (2.35)

The matrix ∆ is positive semi-definite owing to the positive definiteness of the matrix

(R∗
x − P∗

xR
−1
x Px). The two estimators have the same MSE for ∆ = 0, which is only

the case when (Pyx −RyxR
−1
x Px) = 0, in other words, when y and x are jointly proper

Pyx = E{yxT } = 0, and input x is proper Px = 0. Hence, the widely linear estimator

always performs the same or better than the strictly linear estimator, in a MSE sense.
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2.4 Degree of Complex Impropriety

Complex random variables are classified as second order proper or improper. However,

improper signals can take a wide range or degrees of impropriety. For example, when

viewed geometrically, the circularity (propriety) of Gaussian signals can vary extensively,

that is from a circular distribution to the extremely noncircular case where all the data are

distributed on a line, for example when the real and imaginary parts are fully correlated

the distribution is on a line. There is hence a need to quantify and measure the degrees

of impropriety of complex variables. Further, the widely linear model has a larger com-

putational overhead than the strictly linear model, and in some applications the degree of

impropriety can determine whether the performance benefits of the widely linear model

can offsets the extra computational overhead.

The circularity (or propriety) of a complex signal is preserved by linear transforma-

tions, which include scaling and rotation, but not by widely linear transformations. For

instance, if the complex vector z = [z1, ..., zn]
T is proper then the linear transformation

G · z, where G is a nonsingular matrix, is also proper, while if z is improper, then its

linear transform is also improper. However, under widely linear transformations, such as

G · z+H · z∗ where both G and H are nonsingular, propriety is no longer preserved.

Hence, any measure of impropriety is also required to be invariant under linear

transformations, but not widely linear transformations. This means that the measure must

be a function of a complete set of invariants for the covariance Rz and pseudocovariance

Pz under linear transformation. This has been shown to be given by the set of canonical

correlations between z and its conjugate z∗. The canonical correlations are also known

as the circularity coefficients and play a key role in independent component analysis of

complex signals [11].

The first step to computing the canonical correlations, involves whitening the signal

by taking the square root decomposition of the covariance matrix, that is

Rz = Rz
1/2(Rz

1/2)T = Rz
1/2Rz

T/2 (2.36)
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where the invertible matrix Rz
1/2 is defined as the square root of the covariance matrix

Rz. Then the vector z̄ = Rz
−1/2z = [z̄1, ..., z̄n]

T has covariance matrix

Rz̄ = E{z̄z̄H} = Rz
−1/2RzRz

−T/2 = I (2.37)

and is therefore a unit variance white random vector. The canonical correlations are de-

termined from the pseudocovariance of the whitened signal z̄, also known as the coherence

matrix, that is

Pz̄ = E{z̄z̄T } = Rz
−1/2PzRz

−T/2 = M (2.38)

The coherence matrix M, being a pseudocovariance matrix, is complex symmetric, M =

MT , and can be decomposed using Takagi factorisation to yield

M = FKFT

where F is a unitary matrix, that is FH = F−1, and the diagonal matrix K =

diag(k1, k2, . . . , kn) contains the canonical correlations 1 ≥ k1 ≥ k2 ≥ · · · ≥ kn ≥ 0

on its diagonal.

Further, the linear transformation ź = FH z̄ = FHRx
−1/2z = [ź1, ..., źn]

T , which

simultaneously diagonalises both the covariance and pseudocovariance, is said to be given

in canonical coordinates. The canonical coordinates have the special property of being

white with unit variance, together with a diagonal pseudocovariance matrix of canonical

correlations, that is

Rź = E{źźH} = I (2.39)

Pź = E{źźT } = K (2.40)

Vectors, such as ź, with unit diagonal covariances, that are generally improper, are often

referred to as strongly uncorrelated. The strongly uncorrelating transform is a useful

framework for the analysis of complex signal processing algorithms.
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There are a number of plausible functions for measuring impropriety based on the

canonical correlations, however, one measure stands out because it relates the entropy

of a noncircular Gaussian random variable with its circular counterpart. The entropy

of an improper Gaussian random vector with augmented covariance matrix Rza and the

corresponding proper Gaussian random vector with covariance matrixRz can be expressed

as [12]

Himproper =
1

2
ln[(πe)2n detRza ]

= ln[(πe)n detRz]︸ ︷︷ ︸
Hproper

+
1

2
ln

n∏

i=1

(1− k2i ) (2.41)

where det is the matrix determinant operator. This illustrates the classical result that

proper Gaussian random vectors maximise entropy Himproper ≤ Hproper, while the en-

tropy difference between the proper and improper signals is a function of the canonical

correlations.

The circularity measure defined as [13]

d = 1−
n∏

i=1

(1− k2i ) = 1− detRza [detRz]
−2 (2.42)

lends itself as the natural choice for measuring the degree of impropriety of complex

random vectors. Moreover, this function is a compelling measure for several reasons:

• d is bounded as 0 ≤ d ≤ 1, whereby for d = 0 the signal is circular and for d = 1 the

signal is maximally improper.

• It connects the entropy of the proper and improper cases.

• It is a measure of the linear dependence between z and z∗ and as such, can be used

to design a generalized likelihood ratio test for impropriety.

• Tight bounds on the measure d can be obtained without the need to explicitly

compute the canonical correlations, which can save on computational processing.

For a scalar random variable z with covariance rz = E {|z|2} and pseudocovariance



2.4 Degree of Complex Impropriety 40

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ℜ

ℑ

(a) Circular: η = 0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ℜ

ℑ

(b) Noncircular: η = 0.5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ℜ

ℑ

(c) Noncircular: η = 0.9

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ℜ

ℑ

(d) Noncircular: η = 0.99

Figure 2.4: A geometric view of circularity via a real-imaginary scatter plot of white
complex Gaussian processes at different degrees of noncircularity (η), with orthogonal
real and imaginary parts.

pz = E{z2}, the measure d simplifies to:

d =
|pz|2
r2z

(2.43)

which is essentially the square of the ratio between the pseudocovariance and covariance.

This in turn motivates the ratio between the pseudocovariance and covariance, known as

the circularity quotient, to be taken as an impropriety measure, that is [10]

̺ =
pz
rz

= ηejθ (2.44)

Where η = |̺z| =
√
d, 0 ≤ η ≤ 1, is the circularity coefficient4 and θ = arg(̺z) is the

circularity angle. The advantage of using the circularity quotient, over the circularity

4For Gaussian signals, we will refer to η as the ’degree of noncircularity’
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measure d, is that it preserves the phase information contained within the pseudocovari-

ance, and is simpler to compute. Figure 2.4 illustrates the distributions of white complex

Gaussian noise with different degrees of noncircularity. In the following chapters, the cir-

cularity coefficient will be used to test the performance of algorithms at different degrees

of impropriety.
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Chapter 3

Complex Valued Kalman Filters

In this first technical Chapter, we propose second order optimal complex valued Kalman

filters. The Kalman filter is an adaptive state space estimation technique with a wide

range of applications, including space navigation and military technology development.

Complex valued Kalman filters are commonly encountered in real world scenarios such as

frequency estimation [14], training of neural networks [15][7], and wireless localization [16],

however, conventionally they have explicitly or implicitly been designed for assumed proper

(circular) signals, that is, signals that are uncorrelated with their complex conjugates,

though, real world signals are typically improper. In an earlier work [15], the widely linear

complex Kalman filter was proposed in the context of neural network training, but its

performance characteristics and operation in general augmented state space models were

not elaborated.

In this Chapter, we propose a class of widely linear complex Kalman filters and

illuminate their performances under general improper state and observation signals. The

effect of signal impropriety on the mean square behavior of the conventional complex

Kalman filter (CCKF), complex extended Kalman filter (CEKF) and complex unscented

Kalman filter (CUKF) are analysed, and the Cramer-Rao lower bound (CRLB) for the

widely linear Kalman filters is established. While, computational complexity issues are

addressed by exploiting the isomorphism between the bivariate-real and complex domains.

Simulations on both benchmark and real world noncircular data support the analysis.
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3.1 The Augmented Complex Kalman Filter (ACKF)

Consider the standard linear state space [17]

xn = Fn−1xn−1 +wn (3.1a)

yn = Hnxn + vn (3.1b)

where xn ∈ C
L and yn ∈ C

K are the state to be estimated and the noisy observation

(measurement) vectors at time instant n, respectively, while Fn and Hn are the state

transition and observation matrices, whereas wn ∈ C
L and vn ∈ C

K denote the uncor-

related state and measurement noises, respectively, and are assumed to be doubly white1

and zero-mean, hence, their covariance matrices are defined as

E



wn

vn






wk

vk




H

=



Qn 0

0 Rn


 δnk (3.2)

where δnk is the Kronecker delta function, and their pseudocovariance matrices as

E



wn

vn






wk

vk




T

=



Pn 0

0 Un


 δnk (3.3)

To cater for widely linear system models with improper state and observation noises,

it is necessary to introduce a widely linear state space model. Based the widely linear

model in (2.30), the widely linear version of the standard state space model in (3.1) is

defined as2

xn = Fn−1xn−1 +An−1x
∗
n−1 +wn (3.4a)

yn = Hnxn +Bnx
∗
n + vn (3.4b)

1The term “doubly-white” refers to complex signals for which the covariance and pseudocovariance
functions are Dirac delta functions.

2Observe that the noise models can also be widely linear, in which case:
wn = Cnẃn +Dnẃ

∗
n and vn = Env́n +Gnv́

∗
n, where C,D,E,G are coefficient matrices and ẃn and

v́n are proper or improper noise models.
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and can be expressed in a compact form using “augmented” complex vectors, such that

xa
n = Fa

n−1x
a
n−1 +wa

n (3.5a)

ya
n = Ha

nx
a
n + va

n (3.5b)

where xa
n = [xT

n ,x
H
n ]T and ya

n = [yT
n ,y

H
n ]T , while,

Fa
n =



Fn An

A∗
n F∗

n


 and Ha

n =



Hn Bn

B∗
n H∗

n




The matrices An and Bn in (3.4) determine whether the state and observation equations

are strictly or widely linear, whereby for A = 0 and B = 0, the state space equations

assume strictly linear forms. However, even for strictly linear system models, the aug-

mented state space representation offers the advantage of catering for improper state and

observation noises, hence providing a complete second order statistical characterisation,

unlike the standard strictly linear state space model. This point was not considered in ear-

lier widely linear Kalman filters. The augmented covariance matrices of the noise vectors

wa
n = [xT

n ,w
H
n ]T and va

n = [vT
n ,v

H
n ]T , defined as

Qa
n = E{wa

nw
aH
n } =



Qn Pn

P∗
n Q∗

n


 (3.6)

Ra
n = E{va

nv
aH
n } =



Rn Un

U∗
n R∗

n


 (3.7)

fully incorporate the noise covariance and pseudocovariance information. Once the aug-

mented state space model and vectors are defined, the expressions for the augmented

complex Kalman filter (ACKF) can be derived in same manner as the conventional com-

plex Kalman filter (CCKF) [18] but employing the augmented vectors and augmented

covariance matrices. Similar to the real valued Kalman filter, the ACKF is a minimum

mean square error (MSE) estimator x̂a
n|n = E[xa

n|ya
0 ,y

a
1 , ...,y

a
n] of x

a
n based on the obser-

vations {ya
0 ,y

a
1 , ...,y

a
n}, when the state and observation noises are Gaussian. The ACKF

is summarised in Algorithm 1.
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Algorithm 1: The augmented complex Kalman filter (ACKF)

Initialise with:

x̂a
0|0 = E{xa

0}
Ma

0|0 = E{(xa
0 − E{xa

0})(xa
0 − E{xa

0})H}

State Prediction:

x̂a
n|n−1 = Fa

n−1x̂
a
n−1|n−1 (3.8)

Prediction MSE:

Ma
n|n−1 = Fa

n−1M
a
n−1|n−1F

aH
n−1 +Qa

n (3.9)

Kalman Gain:

Ga
n = Ma

n|n−1H
aH
n

(
Ha

nM
a
n|n−1H

aH
n +Ra

n

)−1
(3.10)

State Update:

x̂a
n|n = x̂a

n|n−1 +Ga
n

(
ya
n −Ha

nx̂
a
n|n−1

)
(3.11)

MSE Matrix Update:

Ma
n|n = (I−Ga

nH
a
n)M

a
n|n−1 (3.12)

3.1.1 CCKF and ACKF Duality Analysis

For strictly linear state space models with proper state and observation noises, the CCKF

and ACKF become equivalent and yield the identical state estimate at every time instant.

These conditions can be summarised as follows:

Qa
n =



Qn 0

0 Q∗
n


 ,Ra

n =



Rn 0

0 R∗
n


 ,Fa

n =



Fn 0

0 F∗
n


 and Ha

n =



Hn 0

0 H∗
n


(3.13)

The duality between CCKF and ACKF for proper data and under the same initialisation

can be illustrated as follows. Consider the prediction MSE matrix in the ACKF, which
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can be expressed as a Riccati recursion, that is

Ma
n+1|n =Fa

n−1M
a
n|n−1(F

a
n−1)

H − Fa
n−1M

a
n|n−1(H

a
n)

H [Ha
nM

a
n|n−1(H

a
n)

H +Ra
n]

−1

× (Ha
n)M

a
n|n−1(F

a
n−1)

H +Qa
n (3.14)

Note that the computations for Ma
n|n−1 and Ma

n|n do not involve the observation vector,

and as such can be calculated without taking any measurement into account. By substi-

tuting equation (3.10) into (3.12) and using the matrix inversion lemma, the augmented

MSE matrix Ma
n|n can be expressed as

Ma
n|n = Ma

n|n−1 −Ma
n|n−1(H

a
n)

H
[
Ha

nM
a
n|n−1(H

a
n)

H +Ra
n

]−1
Ha

nM
a
n|n−1

=
[
(Ma

n|n−1)
−1 + (Ha

n)
H(Ra

n)
−1Ha

n

]−1
(3.15)

Next, substituting (3.15) into (3.10), allows for the Kalman gain to be written as

Ga
n = [(Ma

n|n−1)
−1 + (Ha

n)
H(Ra

n)
−1Ha

n]
−1(Ha

n)
H(Ra

n)
−1 = Ma

n|n(H
a
n)

H(Ra
n)

−1 (3.16)

Assuming that both CCKF and ACKF have the same initialisation, that is

x̂a
0|0 =

[
x̂T
0|0, x̂

H
0|0

]T

Ma
0|0 =



M0|0 0

0 M∗
0|0




then x̂0|0 and M0|0 are, respectively, the the initial state and MSE for the strictly linear

CCKF. Substituting the expressions in (3.13) into (3.16) yields a block diagonal Kalman

gain, that is

Ga
n =



Gn 0

0 G∗
n


 (3.17)

where Gn = Mn|n(Hn)
H(Rn)

−1 is the Kalman gain for the CCKF at time instant

n. Observe that CCKF and ACKF have the same Kalman gain (though ACKF has a
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block-conjugate structure); and by substituting (3.17) into (3.11) it follows that the two

filters yield identical state estimates.

Remark #1: For strictly linear state and observation models with circular state

and observation noises (that is, the conditions illustrated in (3.13)), the ACKF and

CCKF have identical performances at each time instant.

3.1.2 Mean square error performance analysis

We next illuminate the mean square error (MSE) performances of the CCKF and ACKF in

to provide insight into the behavior of Kalman filters for proper and improper signals. The

Kalman filter is a minimum MSE estimator for dynamic systems, and can alternatively

be expressed in a nonrecursive form, similar to the standard Wiener (normal) solution,

which is also a minimum MSE estimator but for stationary systems. From the state space

model described by (3.1a) and (3.1b), the Kalman filter estimate x̂n|n of the state xn is

based on the all observations up to time n, and can be written as a linear combination of

the observation sequence, zn =
[
yT
1 ,y

T
2 , ...,y

T
n

]T
, that is

x̂n|n = E{x0}+Wnzn (3.18)

where Wn is the coefficient matrix, which is the solution to the normal equation, that is

Wn = Rxz,n,nR
−1
z,n (3.19)

with Rxz,n,n = E
{
(xn − E{xn})(zn − E{zn})H

}
and Rz,n = E

{
(zn − E{zn})(zn −

E{zn})H
}
. The MSE matrix is then given by

Mn|n = E{(xn − x̂n|n)(xn − x̂n|n)
H}

= Rx,n −Rxz,n,nR
−1
z,nR

H
xz,n,n (3.20)

The Kalman filter output at each time instant is now summarised by state estimate (mean)

in (3.18) and MSE (covariance) matrix in (3.20), although the computational complexity of
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these expressions increase with time (as the dimensions of the observation vector increases),

nonetheless, they are general and suffice for the analysis of the MSE performances of

Kalman filters.

Next consider the state equation (3.1a) in its non-recursive form

xn = Fn:0x0 +
n∑

i=1

Fn:iwi (3.21)

where x0 is the initial state3, and the state transition matrix has the properties

Fn:i = FnFn−1 · · ·Fi, Fi:i = I and F0 = I

This allows us to express the state covariance matrix as

Rx,n = Fn:0Rx,0F
H
n:0 +

n∑

i=1

Fn:iQiF
H
n:i (3.22)

and the observation covariance as

Ry,n,m = E{yny
H
m}

=





HnRx,nH
H
n +Rn if n = m

HnRx,nH
H
m if n < m

HnRx,mHH
m if n > m

(3.23)

The cross-correlation between the state and observation can now be expressed as

Rxy,n,m = E{xny
H
m} n ≥ m

= E{xn(Hmxm + vm)H}

= Rx,mHH
m (3.24)

while the cross-correlation between the state xn and the observation sequence zn is given

3Without loss of generality, we assume E{x0} = 0.
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by

Rxz,n,n =

[
Rxy,n,1 Rxy,n,2 · · · Rxy,n,n

]
(3.25)

and the covariance of the observation sequence by

Rz,n = E{znzHn } =




Ry,1 Ry,1,2 · · · Ry,1,n

Ry,2,1 Ry,2 · · · Ry,2,n

...
...

. . .
...

Ry,n,1 Ry,n,2 · · · Ry,n




(3.26)

Based on (3.18) and (3.21), observe that the estimate x̂n|n is unbiased, that is

E{en|n} = E{(xn − x̂n|n)} = 0 (3.27)

and, as such, the mean characteristics of the CCKF is not effected by noncircular state

and observation signals. While the expression in (3.20) shows that the mean square

characteristics of the CCKF is dependent on the covariance matrices of the state and

observation noises but not on their pseudocovariances.

Remark #2: The propriety of the state and observation data do not affect the

performance of the linear conventional complex Kalman filter.

For the augmented complex Kalman filter (ACKF), the state estimate and MSE

matrix are given by

x̂a
n|n = E{xa

0}+Wa
nz

a
n = E{xa

0}+Ra
xz,n,n(R

a
z,n)

−1zan

Ma
n|n = E{(xa

n − x̂a
n|n)(x

a
n − x̂a

n|n)
H}

= Ra
x,n −Ra

xz,n,n(R
a
z,n)

−1RaH
xz,n,n (3.28)

where Wa
n = Ra

xz,n,n(R
a
z,n)

−1, zan = [zaTn , zaHn ]T and Ra
xz,n,n = E{xa

nz
aH
n }, while the

matrix form of the augmented MSE matrix Ma
n|n has the block conjugate structure defined
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as



Mwl,n|n Pwl,n|n

P∗
wl,n|n M∗

wl,n|n


 =



Rx,n Px,n

P∗
x,n R∗

x,n


−



Rxz,n,n Pxz,n,n

P∗
xz,n,n R∗

xz,n,n




×



Rz,n Pz,n

P∗
z,n R∗

z,n




−1 

Rxz,n,n Pxz,n,n

P∗
xz,n,n R∗

xz,n,n




H

The terms Px,n and Pz,n are the pseudocovariances of the state and observation sequence

respectively, while Pxz,n,n = E{xnz
T
n} is the pseudo-correlation between the state and

observation sequence. It will be recognised that the matrix Mwl,n|n is just the widely

linear error matrix for the state xn, that is

Mwl,n|n = E{(xn − xwl,n|n)(xn − xwl,n|n)
H} (3.29)

where xwl,n|n is the widely linear estimate of xn. It is this that is to be compared with

the strictly linear error matrix Mn|n. Also note that the matrix Pwl,n|n is defined as

Pwl,n|n = E{(xn − xwl,n|n)(xn − xwl,n|n)
T } (3.30)

The inverse of the augmented covariance matrix (Ra
z,n)

−1 can be expressed as



Rz,n Pz,n

P∗
z,n R∗

z,n




−1

=



C D

D∗ C∗




where

C = (Rz,n −Pz,nR
∗−1
z,n P∗

z,n)
−1

D = −(Rz,n −Pz,nR
∗−1
z,n P∗

z,n)
−1Pz,nR

∗−1

and the ACKF MSE in (3.29) takes the form:

Mwl,n|n = Rx,n −Rxz,n,nCRH
xz,n,n −Rxz,n,nDPH

xz,n,n −Pxz,n,nD
∗RH

xz,n,n −Pxz,n,nC
∗PH

xz,n,n
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After some tedious algebraic manipulations, the MSE difference between the CCKF and

the ACKF is found to be [9]:

∆Mn = Mn|n −Mwl,n|n

= (Pxz,n,n −Rxz,n,nR
−1
z,nPz,n)(R

∗
z,n −P∗

z,nR
−1
z,nPz,n)

−1(Pxz,n,n −Rxz,n,nR
−1
z,nPz,n)

H

(3.31)

Remark #3: The matrix ∆Mn is always positive semidefinite owing to the positive

definiteness of the matrix (R∗
z,n −P∗

z,nR
−1
z,nPz,n), and consequently ∆Mn = 0 only when

(Pxz,n,n−R−1
xz,n,nRz,nPz,n) = 0. Therefore, the widely linear ACKF always has the same

or better MSE performance than the strictly linear CCKF.

Remark #4: The CCKF and ACKF are equivalent when the observation se-

quence is proper (Pz,n = 0) and the state and observation sequence are jointly proper

(Pxz,n,n = 0).

3.1.3 Duality Analysis of ACKF and real valued KF

Owing to the isomorphism between augmented complex vectors and bivariate real vectors,

and the duality analysis for stochastic gradient filters [19], we next show that the ACKF

algorithm has a dual bivariate real-valued Kalman filter (RKF). This duality can be ex-

ploited to reduce the computational complexity of ACKF in hardware implementations.

A complex vector z = zr + jzi ∈ C
q has a composite bivariate real representation in R

2q

of the form

za =



z

z∗


 =



I jI

I −jI




︸ ︷︷ ︸
≡Jz



zr

zi




︸ ︷︷ ︸
=zr

(3.32)

where I is the identity matrix (with appropriate dimensions), and the invertible orthogonal

mapping4 Jz : C2q → R
2q is such that J−1

z = 1
2J

H
z [20][21]. Based on this isomorphism,

4For a vector z ∈ C
q, the corresponding orthogonal matrix Jz takes dimension 2q × 2q.
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the real bivariate state space corresponding to the augmented complex state space in (3.5)

is given by

xr
n = Fr

n−1x
r
n−1 +wr

n

yr
n = Hr

nx
r
n + vr

n (3.33a)

where xr
n = J−1

x xa
n, y

r
n = J−1

y ya
n, F

r
n−1 = J−1

x Fa
n−1Jx, H

r
n = J−1

y Ha
nJx, w

r
n = J−1

x wa
n and

vr
n = J−1

y va
n. In a similar manner, the real valued covariance matrices of wr

n and vr
n take

the corresponding forms

Qr
n = E{wr

nw
rH
n } = J−1

x Qa
nJ

−H
x

Rr
n = E{vr

nv
rH
n } = J−1

y Ra
nJ

−H
y

Next the ACKF and its dual RKF are shown to have the same performance. As-

suming that ACKF is initiated at time (n−1), with initial state x̂a
n−1|n−1 and MSE matrix

Ma
n−1|n−1, the corresponding dual RKF initialisation is given by

x̂r
n−1|n−1 = J−1

x x̂a
n−1|n−1

Mr
n−1|n−1 = J−1

x Ma
n−1|n−1J

−H
x (3.34)

It is now straightforward to show that the state and MSE matrix predictions of the Kalman

filters are also related as

x̂r
n|n−1 = J−1

x x̂a
n|n−1

Mr
n|n−1 = J−1

x Ma
n|n−1J

−H
x (3.35)
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and that the Kalman gains are related as

Ga
n = Ma

n|n−1H
aH
n [Ha

nM
a
n|n−1H

aH
n +Ra

n]
−1

= JxM
r
n|n−1J

H
x J−H

y HrH
n JH

x [JyH
r
nJ

−1
x JxM

r
n|n−1J

H
x J−H

x HrH
n JH

y + JyR
r
nJ

H
y ]−1

= JxM
r
n|n−1H

rH
n [Hr

nM
r
n|n−1H

rH
n +Rr

n]
−1J−1

y

= JxG
r
nJ

−1
y (3.36)

Consequently, for the state estimates x̂a
n|n and x̂r

n|n we have

x̂r
n|n = x̂r

n|n−1 +Gr
n(y

r
n −Hr

nx̂
r
n|n−1)

= J−1
x x̂a

n|n−1 + J−1
x Ga

nJy(y
r
n −Hr

nJ
−1
x x̂a

n|n−1)

= J−1
x x̂a

n|n (3.37)

while, the MSE matrices are related as

Mr
n|n = J−1

x Ma
n|nJ

−H
x (3.38)

Observe that based on the expression in (3.37), the state estimates x̂a
n|n and x̂r

n|n are

equivalent and are related by an invertible linear mapping. To show that ACKF and its

dual real valued bivariate Kalman filter achieve the same mean square error (MSE), recall

that the MSE for the real valued Kalman filter is given by

ǫrn = tr{Mr
n|n} (3.39)

where the symbol tr{·} denotes the matrix trace operator. Similarly, the mean square

error corresponding to the augmented MSE matrix Ma
n|n is given by the trace of (3.38),

that is

tr{Ma
n|n} = tr{JxM

r
n|nJ

H
x }

= tr{Mr
n|nJ

H
x Jx}

= 2 · tr{Mr
n|n} (3.40)
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where the expression JH
x = 2J−1

x was utilised. At first, this result is misleading as it

suggests that ACKF achieves twice the error of its dual real valued KF. However, this is

because the error term is counted twice by the trace of Ma
n|n, owing to the block diagonal

structure of the augmented MSE covariance matrix, and hence needs to be halved to

compute the true augmented MSE, that is

ǫan =
1

2
tr{Ma

n|n} = ǫrn

Remark #5: The ACKF and the its dual bivariate RKF are equivalent forms of the

same state space model. They achieve the identical state estimates and MSEs at every

time instant, regardless of the propriety of the processed signals.

By utilising the bivariate RKF, the computational complexity of ACKF is reduced,

whereby the number of additions and multiplications required are approximately halved

and quartered, respectively.

3.1.4 Posterior Cramer-Rao bound (PCRB)

For time invariant statistical models, the Cramer-Rao bound (CRB) provides a theoretical

performance bound for all unbiased estimators, by establishing the lowest attainable mean

square error (MSE). In time varying systems, such as the state space models where the

state is driven by random noise, it is the Posterior Cramer-Rao bound (PCRB) that

provides a lower bound on the MSE performance of a class of estimators [22].

For an unbiased estimator θ̂[y] of an r-dimensional random variable θ, obeying a

condition of asymptotic unbiassedness, in the sense that

lim
||θ||→∞

||θ − θ̂[y]||Pθ,y[Θ,Y] = 0 (3.41)

for all values y, where Pθ,y[θ,Y] is the joint probability density of θ and y, the PCRB on
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the estimation has the form [22]

Γ = E{(θ − θ̂[y])(θ − θ̂[y])H} ≥ Σ−1 (3.42)

where Σ is the r × r dimensional Fisher information matrix with elements defined as

Σlk = −E
{∂2 logPθ,y[θ,Y]

∂θl∂θk

}
l, k = 1, . . . , r (3.43)

The inequality in (3.42) implies that the difference Γ−Σ−1 is positive semidefinite. Con-

sider a general state space model of the form

xn = f [xn−1,wn−1] (3.44a)

yn = h[xn,vn] (3.44b)

where f and h can be linear or nonlinear, possibly time varying vector valued functions,

while wn and vn are independent white processes (not necessarily Gaussian). For this

model, it was shown in [23] that the Fisher information matrix corresponding to the state

xn+1 at time instant (n+ 1) can be written in a computationally efficient recursive form,

that is

Σn+1 = D22
n −D21

n (Σn +D11
n )−1D12

n (3.45)

where

D11
n = E{−∆xn

xn
logP[xn+1|xn]}

D12
n = E{−∆

xn+1
xn logP[xn+1|xn]}

D21
n = E{−∆xn

xn+1
logP[xn+1|xn]} = (D12

n )T

D22
n = E{−∆

xn+1
xn+1

logP[xn+1|xn]}

+ E{−∆
xn+1
xn+1

logP[yn+1|xn+1]}

and ∆a
b = ∂2

∂a∂b , while the conditional probability densities P[xn+1|xn] and P[yn+1|xn+1]

can be computed from (3.44).
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Next, consider the application of the PCRB to the linear filtering problem char-

acterised by the state space model in (3.5), where wn and vn are assumed zero-mean

independent complex doubly white Gaussian noises with augmented covariance matrices

Qa
n and Ra

n respectively (see (3.6) and (3.7)), that is, wn, similar to vn, has a multivariate

complex normal distribution defined as [24]

P[wn] =
1

πL(detQa
n)

1/2
exp

(
− 1

2
(wn − E{wn})HQ−a

n (wn − E{wn})
)

It is now straightforward to show that

D11
n = FaH

n (Qa
n+1)

−1Fa
n

D12
n = −FaH

n (Qa
n+1)

−1

D22
n = (Qa

n+1)
−1 +HaH

n+1(R
a
n+1)

−1Ha
n+1

The distribution of the state estimate within the ACKF framework is Gaussian with a

mean x̂a
n|n and covariance Ma

n|n, and by substituting these matrices in to the expression

for the Fisher information matrix, it can be shown that the information matrix is the

inverse of the state covariance matrix, that is

Ma
n|n = Σ−1

n (3.46)

Remark #6: The ACKF, like its real valued dual Kalman filter, achieves the Cramer-

Rao lower bound [25][23] for linear systems with Gaussian signal distributions, since it

essentially estimates the state xa
n as x̂a

n|n = E[xa
n|ya

0 ,y
a
1 , ...,y

a
n]. However, CCKF achieves

the Cramer-Rao lower bound only when the state space models are strictly linear and all

signals are proper at all time instants, see (3.13), which is generally not the case.

3.2 The Augmented Complex Extended Kalman Filter

The Kalman filter in its standard form is designed for linear systems, and is unsuitable for

nonlinear state space models. A number of extensions have been introduced to address this



3.2 The Augmented Complex Extended Kalman Filter 57

issue, including the extended Kalman filter (EKF) and unscented Kalman filter (UKF),

which will be discussed in more details below.

Within the EKF framework, nonlinear systems are approximated by linear models,

and as such, the state and observation functions need not be linear but differentiable.

Consider the state space model defined as

xn = f [xn−1] +wn (3.47a)

yn = h[xn] + vn (3.47b)

where f [·] and h[·] are the vector valued nonlinear state and observation functions respec-

tively, which may be time varying, and the remaining variables are as defined above. The

extended Kalman filter approximates these nonlinear functions by their first order Taylor

series expansions (TSE) about the state estimates. Calculating the complex derivative

of a function requires the function to be analytic (differentiable) within the rigorous con-

ditions set by the Cauchy-Riemann equations, though in practice, the functions f [·] and

h[·] can be analytic or nonanalytic depending on the underlying physical model. For in-

stance, a large class of functions, such as real functions of complex variables, do not satisfy

the Cauchy-Riemann conditions thus severely restricting the set of allowable functions for

nonlinear process and observations models.

The so called CR calculus [7] [21] exploits the isomorphism between the complex

domain C and the real domain R
2, and makes possible the TSE of both analytic and

nonanalytic functions within the same framework. This way, the first order Taylor series

approximation of a function f [·] about z is given by

f [z+∆z] = f [z] +
∂f

∂z
∆z+

∂f

∂z∗
∆z∗ (3.48)

whereby for analytic functions (in the the Cauchy-Riemann sense), the term ∂f
∂z∗∆z∗ van-

ishes. The partial derivatives in (3.48) are interpreted the following sense. For a real-valued

function f [z] = g[zr, zi] of a complex variable with real and imaginary parts zr and zi,
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the ‘R-derivative’ and ‘R∗-derivative’ of f are defined as

∂f

∂z
=

1

2

( g

∂zr
− j

g

∂zi

)
(3.49)

∂f

∂z∗
=

1

2

( g

∂zr
+ j

g

∂zi

)
(3.50)

The corresponding deriviatives for complex functions are obtained from the derivatives for

the their real and imaginary parts.

Next, applying this approach, the first order approximations of the state and ob-

servation equations, (3.47a) and (3.47b), about the state estimates x̂n−1|n−1 and x̂n|n−1,

yields

xn ≈ Fn−1xn−1 +An−1x
∗
n−1 +wn + rn−1 (3.51)

yn ≈ Hnxn +Bnx
∗
n + vn + zn (3.52)

where the vectors rn = f [x̂n−1|n−1]−Fn−1x̂n−1|n−1−An−1x̂
∗
n−1|n−1 and zn = h[x̂n|n−1]−

Hnx̂n|n−1−Bnx̂
∗
n|n−1, and the matrices Fn−1, An−1, Hn and Bn are the Jacobians defined

as

Fn−1 =
∂f

∂xn−1

∣∣∣
xn−1=x̂n−1|n−1

, An−1 =
∂f

∂x∗
n−1

∣∣∣
x∗
n−1=x̂∗

n−1|n−1

,

Hn =
∂h

∂xn

∣∣∣
xn=x̂n|n−1

and Bn =
∂h

∂x∗
n

∣∣∣
x∗
n=x̂∗

n|n−1

From (3.51) and (3.52), observe that when the functions f [·] and h[·] are nonanalytic,

we have An−1 6= 0 and Bn 6= 0, which means that the linearised state and observation

models are widely linear, and thus cannot be implemented using the standard complex

extended Kalman filter (CEKF). However, the state space equations become strictly linear

for analytic functions, since the derivatives with respect to the complex conjugates vanish,

that is, An−1 = 0 and Bn = 0.

To simultaneously cater for the widely linear state and observation models, as well

as the full second order statistics, an ‘augmented’ state space representation is required.
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To this end, consider the nonlinear augmented state space model given by

xa
n = fa[xa

n−1] +wa
n (3.53a)

ya
n = ha[xa

n] + va
n (3.53b)

with fa[xa
n−1] =

[
fT [xa

n−1], f
H [xa

n−1]
]T

and ha[xa
n] =

[
hT [xa

n],h
H [xa

n]
]T

. The linearised

augmented state space model then becomes

xa
n ≈ Fa

n−1x
a
n−1 +wa

n + ran−1 (3.54a)

ya
n ≈ Ha

nx
a
n + va

n + zan (3.54b)

where ran =
[
rTn , r

H
n

]T
, zan =

[
zTn , z

H
n

]T
, Fa

n =



Fn An

A∗
n F∗

n


 and Ha =



Hn Bn

B∗
n H∗

n


.

Note that Fa
n = ∂fa

∂xa
n
and Ha

n = ∂ha

∂xa
n
.

Therefore, in contrast to the conventional CEKF, the ACEKF allows for widely

linear the state and observation models, and naturally caters for the pseudocovariances of

the state and measurement noises. The derivation of the ACEKF follows from the deriva-

tion of the CEKF, but utilises the augmented state space model to derive the recursions.

The ACEKF is summarised in Algorithm 2.

The novelty of the ACEKF algorithm presented in this work is that it does not

assume a specific state or observation models, that is f [·] and h[·], which makes it a more

general form of the ACEKF presented in [15]. Moreover, by utilising the CR calculus, we

have shown how the ACEKF can be used for more general complex state space models.

Appendix B presents a new solution to the DIFAR sonobuoy bearing estimation problem

for underwater acoustic sources based on the ACEKF introduced in here.

3.3 The Augmented Complex Unscented Kalman Filter

The unscented Kalman filter (UKF) [26] addresses the problems arising from the first

order approximation of nonlinearities withing the EKF. It aims to approximate the sta-
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Algorithm 2: The augmented complex extended Kalman filter (ACEKF)

Initialise with:

x̂a
0|0 = E{xa

0}
Ma

0|0 = E{(xa
0 − E{xa

0})(xa
0 − E{xa

0})H}

State Prediction:

x̂a
n|n−1 = fa[x̂a

n−1|n−1] (3.55)

Prediction Matrix:

Ma
n|n−1 = Fa

n−1M
a
n−1|n−1F

aH
n−1 +Qa

n (3.56)

Kalman Gain:

Ga
n = Ma

n|n−1H
aH
n

(
Ha

nM
a
n|n−1H

aH
n +Ra

n

)−1
(3.57)

State Update:

x̂a
n|n = x̂a

n|n−1 +Ga
n

(
ya
n − ha[x̂a

n|n−1]
)

(3.58)

Matrix Update:

Ma
n|n = (I−Ga

nH
a
n)M

a
n|n−1 (3.59)

tistical posterior distribution rather than approximating the nonlinearities [27]. The UKF

utilises a deterministic sampling technique to select a set of sample points (known as sigma

points) around the mean. These points are then propagated through the nonlinear state

space models, from which the mean and covariance of the state estimate are recovered.

This results in a filter which is able to more accurately capture the underlying statistical

distribution of signals.

To illustrate the difference between the complex unscented transform (UT) and the

augmented complex UT, consider the mapping

y = f [x] = f [x̄+ δx] x ∈ C
L×1, y ∈ C

K×1 (3.60)

where f [·] is a holomorphic nonlinear function, y = [y1, . . . , yK ]T is the output, x =

[x1, . . . , xL]
T is the input with mean x̄ = E{x}, covariance Rx = E{(x − x̄)(x − x̄)H}
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and pseudocovariance Px = E{(x − x̄)(x − x̄)T }, while δx = x − x̄. The Taylor series

expansion (TSE) of y about x̄ is then given by

y = f [x̄] +∇δxf +
1

2!
∇2

δxf +
1

3!
∇3

δxf + · · · (3.61)

where the ith order term in the TSE for f [·] about x̄ is [27]

1

i!
∇i

δxf =
1

i!

( L∑

k=1

δxk
∂

∂xk

)i
f [x]∣∣x=x̄

(3.62)

with δxk being the kth component of δx. The expression (3.62) is an ith order polynomial

in δx whose coefficients are given by the derivatives of f [·]. The mean of y can now be

expressed as

ȳ = E{f [x̄+ δx]}

= f [x̄] + E
{
∇δxf +

1

2!
∇2

δxf +
1

3!
∇3

δxf + · · ·
}

where the ith term is given by

E
{ 1

i!
∇i

δxf
}

=
1

i!
E

{( L∑

k=1

δxk
∂

∂xk

)i
}
f [x]∣∣x=x̄

=
1

i!

(
m1,1,··· ,1,1

∂if

∂xi1
+m1,1,··· ,1,2

∂if

∂xi−1
1 ∂x2

+ · · ·
)

The symbols ma1,a2,...,ai−1,ai = E{δxa1δxa2 · · · δxai−1
δxai} denote the ith order central

moments of the components x with ak ∈ [1, 2, . . . , L]. Observe that the ith order term

in the series for ȳ is a function of the ith order central moment of x multiplied by the

ith derivative of f [·]. Hence, if the moments of x can be correctly evaluated up to the

ith order, the mean ȳ can also be correctly evaluated up to the ith order. Similarly, the

covariance matrix Ry = E{(y − ȳ)(y − ȳ)H} can be written as

Ry =
∂f

∂x
Rx

( ∂f

∂x

)H
+ E

{
1

3!
∇δxf

(
∇3

δxf
)H

+
1

2!× 2!
∇2

δxf
(
∇2

δxf
)H

+
1

3!
∇3

δxf
(
∇δxf

)H
}

− E

{
1

2!
∇2

δxf

}
E

{
1

2!
∇2

δxf

}H

+ · · ·
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and is accurate upto the ith term if the first i central moment of the input x are

known. Within the complex unscented transform framework, the moments of the

p−dimensional random variable x are approximated by a set (2L + 1) weighted (sigma)

points {Wi,Xi}2L+1
i=0 , chosen so that their sample mean and covariance are equal to the true

mean x̄ and covariance Rx. The nonlinear function f [·] is then applied to each of these

points to generate transformed points, Yi = f [Xi], with a sample mean and covariance

defined as

ˆ̄y =
2L∑

i=0

W(m)
i Yi

R̂y =

2L∑

i=0

W(c)
i

(
Yi − ȳ

)(
Yi − ȳ

)H

which are correct up to the second order statistical moments, given that statistics of the

sigma points where correct upto the second order. The terms W(m)
i and W(c)

i are scalar

weights used to compute the mean and covariance, respectively. For an improper y, the

output pseudocovariance Py = E{(y − ȳ)(y − ȳ)T } is given by

Py =
∂f

∂x
Px

( ∂f

∂x

)T
+ E

{
1

3!
∇δxf

(
∇3

δxf
)T

+
1

2!× 2!
∇2

δxf
(
∇2

δxf
)T

+
1

3!
∇3

δxf
(
∇δxf

)T
}

− E

{
1

2!
∇2

δxf

}
E

{
1

2!
∇2

δxf

}T

+ · · ·

where again the accuracy depends on the knowledge of the moments of the input x. The

conventional complex unscented transform focuses on estimating the mean and covariance

of the output, and does not cater for the input pseudocovariance and consequently the

output pseudocovariance, due to the approach utilised for generating the sigma points,

that is

X0 = x̄

Xi = x̄+
(√

(p+ λ)Rx

)
i
, i = 1, . . . , L

Xi = x̄−
(√

(p+ λ)Rx

)
i
, i = L+ 1, . . . , 2L (3.63)
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where
(√

(L+ λ)Rx

)
i
is the ith column of the matrix square root5 and λ = α2(2L+κ)−2L

is a scaling parameter, while α determines the spread of the sigma points around the mean

and is usually set to a small positive value ( e.g., 10−3), κ is a secondary scaling parameter

which is usually set to 0, and β is used to incorporate prior knowledge of the distribution

(for Gaussian distributions, β = 2 is optimal). From (3.63), observe that the sigma

points do not incorporate the input pseudocovariance. To address this issue, consider the

‘augmented’ sigma points defined as

X a
0 = x̄a

X a
i = x̄a +

(√
(L+ λ)Ra

x

)
i
, i = 1, . . . , 2L

X a
i = x̄a −

(√
(L+ λ)Ra

x

)
i
, i = 2L+ 1, . . . , 4L

which are functions of the input mean, covariance and pseudocovariance, due to the use of

the augmented covariance matrix, and can be used to propagate the second order statistics

of improper inputs. The weights associated with the augmented sigma points are then

given by

W(m)
0 =

λ

2L+ λ
(3.64)

W(c)
0 =

λ

2L+ λ
+ (1− α2 + β)

W(m)
i = W(c)

i =
λ

2(2L+ λ)
, i = 1, . . . , 4L (3.65)

where the output mean and covariance are computed using the m and c super-scripted

weights respectively.

To illustrate the benefits of the augmented complex UT over the standard complex

UT, consider the system defined by

y = cos[x] (3.66)

5If L is the matrix square root of Rx = LL
H , then

(√
(L+ λ)Rx

)

i
is the ith column of the matrix

√
(L+ λ)L.
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Figure 3.1: Performance of the complex UT and augmented complex UT

where the input xn is a complex doubly white Gaussian white random variable with dis-

tribution N (0.5, 0.01). Figure 3.1a shows when input x is circular (E{x2} = 0), the

complex UT and the augmented complex UT had similar performance in capturing the

distribution of the output y, while Figure 3.1b illustrates that when the input is noncir-

cular (E{x2} = 0.008), the augmented complex UT captures the orientation and power

imbalance (pseudocovariance) of the distribution of the output, while the complex UT

assumes a circular distribution.

The augmented complex unscented Kalman filter (ACUKF) corresponding to the

nonlinear state space model defined in (3.47) is summarised in Algorithm 3. The novelty

of the ACUKF algorithm presented in this work is that it does not assume a specific state

or observation model, which makes it a more general form of the ACUKF presented in [7].

See Appendix A for a study of the advantages of utilising density functions which cater

for improper distributions within the framework of complex valued particle filters with

nonlinear state space models.
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Algorithm 3: The augmented complex unscented Kalman filter (ACUKF)

Initialise with:

x̂a
0|0 = E{xa

0}
Ma

0|0 = E{(xa
0 − E{xa

0})(xa
0 − E{xa

0})H}

Calculate sigma points for i = 1, . . . , 4L

X a
0,n−1 = x̂a

n−1|n−1

X a
i,n−1 = x̂a

n−1|n−1 ±
(√

(L+ λ)Ma
n−1|n−1

)
i

(3.67)

Compute predictions:

X a
i,n|n−1 = fa[X a

i,n−1]

x̂a
n|n−1 =

4L∑

i=0

W(m)
i X a

i,n|n−1

Ma
n|n−1 = Qa

n +

4L∑

i=0

W(c)
i

(
X a
i,n|n−1 − x̂a

n|n−1

)(
X a
i,n|n−1 − x̂a

n|n−1

)H

Ya
i,n|n−1 = ha[Xi,n|n−1], i = 1, . . . , 4L

ŷa
n|n−1 =

4L∑

i=0

W(m)
i Ya

i,n|n−1 (3.68)

Measurement update:

Ra
ỹa,n|n−1 = Ra

n +
4L∑

i=0

W(c)
i

(
Ya
i,n|n−1 − ŷa

n|n−1

)(
Ya
i,n|n−1 − ŷa

n|n−1

)H

Ra
xaya,n|n−1 =

4L∑

i=0

W(c)
i

(
X a
i,n|n−1 − x̂a

n|n−1

)(
Ya
i,n|n−1 − ŷa

n|n−1

)H

Ga
n = Ra

xaya,n|n−1

(
Ra

ỹa,n|n−1

)−1

x̂a
n|n = x̂a

n|n−1 +Ga
n(y

a
n − ŷa

n|n−1)

Ma
n|n = Ma

n|n−1 −Ga
nR

a
ỹa,n|n−1G

aH
n (3.69)
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3.3.1 Performance analysis

Next we analyse the mean-square behavior of the the CEKF and CUKF for analytic state

and observation functions. Consider the complex valued scalar state space given by

xn = f [xn−1] + wn (3.70)

yn = h[xn] + vn (3.71)

where f [·] and h[·] are holomorphic nonlinear state and observation models respectively,

xn and yn are the state and observation, while wn and vn are uncorrelated zero-mean

white complex-valued state (process) and observation (measurement) noises respectively.

The process noise has variance cw,n and pseudocovariance ρw,n, while the measurement

noise has a variance cv,n and pseudocovariance ρv,n.

The unscented and extended Kalman filters use the same general update expression,

given by (3.69) and (3.58), to compute the estimate of the state, that is

x̂n|n = x̂n|n−1 + gn(yn − ŷn|n−1) (3.72)

where gn is the Kalman gain. This shows that the estimate comprises of a prediction term,

x̂n|n−1, and a weighted innovation term, (yn − ŷn|n−1). Substituting the state equation

(3.70) in to the observation equation (3.71) yields

yn = h
[
f [xn−1] + wn

]
+ vn (3.73)

Now, let z = f [xn−1] + wn, then the TSE of the function h[z] = h[f [xn−1] + wn] about

f [xn−1] can be written as

h[f [xn−1] + wn] = h[f [xn−1]] +
∂h

∂z
wn +

1

2
Hzzw

2
n + h.o.t. (3.74)

where h.o.t. stands for higher order terms, and the Jacobian ∂h
∂z and HessianHzz =

∂
∂z

(
∂h
∂z

)

are evaluated at z = f [xn−1]. Now subtract the true state, xn, from the estimate given in
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(3.72) to find the state estimation error

en = xn − x̂n|n = (f [xn−1] + wn)− x̂n|n−1 − gn(yn − ŷn|n−1) (3.75)

Substituting (3.73) and (3.74) into (3.75) yields

en = (f [xn−1] + wn)− x̂n|n−1 − gn

(
h[f [xn−1]]

+
∂h

∂z
wn +

1

2
Hzzw

2
n + h.o.t. + vn − ŷn|n−1

)

(3.76)

Based on (3.76), the MSE, that is E{ene∗n}, consists of a large number of terms, however,

since we are interested in the effect of signal propriety, we shall restrict our analysis to

terms related to the state and measurement noise pseudocovariances, that is

E{ene∗n}=−E
{1

2
gnHzzw

2
n

(
f [xn−1]− x̂n|n−1

)∗}

− E
{1

2

(
f [xn−1]− x̂n|n−1

)
g∗nH∗

zz(w
∗
n)

2
}

+ E
{1

2
gnHzzw

2
n

(
gn
(
h[f [xn−1]− ŷn|n−1)

)∗}

+ E
{1

2

(
gn
(
h[f [xn−1]− ŷn|n−1)

)
g∗nH∗

zz(w
∗
n)

2
}

+ (otherterms & h.o.t.)

=−ℜ
{
E
{
gnHzz

(
f [xn−1]− x̂n|n−1

)∗}
ρw,n

}

+ ℜ
{
E
{
|gn|2Hzz

(
h[f [xn−1]− ŷn|n−1)

∗
}
ρ∗w,n

}

+ (other terms & h.o.t.) (3.77)

where ℜ{·} is the real part of a complex quantity.

Remark #7: From (3.77) observe that the MSE for the CUKF and CEKF de-

pend on the pseudocovariance of the state noise (ρw,n), but not on the pseudocovariances

of the observation noise. Hence, for nonlinear observation models, their mean square

behaviors are affected by the impropriety of the state noise, regardless of whether the

state equation is linear or nonlinear. However, for an arbitrary state space model it is
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difficult to state how the performance is affected.

Remark #8: For linear state space models, the Hessian term Hzz in (3.77) van-

ishes, and consequently the terms shown in the MSE expression (3.77) dependent on

the pseudocovariance. Therefore, the mean square characteristics of the conventional

linear complex Kalman filter (CCKF) does not depend on the impropriety of the state or

observation noises.

3.4 Application Examples

To illustrate the advantages of widely linear complex Kalman filters over their conventional

counterparts, we considered the following case studies: 1) filtering for a noisy complex

valued autoregressive process; 2) multistep ahead prediction for real-world noncircular

and nonstationary wind data and the second order noncircular Lorenz attractor; 3) the

nonlinear bearings only tracking. The results of these case studies are summarised in

this section, and further results concerning the first and third studies are presented in

Appendix A. For completeness the same explanatory texts regarding these studies are

repeated in Appendix A.

3.4.1 Complex autoregressive process

The performances of both the standard and widely linear Kalman filters were examined

using the first order complex autoregressive process, AR(1), given by [7][28]

xn = 0.9xn−1 + un

where the driving noise was un was doubly white Gaussian and zero-mean with variance

0.005 and a varying pseudocovariance. The observation equation for the linear filters,

CCKF and ACKF, was given by

yn = xn + vn
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Figure 3.2: Steady-state performance comparison between CCKF and ACKF for the
AR(1) filtering problem: (a) circular observation noise and a noncircular state noise
with varying degrees of noncircularity; (b) circular state noise and noncircular obser-
vation noise with varying degrees of noncircularity.

while the observation equation for the nonlinear CEKF, CUKF and their augmented

versions, was as follows:

yn = arctan[xn] + vn

where the function arctan is the inverse tangent function, and vn a white Gaussian and

zero-mean with variance 0.001 and a varying pseudocovariance. The ratio of pseudo-

covariance magnitude to covariance (circularity coefficient), that is η = |ρ|
c , was used as

a measure for the degree of noncircularity of the complex state and measurement noises

[10], where a complex random variable is circular for η = 0 and maximally noncircular

for η = 1. For a quantitative assessment of the performance, the standard prediction gain

Rp = 10 log(σ2
y/σ

2
e) was used, where σ

2
y and σ2

e are the powers of the input (measurement)

signal and the estimation error.

Figure 3.2 shows the performances of the CCKF and its corresponding widely linear

(augmented) version, the ACKF. Figure 3.2a illustrates the results for a circular observa-

tion noise and a state noise with various degrees of noncircularity, while Figure 3.2b shows

the results for a noncircular observation noise with a circular state noise. For both sets
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Figure 3.3: Steady-state performance comparison between CEKF, CUKF and their
corresponding widely linear (augmented) versions for the AR(1) filtering problem:
(a) circular observation noise and a noncircular state noise with varying degrees of
noncircularity; (b) circular state noise and noncircular observation noise with varying
degrees of noncircularity.

of simulations, when the noises were circular the ACKF had the same performance as the

CCKF, while for noncircular noises the ACKF had superior performance as the degree of

noise noncircularity (η) increased.

Figure 3.3 shows the corresponding results for the nonlinear CEKF, CUKF and

their corresponding augmented versions, ACEKF and ACUKF. Similar to the ACKF

case, the general pattern is that ACEKF and ACUKF outperform the CEKF and CUKF,

respectively, if either of the state or observation noises are noncircular, while for circular

noises they all had similar performances. However, when the state noise was noncircular,

as illustrated in Figure 3.3a, the MSE behavior of CEKF and CUKF was dependent on the

circularity of the state noise, while their performances were unaffected by the circularity

of the observation noise, as shown in Figure 3.3b.

3.4.2 Multistep ahead prediction

The performances of the CCKF and ACKF were next assessed for the multistep ahead

prediction of the improper Lorenz signal and real world improper and nonstationary Wind

data. Simulations for the complex least mean square (CLMS) and its augmented (widely
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Figure 3.4: Multistep ahead prediction of real-world Wind data and the Lorenz at-
tractor using CCKF, CLMS and their corresponding widely linear versions

linear) version, the ACLMS, were also carried out to provide a performance comparison.

Figure 3.4 summarises the prediction performances for the Lorenz and the Wind

data6. The ACKF was able to capture the underlying dynamics of the signals better than

CCKF, which is indicated by its superior prediction performance. This can be attributed

to the use of the widely linear ‘augmented’ model, which is better suited to capturing the

full second order statistics of signals. Figure 3.4b shows the corresponding simulations

for the CLMS and ACLMS, where the ACLMS is shown to have superior performance

compared to the CLMS, but is worse than that of the ACKF.

3.4.3 Bearings only tracking

Bearings only tracking (BOT) is a problem encountered in many practical applications,

including submarine tracking by passive sonar or aircraft surveillance. The objective is

the online estimation of the kinematics (position and velocity) of a moving target using

observer line of sight noise-corrupted bearing (phase) measurements[29]. As the range

measurements are not available, the problem is inherently nonlinear. A single static sensor

is unable to track targets using bearing measurements only, and in order to estimate

6The Wind signal (xn), which has a magnitude (intensity) (νn) and direction (φn), is naturally repre-
sented as a complex signal (xn = νne

φn).
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Figure 3.5: Performances of CUKF and ACUKF with second order noncircular state
noise (K = 0.9)

the range, the sensor has to maneuver. However, for two or more stationary sensors,

observability is not an issue, as the multiple bearing measurements can be used to form a

range estimate.

To estimate the trajectory of a target at time instant n, that is, its position (xn, yn)

and velocity (ẋn, ẏn), for a system with L observers located at (xoi,n, y
o
i,n), i = 1, 2, . . . , L,

the complex BOT state space is defined as

xn = Fxn−1 +Kwn

zn = h[xn] + vn

with the variables defined as follows:

• xn =

[
xn + jyn ẋn + jẏn

]T
is the complex target state vector,

• F and K are matrices defined as

F =



1 T

0 1


 and K =




T 2

2

T




where T is the sampling interval,
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• zn is the observation vector and h[xn] is a vector function defined as

h[xn] =

[
β1,n β2,n · · · βL,n

]T

where βi = tan−1 yn−yoi,n
xn−xo

i,n
is the target bearing at sensor i,

• wn = ẍn + jÿn is the zero mean complex state noise (used to model unknown target

accelerations), while vn =

[
v1,n v2,n · · · vL,n

]T
is the zero mean real valued

observation noise with covariance Rv,n.

The vector function h[xn] is real valued and it is straightforward to show that

it does not satisfy the Cauchy Riemann-conditions, that is, ∂h[xn]
∂x∗

n
6= 0, and is hence

nonholomorphic.

To illustrate the benefits of ACUKF with over CUKF within the context of bear-

ings only target motion analysis, consider a scenario with two static sensors located at

(−1200, 1300) and (1000, 1500). The system described by (3.78) was simulated with a

sampling interval of T = 0.5, and the mean square error (MSE) of the different algorithms

were computed by averaging 100 independent trials.

The performances of the CUKF and the ACUKF were compared using a second

order noncircular Gaussian state noise (with a degree of noncircularity of η = 0.9) with a

distribution defined as

wk ∼ N (0, 0.025) vk ∼ N (0, 0.005)

The results, shown in Figure 3.5, illustrate that the ACUKF had a lower MSE in estimating

both the position and velocity of the target compared to CUKF. This is due to the its

ability to simultaneously cater for the covariance and pseudococariance of the signals.

3.5 Conclusions

We have readdressed the augmented complex Kalman filter (ACKF) and have examined

its performance in relation to the conventional complex Kalman filter (CCKF). The anal-
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ysis has shown that the ACKF offers significant performance gains over the CCKF for

improper signals and the same performance as the CCKF for proper signals. A more

general form of the augmented complex extended Kalman filter was also introduced, by

utilising CR calculus which allows the Taylor series approximations of both holomorphic

and nonholomorphic functions. The augmented complex unscented Kalman filter was also

proposed under a framework employing augmented sigma points to cater for the complete

second order statistical moments of signals. Analysis of the mean square characteristics of

CCKF has shown that it is blind to the impropriety of the state and observation signals,

however, the mean square characteristics of the complex extended Kalman filter (CEKF)

and complex unscented Kalman filter (CUKF) are a function of the impropriety of the

state noise noncircularity, when the observation equation is nonlinear.
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Chapter 4

Widely Linear Frequency

Estimation in Three-Phase Power

Systems

In this chapter, we consider widely linear frequency estimation for three phase power sys-

tems utilising the Kalman filters developed in Chapter 3. The frequency of a power system

is a crucial power quality parameter and is allowed to vary around its nominal value only

within a prescribed tolerance level. Large frequency deviations are harmful to the system

and arise in the presence of unbalanced system conditions, such as generation-consumption

imbalances or unexpected conditions which require corrective actions. With the emergence

of smart grids, system stability issues become even more pronounced, owing to more and

more diversified generation and increasingly unpredictable power consumption. Frequency

tracking and estimation in the context of smart grid is a key parameter for both the pro-

tection of power system and for improved power quality; for instance, frequent switching

from the main grid to microgrids and electricity islands and dual natures of some loads

require rapid frequency trackers to trigger corrective actions to maintain power quality.

A number of approaches for frequency tracking have been proposed, including least

mean square adaptive filters [30], state space algorithms based on Kalman filters [31, 32],

and Fourier transform based approaches [33, 34]. However, these techniques are either
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only optimal for balanced systems (e.g. systems with line voltages of equal amplitudes)

or are designed specifically for single-phase systems [35, 36, 37]; hence these techniques

cannot fully characterise three-phase power systems where the line-to-line voltages also

need to be taken into account.

In the future smart grid, the system frequency will undergo deviations due to:

imbalance in generation (G) and load (L) (rise for G > L and decay for G < L), single

and dual phase faults or sags, dynamical loads and dual character of G an L, and a number

of issues causing harmonics and transient stability issues (nonlinear loads, reactive power

compensation). Accurate frequency estimators are a prerequisite for fault identification

and troubleshooting, highlighting the need for a unified frequency estimation framework

in three-phase power systems, which is:

• robust to measurement noise and harmonics in the system, including the slowly

floating ones which are not integer multiplies of system frequency,

• real-time adaptive, fast converging, and asymptotically unbiased,

• minimum variance and statistically consistent, that is, approaching theoretical per-

formance bounds,

• capable of catering for both balanced and unbalanced systems under the same um-

brella, and at the same time tracking frequency and identifying system disturbance.

To deal with the three phase voltages simultaneously, standard frequency trackers employ

Clarke’s αβ transformation which maps the three-phase voltages onto the variables v0, vα,

and vβ , to produce the complex signal, v = vα + jvβ , with v0 vanishing for a balanced

system [32]. However, current strictly linear estimators are not capable of capturing full

second order information for unbalanced voltage conditions, resulting in an oscillatory

estimation error at twice the system frequency [38]. The recent work in [39] establishes

that for unbalanced systems the αβ voltage has a noncircular trajectory, and widely linear

models are required for accurate system representation, achieved based on the augmented

complex least mean square (ACLMS) [7].
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The ACLMS framework is shown to cater for both balanced and unbalanced con-

ditions, however, it is prone to slow convergence rates, and the assumption of noise free

observations. This assumption is not practical, as real-world power systems are typically

corrupted by harmonics and random noise sources. To this end, we here embark upon

the stochastic gradient based widely linear frequency estimation framework in [39], and

employ and analyse the performance of the widely linear (augmented) Kalman filters in-

troduced in Chapter 3 for three phase frequency estimation. Owing to the underpinning

state space representation, this approach offers enhanced accuracy and faster convergence,

together with robustness to noise. Illustrative simulations on unbalanced and noisy real-

world power systems support the analysis.

4.1 Background

4.1.1 Widely linear (augmented) Complex LMS (ACLMS)

The least mean square (LMS) algorithm is the most commonly used stochastic gradient

adaptive filtering algorithm which adaptively estimates the filter coefficients that minimise

the instantaneous squared error (the square of the difference between the desired signal

and its estimate - the filter output). The standard complex least mean square (CLMS)

algorithm is only suited to signals with circular (proper) distributions. With this mind,

the widely linear (augmented) complex LMS (ACLMS) algorithm has been proposed to

cater for both circular and noncircular signals [7], and is summarised in Algorithm 4:

where dk is the desired signal at time instant k, xa
k = [xT

k ,x
H
k ]T the augmented input

Algorithm 4: Augmented complex LMS (ACLMS)

Filter output: yk = waT
k xa

k

Error: ek = dk − yk
Weight updates:

[
hk+1

gk+1

]

︸ ︷︷ ︸
≡wa

k+1

=

[
hk + µekx

∗
k

gk + µekxk

]

︸ ︷︷ ︸
≡wa

k
+µekx

a∗
k

(4.1)
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regressor, hk and gk are the standard and conjugate filter weights, while wa
k =

[
hT
k ,g

T
k

]T

is the augmented weight vector.

4.2 Widely Linear Frequency Estimation

The instantaneous voltages in a three-phase power system are defined as

va,k = Va,k cos(ωkT + φ)

vb,k = Vb,k cos(ωkT + φ− 2π/3)

vc,k = Vc,k cos(ωkT + φ+ 2π/3) (4.2)

where Va,k, Vb,k and Vc,k are the amplitudes of the of the three-phase voltages at time

instant k, ω = 2πf the angular frequency with f being the system frequency, T the sam-

pling interval, and φ the phase of the fundamental component. Clarke’s transformation,

given by




v0,k

vα,k

vβ,k



=

√
2

3




√
2
2

√
2
2

√
2
2

1 −1
2 −1

2

0
√
3
2 −

√
3
2







va,k

vb,k

vc,k



, (4.3)

maps the three-phase voltages onto a new domain where they can be conveniently repre-

sented by a scalar complex valued signal. In (4.3), the zero-sequence v0,k vanishes when

the system is balanced, that is Va,k = Vb,k = Vc,k, while vα,k = Ak cos(ωkT + φ) and

vβ,k = Ak cos(ωkT + φ + π
2 ) are orthogonal. In practice, the zero-sequence v0,k is not

considered, and only vα and vβ are used to form the complex valued recursive model for

the system, that is1

vk = vα,k + jvβ,k = Ake
j(ωkT+φ) = vk−1e

jωT (4.4)

This model can be expressed as a state space model as shown in Algorithm 5, where

the state xk consists of the exponential ejωT whose argument contains the frequency f ,

1The usual assumption in this type of estimation, that is Ak ≈ Ak−1, is used.
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Algorithm 5: State Space 1 - Linear (SS1-L)

state equation: xk = xk−1 + uk−1 (4.6)

observation equation: vk = vk−1xk + nk (4.7)

vk is the observation, while uk and nk are respectively the state and observations noise.

This state space model is linear, and can be implemented using the conventional complex

Kalman filter (CCKF). The selection of these noise variances is critical to the steady state

error and convergence rates of Kalman filters, and will be discussed in more detail in the

next section. The system frequency is derived from the state x as

f̂k =
1

2πT
arcsin

(
ℑ(xk)

)
(4.5)

where ℑ(·) is the imaginary part of a complex quantity.

Example system operating conditions are illustrated in Figure 4.1, whereby for a

balanced system Clarke’s voltage vk follows a circular trajectory, since the amplitude is

time invariant and the angular frequency is proportional to the system frequency. However,

this model is inaccurate when the system is operating under unbalanced conditions, the

voltage amplitudes Va,k, Vb,k and Vc,k are no longer equal, and the system trajectory

becomes noncircular (ellipse in Figure 4.1). Therefore, for unbalanced systems the system

takes on a widely linear model, that is [39]

vk = vα,k + jvβ,k = Ake
j(ωkT+φ) +Bke

−j(ωkT+φ) (4.8)

with

Ak =

√
6(Va,k + Vb,k + Vc,k)

6

Bk =

√
6(2Va,k − Vb,k − Vc,k)

12
−

√
2(Vb,k − Vc,k)

4
j (4.9)

When the system is balanced and operating under nominal conditions, that is Va,k =

Vb,k = Vc,k, the coefficient Bk vanishes and system is accurately characterised by the
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Figure 4.1: An illustration of the trajectory of Clarke voltage vk for different operating
conditions. For a balanced system, characterised by Va,k = Vb,k = Vc,k, the trajectory of
vk is circular, while, for unbalanced systems, such as in the case of a 100% single-phase
voltage sag illustrated by the ellipse in the figure (+), the trajectory of the output
voltage becomes noncircular.

strictly linear model in (4.4). However, the expression in (4.8) is general and models the

system under both balanced and unbalanced conditions, and can be written recursively as

vk = vk−1hk−1 + v∗k−1gk−1 (4.10)

which is a first-order widely linear autoregressive model, WLAR(1). The corresponding

widely linear (augmented) state space model is defined in Algorithm 6, where the state

vector consists of the strictly linear weight hk and conjugate weight gk, the observation vk

is a widely linear function of the previous observation, while, uh,k and ug,k are the state

noise signals corresponding to hk and gk. The system frequency is now computed as

f̂k =
1

2πT
arcsin

(
ℑ(hk + akgk)

)
(4.11)

ak =
−jℑ(hk) + j

√
ℑ2(hk)− |gk|2

gk

Central to both the state space models SS1 and SS2 is the assumption of noise-free
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Algorithm 6: State Space 2 - Widely Linear (SS2-WL)

state equation:



hk
gk
h∗k
g∗k


 =




hk−1

gk−1

h∗k−1

g∗k−1


+




uh,k−1

ug,k−1

u∗h,k−1

u∗g,k−1


 (4.12)

observation equation:

[
vk
v∗k

]
=

[
vk−1 v∗k−1 0 0
0 0 v∗k−1 vk−1

]



hk
gk
h∗k
g∗k


+

[
nk

n∗
k

]
(4.13)

observations. If the three-phase voltages va,k, vb,k and vc,k are corrupted by zero-mean

noises na,k, nb,k and nc,k respectively, then the output voltage is given by

vk = vα,k + jvβ,k + nk (4.14)

From Clarke’s transform, the αβ transformed noise is

nk = nα,k + jnβ,k

=
√
2/3

(
na,k −

1

2
nb,k −

1

2
nc,k

)
+ j

√
2/3

(√3

2
nb,k −

√
3

2
nc,k

)
(4.15)

which is a zero-mean complex noise with pseudocovariance

pn,k = E{n2
k}

= E
{2

3
n2
a,k −

1

3
n2
b,k −

1

3
n2
c,k −

2

3
na,knb,k −

2

3
na,knc,k −−4

3
nb,knc,k

}

jE
{2

√
3

3
na,knb,k −

2
√
3

3
na,knc,k −

2
√
3

3
n2
b,k +

2
√
3

3
n2
c,k

}
(4.16)

The impropriety of the noise nk is determined by the ratios of the variances and cross-

correlations of the three phase observation noises na,k, nb,k and nc,k. Figure 4.2 shows

that the transformed noise nk is proper, if and only if, the three phase noises are all

uncorrelated and have identical variances, otherwise it is improper. Thus, equal line noise

powers provide a circular (proper) Clarke’s noise, whereas combinations of different noises
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Figure 4.2: Observation noise distributions after the three phase (independent, Gaus-
sian and real valued) noises na,k, nb,k and nc,k undergo Clarke’s αβ transformation.

powers provide improper Clarke’s noises with different degrees and natures of impropriety.

For instance, the case in Figure 4.2b is improper with nα,k ⊥ nβ,k, whereas the cases in

Figures 4.2c and 4.2d are improper with nα,k and nβ,k exhibiting different characters of

correlations. Therefore, the impropriety of noise should be dealt with within the algorithm

structure, such as in ACKF.

In the presence of noise, the recursion for Clarke’s voltage can be found by substi-

tuting (4.14) into (4.10), that is

vk =
(
vk−1 + nk−1

)
hk−1 +

(
v∗k−1 + n∗

k−1

)
gk−1 + nk

= vk−1hk−1 + v∗k−1gk−1 + nk−1hk−1 + n∗
k−1gk−1 + nk (4.17)

Remark #1: The observation noise nk in (4.17) is additive, while the previous noise

nk−1 has a multiplicative effect on the current observation. However, in practice, the
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Algorithm 7: State Space 3 - Widely Linear (SS3-WL)

state equation:



hk
gk
v̂k
h∗k
g∗k
v̂∗k



=




hk−1

gk−1

v̂k−1hk−1 + v̂∗k−1gk−1

h∗k−1

g∗k−1

v̂∗k−1h
∗
k−1 + v̂k−1g

∗
k−1



+ uk−1 (4.18)

observation equation:

[
vk
v∗k

]
=

[
0 0 1 0 0 0
0 0 0 0 0 1

]




hk
gk
v̂k
h∗k
g∗k
v̂∗k



+

[
nk

n∗
k

]
(4.19)

dynamics of real world three-phase systems do not follow this model, that is, the current

observation is not a function of the previous observation noise, and using (4.17) to model

noisy real world systems can lead to degraded or diverging estimates.

We next propose a more realistic sequential state space model where the current

observation is independent of the previous observation noises. This is achieved by

augmenting the state vector to include the output voltage. The resulting state space is

summarised in Algorithm 7.

Remark #2: The state space model in Algorithm 7 does not use the previous

observation to form the current observation, and hence does not propagate previous

observation noises, thus providing a more a realistic and robust characterisation of real

world systems. The state equation is nonlinear due to the coupling between v and x,

and can be implemented using the augmented complex extended and unscented Kalman

filters, ACEKF and ACUKF [1].

A strictly linear version of the state space model defined by (4.18) and (4.19) was

proposed in [32], where the output voltage was estimated using the strictly linear model

in (4.4). For convenience, this state space model is described is Algorithm 8.
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Algorithm 8: State Space 4 - Linear (SS4-L)

state equation:

[
xk
v̂k

]
=

[
xk−1

v̂k−1xk

]
+ uk−1 (4.20)

observation equation:

vk =
[
0 1

] [xk
v̂k

]
+ nk (4.21)

Remark #3: Owing to its strictly linear nature, Algorithm 8 suffers from the

same limitations as the state space model described by Algorithm 5, namely it is not

suited to systems operating in unbalanced conditions and in the presence of voltage sags

or transients.

4.3 Robust Tracking Using the Innovation Process

The covariances of the state and observation noises govern the steady state error as well

as the convergence speed of Kalman filters [40]. The noise statistics should ideally be

matched to the system operating conditions: random interferences should be reflected

in the statistics of the observation noise, while changes in the system dynamics, such as

voltage sags and varying frequency, should be reflected in the state process.

Solutions for the estimation of the statistics of the state and observations noises

mostly assume a degree of stationary. However, in a real world power system, the true

noise statistics are generally unknown and almost invariably nonstationary, and the exact

time instances at which changes occur in the system are generally unpredictable.

To cater for these uncertainties, we propose to employ the innovation process νk =

ya
k − Ha

kx̂
a
k|k−1 within the Kalman filter, that is, the difference between the actual and

predicted observations, and use large changes in the innovation as an indication of changes

in the system dynamics. To this end, we first show that if the state and observation noise

covariance matrices are simultaneously scaled by the same factor, the Kalman gain and

state estimate are unaltered [41]. In other words, it is the ratio between the state and
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observation noise variances which determines the Kalman gain and not the exact values

of these variances, hence the actual noise variances need not be known. This can be

explained as follows. The time updates for the predicted state covariance matrix Ma
k|k−1

can be expressed as

Ma
k+1|k = Fa

k−1M
a
k|k−1F

aH
k−1 − Fa

k−1M
a
k|k−1H

aH
k [Ha

kM
a
k|k−1H

aH
k +Ra

n,k]
−1

×Ha
kM

a
k|k−1F

aH
k−1 +Ra

u,k−1 (4.22)

that is, via a Riccati recursion, with initial condition Ma
0|−1 = Ma

0. The computations

for Ma
k|k−1 and Ma

k|k are independent of the observations, and can be calculated without

any knowledge of the observations. The state covariance matrix Ma
k|k can be computed

from Ma
k|k−1 by substituting expression (3.10) into (3.12) and using the matrix inversion

lemma2, that is

Ma
k|k = Ma

k|k−1 −Ma
k|k−1H

aH
k [Ha

kM
a
k|k−1H

aH
k +Ra

n,k]
−1Ha

kM
a
k|k−1

= [(Ma
k|k−1)

−1 +HaH
k (Ra

n,k)
−1Ha

k]
−1 (4.23)

Suppose Ma
0, R

a
n,k and Ra

u,k, k ≥ 0, are replaced by scaled versions, that is

M̄a
0 = κMa

0

R̄a
n,k = κRa

n,k

R̄a
u,k = κRa

u,k

where κ > 0 is a positive constant. Then a repeated application of (4.23) of (4.22) shows

that the resulting covariance matrices satisfy

M̄a
k|k−1 = κMa

k|k−1

M̄a
k|k = κMa

k|k

(4.24)

2Woodbury matrix inversion identity is defined as:
(
A + BCD

)−1
= A

−1 − A
−1

B
(
C

−1 +

DA
−1

B
)−1

DA
−1
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It then follows from (3.10) that the Kalman gain remains unchanged; that is Ḡa
k = Ga

k.

Hence, the observation noise variance can be set to a positive constant, while the

state noise variance can be chosen to balance between the convergence speed and the

steady state error. With this in mind, for the remainder of this section the state and

observation noise variances are assumed fixed, however, the system operating conditions

(e.g. balanced to unbalanced) are allowed to change randomly.

A convenient way of detecting changes in system dynamics is to monitor the in-

novation νk. Large changes in the innovation indicate that the observed signal does not

conform to the Kalman filter state estimate, and consequently the state estimate is in-

accurate. In such scenarios, we propose to mitigate this issue by setting the state noise

variance to a relatively large value, so that the state is re-estimated from the observations.

An estimate of the innovation power is an L sample moving average3 given by

|ν̄k|2 =
1

L

k∑

i=k−L−1

|νi|2, (4.25)

At time k, if |νk|2 > c|ν̄k−1|2, where c > 1 is a threshold, then the state estimate is

considered inaccurate and the state noise variance is increased for the next time instant.

This allows for the detection of changes in system dynamics (e.g. the occurrence of voltage

sags), and hence, the noise variances can be set accordingly.

4.4 Simulations

The proposed widely linear sequential state estimation algorithms were assessed for a sim-

ulated benchmark system using a 5kHz sampling rate, and were all initialised to 50.5Hz.

The strictly linear state space models, SS1 and SS2, were implemented using the con-

ventional complex Kalman filter (CCKF), SS4 was implemented using the conventional

complex extended Kalman (CEKF), while the (widely linear) augmented CEKF (ACEKF)

was used for SS3 [1]. Their performances were compared with those of with their stochas-

3In power systems operating at 50Hz, the cycle period is 20ms, and it is of interest to estimate changes
in the system frequency in less than the duration of this cycle, hence a high sampling frequency is employed.
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Figure 4.3: Geometric and phasor views of Type C and D voltage sags. The real-
imaginary plots illustrate the noncircularity of Clarke’s voltage in unbalanced condi-
tions. The parameters of the circularity plot (ellipse) help identify the type of fault
(voltage sag).

tic gradient based counterparts, the strictly linear complex least mean square (CLMS)

and the augmented CLMS (ACLMS)[7].

In the first set of simulations, the performances of the algorithms were evaluated for

an initially balanced system which became unbalanced after undergoing a Type C voltage

sag starting at 0.1s, characterised by a 20% voltage drop and 10o phase offset on both vb

and vc, followed by a Type D sag starting at 0.25s, characterised by a 20% voltage drop at

line va and a 10% voltage drop on both vb and vc with a 5o phase angle offset, as illustrated

in Figure 4.3. Observe from Figure 4.4 that for an unbalanced system, the widely linear

algorithms, ACLMS, SS2 and SS3, were able to accurately estimate the system frequency,

conforming with the analysis, while the strictly linear algorithms, CLMS, SS1 and SS4,

yielded oscillating frequency estimates due to under-modelling of the system. The widely

linear and strictly linear algorithms had similar performances under balanced conditions,

as illustrated in the time interval upto 0.1s. Due to their stochastic gradient nature, CLMS

and ACLMS had relatively slow convergence compared with the state space based Kalman
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Figure 4.4: Frequency estimation for a system which is balanced up to 0.1s, after which
the system becomes unbalanced due to the occurrence of voltage sags of differing
natures.
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Figure 4.5: Initial transient behaviour for the simulations in Figure 5 (first 5ms),
where all the Kalman filters where initialised as Ma

k|k = 10I.

filter algorithms, as illustrated in Figure 4.5.

Figure 4.6 illustrates frequency estimation in the presence of Gaussian noise. As

expected, CLMS, ACLMS, SS1 and SS2, which assume noise free observations, gave in-

accurate estimates, while the more general SS3 and SS4 provided accurate frequency es-

timates. Figure 4.7 illustrates frequency estimation in the presence of in-phase harmonic

observation noise. Again, only SS3 and SS4, which do not assume noise free observations,

converged to the true system frequency, and the remaining algorithms gave inaccurate

estimates.

The performance of the algorithms for a power system which undergoes rise and

decay in frequency, a typical case where generation does not match the load like in mi-

crogrids and islanding, is illustrated in Figure 4.8. The widely linear algorithms, ACLMS,

SS2 and SS3, were able to accurately track the system frequency, as opposed to their cor-

responding strictly linear counterparts. Moreover, the stochastic gradient based ACLMS
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Figure 4.6: Frequency estimation for a balanced system in the presence of doubly
white circular Gaussian noises at 20dB SNR.
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Figure 4.7: Frequency estimation when phase voltages are contaminated with in-phase
harmonics at 10% p.u. for the 3rd and 5% p.u. for the 5th harmonics.

was outperformed by the widely linear Kalman filter algorithms, SS2 and SS3.

The statistical advantage of the widely linear estimators over their corresponding

strictly linear estimators is illustrated by comparing the bias and mean square errors

(MSEs) in the presence of Gaussian doubly white circular complex noise4. Figure 4.9

shows the performance of the algorithms for a system undergoing a Type D voltage sag

(see Figure 4.3). The results in Figure 4.9a illustrate that the widely linear algorithms,

ACLMS, SS2 and SS3, had decreasing MSEs as the signal to noise ratio (SNR) increased,

while the strictly linear algorithms, CLMS, SS1 and SS4, yielded relatively large, almost

4For white Gaussian noise, nk = nr,k + jni,k, double whiteness implies E{nk · n∗
l } = σ2δk−l and

E{nk · nl} = ρ2δk−l, where σ2 and ρ2 are the noise variance and pseudovariance.
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Figure 4.8: Frequency estimation for a power system which experiences a 5Hz/s rise
and decay in system frequency.

constant, MSEs with increasing SNR. This can be attributed to the oscillating frequency

estimates of these algorithms for unbalanced conditions that do not change with increasing

SNR. Moreover, SS3 and SS4 had the best performances among the widely linear and

strictly linear algorithms, respectively, because they did not assume noise free observations.

Figure 4.9b shows the bias of the algorithms at different SNRs; observe that the algorithms

based on the widely linear model offered the best performances, and that, again, the best

results among the strictly linear and widely linear algorithms were achieved by SS4 and

SS3 respectively. In other words, Figure 4.9 shows that the widely linear algorithms were

asymptotically unbiased and statistically consistent.

Figure 4.10 illustrates the benefits of monitoring the innovation process to adjust

the model to the changes in the system, evaluated for a system which undergoes a step

change in frequency in the presence of additive white Gaussian observation noise using

SS3 and SS4 (similar results can be shown for the other state space models). Observe

the superior frequency estimation results, in terms of convergence speed and steady state

error, when the state noise variance was set according to the changes in the innovation

process, compared to using fixed noise variances.

The robustness of the proposed models to a combination of harmful events was

examined using the setup in Figure 4.4, where an initially balanced system experienced

consecutive voltage sags, together with the presence of doubly white Gaussian noise at
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Figure 4.9: Mean square error (MSE) and bias analysis for an unbalanced system
undergoing a voltage sag (Type D).

40dB SNR, with the results shown in Figure 4.11. Observe that when the noise variances

were set according to innovation power, the algorithm was more robust in the presence of

the noise. Figure 4.11c shows the two peaks in the innovation process corresponding to

the time instances when the system experienced the two different voltage sags.

The last set of simulations explores frequency estimation for a real-world power sys-

tem, where unbalanced three-phase voltages were recorded at a 110/20/10kV transformer

station. The measured data come from a system with nominal frequency of 50Hz, sampled

at a rate of 1kHz, and normalized with respect to their normal peak voltage value. The

first set of results, for an unbalanced system (a single-phase short with earth), is shown

in Figure 4.12, where the theoretical and practical superiority of the algorithms based on

the widely linear model, ACLMS and SS3, compared with the strictly linear algorithms,

CLMS and SS4, in unbalanced system conditions is highlighted. Figure 4.13 illustrates

the performance of the algorithms for a real-world unbalanced system undergoing a two-

phase short-cut with earth. Conforming with the analysis, the strictly linear algorithms,

CLMS and SS4, yielded inaccurate, biased and oscillating frequency estimates, due to

under-modelling of the system, while the algorithms based on the widely linear model,

ACLMS and SS3, yielded accurate estimates, which were unbiased and with minimum

variance, conforming with the ensemble analysis in Figure 4.9. In both simulations, the
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Figure 4.10: Frequency estimation for a system which experiences a temporary step
change in frequency from 50Hz to 52Hz in the presence of white circular Gaussian
noises at 35dB SNR. In (a) the frequency is estimated using SS3 and SS4 with fixed
state and observation noise variances, while in (b) the state noise variance was set
according to the innovation power using the methodology described in Section 4.3.
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Figure 4.11: An initially balanced system experiences a series of voltages sags, all in
the presence of complex doubly white measurement noise.

state space based widely linear Kalman filter based algorithm, SS3, had a faster conver-

gence rate and lower steady state error than the stochastic gradient based widely linear

ACLMS algorithm.
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Figure 4.12: Frequency estimation for a real-world three-phase system, where an
initially balanced system experienced a single-line short with earth.

4.5 Conclusions

We have introduced a novel, widely linear, framework for state space based frequency esti-

mation in the context of three-phase power systems, under both balanced and unbalanced

operating conditions. The signal, obtained from Clarke’s αβ transformation, is noncircu-

lar (improper) when the three-phase voltages are unbalanced, which makes the standard,

strictly linear, estimation inadequate. It has been shown that accounting for noncircu-

larity of amplitude distributions allows for both the development of second order optimal

frequency estimation algorithms, and the identification of unbalanced conditions via cir-

cularity diagrams and degrees of impropriety. We have addressed frequency estimation

from a state space perspective, and illustrated the superiority of the widely linear (aug-

mented) complex Kalman filters over the stochastic gradient based augmented complex

least mean square (ACLMS) algorithm. In order to increase convergence speed and reduce
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Figure 4.13: Frequency estimation for a real-world unbalanced three-phase system,
where two lines experience a short with earth.

steady state error, a method based on the Kalman filter innovation process has also been

proposed, and was shown to enhance the performance of the Kalman filters in terms of

response and convergence rate. Comprehensive simulations over a range of power systems

conditions evaluated for both balanced and unbalanced systems support the analysis.
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Chapter 5

Distributed Widely Linear

Complex Kalman Filters

In this Chapter, we extend the algorithms proposed in Chapter 3 to the case of coopera-

tive sequential state space estimation, whereby nodes in a network collaborate locally to

estimate improper complex signals. Distributed estimation and fusion has received signif-

icant attention in both military and civilian applications [42][43][44][45], and the recent

advances in sensor technology and wireless communications have highlighted the useful-

ness of distributed networks in this context [46][42]. Such models rely on cooperation

between the nodes (sensors) to provide more accurate and robust estimation compared to

using independent uncooperative nodes, while approaching the performance of the more

complex centralised systems.

This is achieved through nodes equipped with learning capabilities that take local

measurements (observations) and share information with their neighbours, thus enhancing

robustness to link and node failures and facilitating scalability [47][48][49]. A number of

robust and scalable diffusion strategies for network cooperation have been developed for

distributed least-mean-square estimation [50][51] and Kalman filtering [47][44], however,

these are linked to a very restrictive class of proper signals, and are also inadequate for

correlated measurement noises, a common case in practice. In this work, we focus on

distributed solutions suited to general improper complex data arising from distributed
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real-world applications, such as in wireless communication systems [52][53] and power

systems [39].

Extending the recent work on widely linear estimation and distributed Kalman

filters [7][1][47][44], we here propose a distributed augmented (widely linear) complex

Kalman filter (D-ACKF) that caters for general complex signals, as well as the cross-

correlations between the observation noises at neighbouring nodes. These are real-world

scenarios encountered when node signals are exposed to common noise, such as:

• multi-sensor target tracking in the presence of observation jamming-noise;

• environmental noise in seismic arrays;

• signals from microphone array systems experiencing common interference;

• wireless sensor networks with overlapping user frequencies;

• distributed frequency estimation in smart grids experiencing common fault.

This work generalises earlier distributed Kalman filtering approaches [47][54][44],

and illuminates the duality of D-ACKF with its corresponding bivariate real-valued dis-

tributed Kalman filter, highlighting several issues of implementation motivated by duality

considerations. The performance of the D-ACKF is analysed, and supported by case stud-

ies on filtering autoregressive processes and projectile tracking, involving both proper and

improper signals.

5.1 Diffusion Kalman Filtering

Consider the state space corresponding to a node i in a distributed system [18],

xn = Fn−1xn−1 +wn (5.1a)

yi,n = Hi,nxn + vi,n (5.1b)

where xn ∈ C
L and yi,n ∈ C

K are respectively the state vector at time instant n and

observation (measurement) vector at node i, while Fn and Hi,n are the state transition
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and observation matrices, whereas wn ∈ C
L and vi,n ∈ C

K are respectively the white state

and measurement noises at node i, and are assumed to be uncorrelated and zero-mean,

with covariances and pseudocovariances defined as

E



wn

vi,n






wk

vi,k




H

=



Qn 0

0 Ri,n


 δnk (5.2)

E



wn

vi,n






wk

vi,k




T

=



Pn 0

0 Ui,n


 δnk (5.3)

where δnk is the Kronecker delta function.

5.1.1 Distributed Complex Kalman Filter

The distinguishing feature of the proposed class of distributed Kalman filters is that no

assumption is made about the correlation of the observation noises at different nodes, thus

extending earlier distributed Kalman filtering algorithms [44][47][54], and allowing us to

deal more effectively with cases where the nodes experience common measurement noises.

Denote the neighbourhood of node i, that is, the set of nodes that can communicate

directly with the node i (including itself) by Ni, as illustrated in Figure 5.1. Within a

distributed (diffusion) Kalman filtering framework, neighbouring nodes collaborate and

share information to estimate the state vector xn. This can be achieved by using a diffusion

technique to enable information sharing between neighbours.

Let x̂i,n|n denote the complex Kalman filter (CKF) state estimate at node i based

on all the data from the neighbourhood Ni consisting of M = |Ni| nodes, where |Ni|

denotes the number of nodes in the neighbourhood Ni. The collective neighbourhood

observation equation at node i is given by

y
i,n

= Hi,nxn + vi,n (5.4)
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with the collective (neighbourhood)) variables defined as

y
i,n

=

[
yT
i1,n

,yT
i2,n

, · · · ,yT
iM ,n

]T

Hi,n =

[
HT

i1,n
,HT

i2,n
, · · · ,HT

iM ,n

]T

vi,n =

[
vT
i1,n

,vT
i2,n

, · · · ,vT
iM ,n

]T

where {i1, i2, . . . , iM} are all the nodes in the neighbourhood Ni. The covariance and

pseudocovariance of the collective observation noise vector are:

Ri,n = E{vi,nv
H
i,n} =




Ri1,n Ri1i2,n · · · Ri1iM ,n

Ri2i1,n Ri2,n · · · Ri2iM ,n

...
...

. . .
...

RiM i1,n RiM i2,n · · · RiM ,n




Ui,n = E{vi,nv
T
i,n} =




Ui1,n Ui1i2,n · · · Ui1iM ,n

Ui2i1,n Ui2,n · · · Ui2iM ,n

...
...

. . .
...

UiM i1,n UiM i2,n · · · UiM ,n




where Ria,n = E{via,nv
H
ia,n

}, Riaib,n = E{via,nv
H
ib,n

}, Uia,n = E{via,nv
T
ia,n

} and Uiaib,n =

E{via,nv
T
ib,n

}, for a, b ∈ {1, 2, . . . ,M}.

Calculation of the neighbourhood state estimates is followed by the diffusion step,

given by

x̂i,n|n =
∑

k∈Ni

ck,ix̂k,n|n (5.5)

where the diffused state estimates x̂i,n|n is the weighted estimates from the neighbourhood

Ni, and ck,i ≥ 0 are the weighting coefficients satisfying
∑

k∈Ni
ck,i = 1. A number

of fusion schemes have been proposed, including the Metropolis [50], Laplacian [55] and

nearest neighbour method [44], however, the determination of the optimal weights for

an arbitrary network of nodes is a difficult problem without accurate knowledge of the
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connection

Figure 5.1: An illustrative example of a distributed network topology.

statistics of the local estimates [56].

The distributed complex Kalman filter (D-CKF) aims to approximate a centralised

Kalman filter (with access to the observation data from all the nodes) via neighbourhood

collaborations and diffusion, and is summarised in Algorithm 9. The D-CKF algorithm

requires each node to form a collective observation equation as in (5.4) by gathering

information from its neighbours, thereafter, each node computes a neighbourhood state

estimate which are again transmitted to neighbours to be used for the diffusion step.

Remark #1: The D-CKF algorithm1 is based on the standard (strictly linear)

state space model (5.1), similar to existing algorithms [44] [57], and is thus inadequate for

widely linear state space models or improper state and observation noises, where Pn 6= 0

and Ui,n 6= 0 for i = 1, 2, . . . , N .

Remark #2: Observe that unlike existing distributed complex Kalman filters,

the proposed D-CKF algorithm caters also for the cross-correlations between the

1The matrices Mi,n|n and Mi,n|n−1 do not represent the covariances of x̂i,n|n and x̂i,n|n−1, as is the
case for the standard Kalman filter operating on linear Gaussian systems. This is due to the use of the
suboptimal diffusion step, which updates the state estimate and not the covariance matrix Mi,n|n.
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Algorithm 9: The D-CKF

Initialisation: For each node i = 1, 2, . . . , N

x̂i,0|0 = E{x0}
Mi,0|0 = E{(x0 − E{x0})(x0 − E{x0})H}

For every time instant n = 1, 2, . . .
− Evaluate at each node i = 1, 2, . . . , N

x̂i,n|n−1 = Fn−1x̂i,n−1|n−1 (5.6)

Mi,n|n−1 = Fn−1Mi,n−1|n−1F
H
n−1 +Qn (5.7)

Gi,n = Mi,n|n−1H
H
i,n

(
Hi,nMi,n|n−1H

H
i,n +Ri,n

)−1
(5.8)

x̂i,n|n = x̂i,n|n−1 +Gi,n

(
y
i,n

−Hi,nx̂i,n|n−1

)
(5.9)

Mi,n|n = (I−Gi,nHi,n)Mi,n|n−1 (5.10)

− For every node i, compute the diffusion update as

x̂i,n|n =
∑

k∈Ni

ck,ix̂k,n|n (5.11)

neighbourhood observation noises, while for uncorrelated nodal observation noises, it

degenerates into Algorithm 9 in [44].

5.1.2 Distributed Augmented Complex Kalman Filter

To cater for widely linear state and observation models together with improper signals,

the widely linear version of the distributed state space model (5.1) is defined as[1]

xn = Fn−1xn−1 +An−1x
∗
n−1 +wn (5.12a)

yi,n = Hi,nxn +Bi,nx
∗
n + vi,n (5.12b)

or in its augmented representation:

xa
n = Fa

n−1x
a
n−1 +wa

n (5.13a)

ya
i,n = Ha

i,nx
a
n + va

i,n (5.13b)
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where xa
n = [xT

n ,x
H
n ]T and ya

n = [yT
n ,y

H
n ]T , while

Fa
n =



Fn An

A∗
n F∗

n


 and Ha

i,n =



Hi,n Bi,n

B∗
i,n H∗

i,n




Similarly, the augmented covariance matrices of wa
n = [xT

n ,w
H
n ]T and va

i,n = [vT
i,n,v

H
i,n]

T

are given by

Qa
n = E{wa

nw
aH
n } =



Qn Pn

P∗
n Q∗

n


 (5.14)

Ra
i,n = E{va

i,nv
aH
i,n } =



Ri,n Ui,n

U∗
i,n R∗

i,n


 (5.15)

Remark #3: For strictly linear systems, An = 0 and Bi,n = 0, so that the

widely linear (augmented) state space model degenerates into a strictly linear one,

however, the augmented state space representation is still preferred in order to account

for the pseudocovariances (impropriety) of the signals (cf. widely linear systems).

To enable collaborative estimation of the state within distributed networks, we em-

ploy neighbourhood observation equations comprising of all the neighbourhood observation

data, that is

y
i,n

= Hi,nxn +Bi,nx
∗
n + vi,n (5.16)

where the conjugate state matrix Bi,n =
[
BT

i1,n
,BT

i2,n
, . . . ,BT

iM ,n

]T
, and {i1, i2, . . . , iM} ∈

Ni. The augmented neighbourhood observation equations can now be written as

ya
i,n

= Ha
i,nx

a
n + va

i,n (5.17)
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with augmented neighbourhood terms defined as

ya
i,n

=



y
i,n

y∗
i,n


 , Ha

i,n =



Hi,n Bi,n

B∗
i,n H∗

i,n


 , va

i,n =



vi,n

v∗
i,n


 (5.18)

The covariance of the augmented noise va
i,n is then defined as

Ra
i,n = E{va

i,nv
aH
i,n } =



Ri,n Ui,n

U∗
i,n R∗

i,n


 (5.19)

and caters for both the covariances E{vi,nv
H
i,n} and cross-correlations E{vi,nv

H
k,n}, i 6= k

of the nodal observation noises through the covariance matrix Ri,n, and the pseudocovari-

ances E{vi,nv
T
i,n} and cross-pseudocorrelations E{vi,nv

T
k,n} through the pseudocovariance

matrix Ui,n. Finally, the augmented diffused state estimate becomes

x̂a
i,n|n =

∑

k∈Ni

ck,ix̂
a
k,n|n (5.20)

and represents a weighted average of the augmented (neighbourhood) state estimates.

The proposed distributed augmented complex Kalman filter (D-ACKF), based on the

widely linear state space model, is summarised in Algorithm 10.

Remark #4: For strictly linear systems (An = 0 and Bi,n = 0 for all n and i)

with improper state and observation noises (Pn = 0 and Ui,n = 0 for all n and i), the

D-ACKF and D-CKF algorithms are equivalent, in the sense that they yield identical

state estimates for all time instants n.

However, if any of these conditions are not met, the D-ACKF assumes a more

general form than the D-CKF. This can be illustrated as per the analysis in Chapter 3,

which shows the advantages of the augmented complex Kalman filter (ACKF) over the

conventional (strictly linear) complex Kalman filter (CKF) for the non-distributed case.

Remark #5: When the nodes are subject to uncorrelated observation noises, the
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Algorithm 10: The D-ACKF

Initialisation: For each node i = 1, 2, . . . , N

x̂a
i,0|0 =

[
E{x0}T , E{x0}H

]T

Ma
i,0|0 = E

{
(xa

0 − x̂a
i,0|0)(x

a
0 − x̂a

i,0|0)
aH

}

For every time instant n = 1, 2, . . .
− Evaluate at each node i = 1, 2, . . . , N

x̂a
i,n|n−1 = Fa

n−1x̂
a
i,n−1|n−1 (5.21)

Ma
i,n|n−1 = Fa

n−1M
a
i,n−1|n−1F

aH
n−1 +Qa

n (5.22)

Ga
i,n = Ma

i,n|n−1H
aH
i,n

(
Ha

i,nM
a
i,n|n−1H

aH
i,n +Ra

i,n

)−1
(5.23)

x̂a
i,n|n = x̂a

i,n|n−1 +Ga
i,n

(
ya
i,n

−Ha
i,nx̂

a
i,n|n−1

)
(5.24)

Ma
i,n|n = (I−Ga

i,nH
a
i,n)M

a
i,n|n−1 (5.25)

− For every node i, compute the diffusion update as

x̂a
i,n|n =

∑
k∈Ni

ck,ix̂
a
k,n|n (5.26)

information form of the D-ACKF, given in Algorithm 11, can be utilised to cater for the

propriety of the signals without accounting for observation noise correlations at different

nodes.

Further, depending on the correlation between the observation noises, different

nodes in the distributed network can switch between the general D-ACKF in Algorithm

10 and the information form D-ACKF in Algorithm 11.

5.2 Analysis

5.2.1 Duality Analysis

Owing to the isomorphism between augmented complex vectors and bivariate real vectors,

and the duality analysis for stochastic gradient filters [19], the D-ACKF algorithm has a

dual bivariate distributed real valued Kalman filter (D-RKF) which can be used to reduce

its computational complexity.

A complex vector z = zr + jzi ∈ C
q has a composite bivariate real representation
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Algorithm 11: The D-ACKF Information Form

Initialisation: For each node i = 1, 2, . . . , N

x̂a
i,0|0 =

[
E{x0}T , E{x0}H

]T

Ma
i,0|0 = E

{
(xa

0 − x̂a
i,0|0)(x

a
0 − x̂a

i,0|0)
aH

}

For every time instant n = 1, 2, . . .
− Evaluate at each node i = 1, 2, . . . , N

x̂a
i,n|n−1 = Fa

n−1x̂
a
i,n−1|n−1 (5.29)

Ma
i,n|n−1 = Fa

n−1M
a
i,n−1|n−1F

aH
n−1 +Qa

n (5.30)

Sa
i,n =

∑
k∈Ni

HaH
k,n(R

a
k,n)

−1Ha
k,n (5.31)

rai,n =
∑

k∈Ni

HaH
k,n(R

a
k,n)

−1ya
k,n (5.32)

(Ma
i,n|n)

−1 = (Ma
i,n|n−1)

−1 + Sa
i,n (5.33)

χ̂a
i,n|n = x̂a

i,n|n−1 +Ma
i,n|n

(
rai,n − Sa

i,nx̂
a
i,n|n−1

)
(5.34)

− For every node i, compute the diffusion update as

x̂a
i,n|n =

∑
k∈Ni

ck,iχ̂
a
i,n|n (5.35)

in R
2q of the form

za =



z

z∗


 =



I jI

I −jI




︸ ︷︷ ︸
≡Jz



zr

zi




︸ ︷︷ ︸
=zr

(5.27)

where I is the identity matrix (with appropriate dimensions), and the invertible orthogonal

mapping2 Jz : C2q → R
2q is such that J−1

z = 1
2J

H
z [20][21]. Based on this isomorphism, the

real bivariate state space corresponding to the augmented complex state space in (5.13)

is given by

xr
n = Fr

n−1x
r
n−1 +wr

n

yr
n = Hr

nx
r
n + vr

n (5.28a)

where xr
n = J−1

x xa
n, y

r
n = J−1

y ya
n, F

r
n−1 = J−1

x Fa
n−1Jx, H

r
n = J−1

y Ha
nJx, w

r
n = J−1

x wa
n and

2For a vector z ∈ C
q, the corresponding orthogonal matrix Jz takes dimension 2q × 2q.
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vr
n = J−1

y va
n. In the same vein, the real valued covariance matrices of wr

n and vr
n take the

corresponding forms

Qr
n = E{wr

nw
rH
n } = J−1

x Qa
nJ

−H
x

Rr
n = E{vr

nv
rH
n } = J−1

y Ra
nJ

−H
y

while the real valued counterpart of (5.17) is given by

yr
i,n

= Hr
i,nx

r
n + vr

i,n (5.36)

with yr
n
= J−1

y ya
n
, Hr

n = J−1
y Ha

nJx and vr
n = J−1

y va
n. Finally, the covariance matrix of vr

n

is defined as

Rr
n = E{vr

nv
rH
n } = J−1

y Ra
nJ

−H
y

The duality between the D-ACKF and the D-RKF is established through the following

relationships:

x̂r
i,n|n−1 = J−1

x x̂a
i,n|n−1

Mr
i,n|n−1 = J−1

x Ma
i,n|n−1J

−H
x

Gr
i,n = J−1

x Ga
i,nJy

x̂r
i,n|n = J−1

x x̂a
i,n|n

Mr
i,n|n = J−1

x Ma
i,n|nJ

−H
x

x̂r
i,n|n = J−1

x x̂a
i,n|n

Therefore, the D-ACKF and D-RKF effectively implement the same state space

model, but operate in the complex and real domains, respectively. Generally speaking, for

systems naturally defined in the complex domain, it is desirable to keep the computations

in the original complex domain in order to facilitate understanding of the signal transfor-

mations, together with benefiting from the well defined notions of phase and circularity.
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5.2.2 Mean And Mean Square Analysis

For generality in analysis, we consider augmented complex variables: let eai,n|n = xa
n−x̂a

i,n|n

denote the local (non-diffused) error at node i ∈ [1, N ], eai,n|n−1 = xa
n − x̂a

i,n|n−1 the

prediction error, and eai,n|n = xa
n − x̂a

i,n|n the diffused error. The difference between the

true state in (5.13a) and the predicted state estimate in (5.24) now becomes

eai,n|n = xa
n − x̂a

i,n|n−1 +Ga
i,n

(
ya
i,n

−Ha
i,nx̂

a
i,n|n−1

)

= eai,n|n−1 +Ga
i,n

(
Ha

i,nx
a
n + va

i,n −Ha
i,nx̂

a
i,n|n−1

)

= eai,n|n−1 +Ga
i,n

(
Ha

i,ne
a
i,n|n−1 + va

i,n

)

=
(
I+Ga

i,nH
a
i,n

)
eai,n|n−1 +Ga

i,nv
a
i,n (5.37)

Likewise, the difference between (5.13a) and (5.21) is given by

eai,n|n−1 = Fa
n−1e

a
i,n−1|n−1 +wa

n (5.38)

while the diffused state estimation error can be expressed as

eai,n|n = xa
n −

∑

k∈Ni

ck,ix̂
a
k,n|n =

∑

k∈Ni

ck,ie
a
k,n|n (5.39)

Substituting (5.37) and (5.38) into (5.39) and using Ma
k,n|n(M

a
k,n|n−1)

−1 = I−Ga
k,nH

a
k,n,

we have

eai,n|n =
∑

k∈Ni

ck,i

[(
I+Ga

k,nH
a
k,n

)
Fa
n−1e

a
k,n−1|n−1 +

(
I+Ga

k,nH
a
k,n

)
wa

n +Ga
k,nv

a
k,n

]

=
∑

k∈Ni

ck,i

[
Ma

k,n|n(M
a
k,n|n−1)

−1Fa
n−1e

a
k,n−1|n−1 +Ma

k,n|n(M
a
k,n|n−1)

−1wa
n +Ga

k,nv
a
k,n

]

(5.40)
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Upon taking the statistical expectation, the recursion in (5.40) leads to a closed form

expression for the mean error of the D-ACKF algorithm, given by

E{eai,n|n} =
∑

k∈Ni

ck,iM
a
k,n|n(M

a
k,n|n−1)

−1Fa
n−1E{eak,n−1|n−1} = 0 (5.41)

Remark #6: Equation (5.41) demonstrates that the D-ACKF is an unbiased estimator

of general complex processes, exhibiting both proper and improper statistics.

To derive the mean square error for the D-ACKF, we shall make the following

assumptions, commonly used in the analysis of distributed state space estimators.

Assumption #1: Convergence. All the nodes (local Kalman filters) converge to

the same state value by using their neighbourhood data, that is, there are no faulty nodes

in the system. This can be restated as

lim
n→∞

x̂i,n|n = lim
n→∞

x̂k,n|n for all i and k (5.42)

Assumption #2: Time invariance. The state space model (3.5) is time invari-

ant, that is, Fn = F, Hi,n = H, Qn = Q and Ri,n = R, and the state transition matrix

F is stable. This is a standard assumption for the steady-state analysis of Kalman filters.

It then follows that limn→∞Ma
i,n|n = Ma for i ∈ {1, . . . , N}, that is, the matrix

Ma
i,n|n is also time invariant at steady state. Next, we define the following terms for
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convenience of notation:

Ei,n|n =

[
eaTi1,n|n, e

aT
i2,n|n, . . . , e

aT
iM ,n|n

]T
∈ C

2ML

W i,n =

[
waT

n ,waT
n , . . . ,waT

n

]T
∈ C

2ML

V i,n =

[
vaT
i1,n

,vaT
i2,n

, . . . ,vaT
iM ,n

]T

Ai,n =




ci1,iF
aT
n−1(M

a
i1,n|n−1)

−TMaT
i1,n|n

ci2,iF
aT
n−1(M

a
i2,n|n−1)

−TMaT
i2,n|n

...

ciM ,iF
aT
n−1(M

a
iM ,n|n−1)

−TMaT
iM ,n|n




T

Bi,n =




ci1,i(M
a
i1,n|n−1)

−TMaT
i1,n|n

ci2,i(M
a
i2,n|n−1)

−TMaT
i2,n|n

...

ciM ,i(M
a
iM ,n|n−1)

−TMaT
iM ,n|n




T

Gi,n =

[
ci1,iG

a
i1,n

, ci2,iG
a
i2,n

, . . . , ciM ,iG
a
iM ,n

]

where {i1, i2, . . . , iM} ∈ Ni, and M = |Ni| is the number of nodes in the neighbourhood

Ni. Based on (5.40), the mean square error Σa
i,n = E{eai,n|neaHi,n|n} at the node i then

becomes

Σa
i,n = Ai,nMi,n−1AH

i,n + Bi,nQi,nBH
i,n + Gi,nRi,nGi,n (5.43)

where Mi,n = E{Ei,n|nEH
i,n|n} is the neighbourhood error covariance matrix,

Qi,n = E{W i,nWH
i,n} and Ri,n = E{V i,nVH

i,n}.

Remark #7: Under Assumption #2, the covariance matrices Qi,n = Qi and

Ri,n = Ri are time invariant, while as n → ∞ the terms Ai,n = Ai, Bi,n = Bi, Gi,n = Gi

also become time invariant. Then under Assumption #1, that is, provided all the nodes

in the network converge to the same steady state value, the remaining error covariance

term Mi,n also converges.
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Further, observe that, based on (5.39), the MSE can alternatively be expressed as

Σa
i,n =

∑

j∈Ni

∑

k∈Ni

cj,ick,iΓ
a
jk,n (5.44)

where Γa
jk,n = E{eaj,n|neaHk,n|n} is the cross-correlation matrix between the neighbourhood

errors.

Remark #8: Given that
∑

j∈Ni

∑
k∈Ni

cj,ick,i = 1, and the MSE at any node i,

Σa
i,n, is a weighted average of the MSEs of the nodes in its neighbourhood, then Σa

i,n is

upper bounded by the MSE of the node in the neighbourhood of node i with the worst

MSE, that is

tr(Σa
i,n) ≤ max

k∈Ni

{tr(Γa
kk,n)} (5.45)

where tr(·) is the matrix trace operator.

It then follows that at any time instant n, the upper bound for the average MSE

of the whole distributed network is the MSE of the node with the highest MSE in the

network.

From Remarks #6, #7 and #8, the D-ACKF converges both in the mean and

mean square sense, hence it is a consistent estimator, while its MSE performance is upper

bounded by the worst performing node in the network.

5.3 Application Examples

To illustrate the advantages of the widely linear D-ACKF over its strictly linear D-CKF

counterpart, the following case studies were conducted: A) filtering of a noisy complex-

valued autoregressive process; B) estimating and tracking the position of a projectile in

two dimensions.
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5.3.1 Filtering an Autoregressive Process

Consider a distributed network consisting of N = 10 nodes (see Figure 5.2), used for

filtering the complex autoregressive (AR) process defined as

zn = 1.2zn−1 − 0.8zn−2 + un

For rigour, un is a improper white complex Gaussian driving noise with variance

E{|un|2} = 2 and a varying pseudovariance E{u2n}. For each node i, the observation

equation was a noisy measurement of the autoregressive output, that is improper white

complex Gaussian driving noise with variance E{|un|2} = 2 and a varying pseudovari-

ance E{u2n}. For each node i, the observation equation was a noisy measurement of the

autoregressive output, that is

yi,n = zn + vi,n

where vi,n is the complex Gaussian white observation noise associated with node i, while

the variances, pseudovariances and cross-correlations of the observation noises were Ri,n =

E{|vi,n|2} = 4 + 1/
√
i, Ui,n = E{v2i,n} and Rik,n = E{vi,nv∗k,n} = 4 for i, k ∈ {1, 2, . . . , N}

and i 6= k. Observe that the nodes in network experience correlated observation noises

with different variances, modelled through the term 1/
√
i in the expression for Ri,n.

In the simulations, we used the ratio of the magnitude of pseudocovariance to

covariance, that is ηu = |E{u2}|/E{|u|2}, as a measure for the degree of circularity of a

(zero-mean) complex Gaussian signal u = ur + jui, where a signal is circular for ηu = 0

and maximally noncircular for ηu = 1. The average mean square errors (MSEs) of all

the nodes were used for a quantitative assessment of performance in a nearest neighbour

diffusion scheme, which is as follows [44]. Let |Nk| denote the number of a neighbours

(including itself) of node k; to compute the diffused state estimate for node i, the weight
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Figure 5.2: A distributed network with N = 10 nodes used in the simulations.

associated with a neighbour k is proportional to |Nk|, that is

ck,i =





|Nk|/αi if k ∈ Ni

0 otherwise

where αi =
∑

k∈Ni
|Nk| is a normalisation parameter for node i which ensures that

∑
k∈Ni

ck,i = 1.

Figure 5.3 compares the steady state performance of the diffusion Kalman filter in

[44] (Algorithm 2), D-CKF and D-ACKF algorithms, along with the centralised versions

of the D-CKF and D-ACKF (Centralised-CKF and Centralised-ACKF), with access to

the observation data from all the nodes at each time instant. Figure 5.3a illustrates the

results for circular observation noises (Ui,n = E{v2i,n} = 0 for i = 1, 2, . . . , N) and a state

(driving) noise with various degrees of noncircularity, whereas the results for a noncircular

observation noise with a circular state noise (Pn = 0) are shown in Figure 5.3b. The

variances of the state and observation noises were kept constant throughout, and only

their pseudocovariances (degree of circularity) where changed. The results illustrate that

for second order circular (proper) state and observation noises (ηw = 0 and ηvi = 0), the
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Figure 5.3: Steady state performance comparison for filtering the AR(2) process in
the cases of: (a) circular observation noises and a noncircular driving noise with
varying degrees of noncircularity; (b) circular state noise and noncircular observation
noises with varying degrees of noncircularity, whereby all nodes have same degree of
observation noise noncircularity.

strictly linear D-CKF and widely linear D-ACKF algorithms have identical performances,

conforming with the analysis and Remark #3, while for proper noises (ηw 6= 0 and ηvi 6=

0) the D-ACKF offered superior performance, as it catered for the pseudocovariances.

Moreover, D-ACKF had decreasing MSE for an increasing degree of noise noncircularity,

while D-CKF was unaffected by changes in the noncircularity of the noises, as it is not

designed to recognise improper signals.

The performance comparison between the Centralised-CKF and centralised-ACKF

algorithms also shows a similar trend, with centralised-ACKF offering better performance

for noncircular signals. The D-CKF and D-ACKF algorithms outperformed the diffusion

Kalman filter in [44] (Algorithm 2), because they cater for the cross-correlations between

the the observation noises (Rik,n = E{vi,nv∗k,n}), and only marginally underperformed

compared with their centralised counterparts. Observe that for uncorrelated nodal obser-

vation noises with circular state and observation noises, the D-CKF, D-ACKF and the

diffusion Kalman filter in [44] will have identical performances.
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Figure 5.4: A distributed network with N = 20 nodes used in the simulations.

5.3.2 Projectile Tracking

We next considered the problem of estimating and tracking the position of a projectile in

two dimensions, where only noisy measurements of its position are available. Let (xn, yn)

and (ẋn, ẏn) denote the position and velocity vectors of the projectile at time instant n,

respectively, then the corresponding complex valued distributed state space model for the

system is given by

xn = Fxn−1 − jKg +Kwn

zi,n = hxn + vi,n

where:

• xn =

[
xn + jyn ẋn + jẏn

]T
is the projectile state vector, and g = 9.8m/s2 is the

gravitational acceleration;
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Figure 5.5: projectile tracking simulations: (a) Average performance (of all the nodes)
for a trial run of the diffusion algorithms; (b) Transient performance of the centralised
and diffusion algorithms.

• F, K and H are time-invariant matrices and vectors defined as

F =



1 T

0 1


 , K =




T 2

2

T


 and h =

[
1 0

]

where T is the sampling interval;

• zi,n is the observation at node i;

• wn is the zero mean state noise (used to account for modelling inaccuracies), whereas,

vi,n is the zero mean observation noise at node i.

To illustrate the benefits of the proposed distributed algorithms, we considered a

scenario with N = 20 nodes connected as in Figure 5.4, where a projectile was launched

into the air with an initial velocity (20, 10)m/s, from location (0, 0)m. The sampling

interval was set to T = 0.05s, and the mean square errors (MSEs) of the different algo-

rithms were computed by averaging 1000 independent trials. The state and observation

noises were noncircular Gaussian random processes, both with a degree of noncircularity

of η = 0.85, and their respective distributions were defined as

wn ∼ N (0, 5) vi,n ∼ N (0, 1 + 2
√
i)
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where the observation noise cross-correlations were set to E{vi,nv∗k,n} = 1 for i, k ∈

{1, 2, . . . , N} and i 6= k.

A sample simulation run for the two diffusion algorithms D-CKF and D-ACKF

is shown in Figure 5.5a, while Figure 5.5b illustrates the enhanced performance of the

widely linear D-ACKF in estimating the projectile location compared with the strictly

linear D-CKF. The (strictly linear) centralised-CKF and (widely linear) centralised-ACKF

were able to outperform their distributed counterparts D-CKF and D-ACKF, respectively,

due to their use of the full network observation data. However, this requires a high

communication overhead, compared with that required for the diffusion algorithms, such

as the scenario in the sparsely connected network shown in Figure 5.4.

5.4 Conclusions

Distributed complex state space estimation has been addressed in the context of collabo-

rative networks for the general case of improper state and observation models and noises.

The distributed (widely linear) augmented complex Kalman filter (D-ACKF) algorithm

has been introduced for the sequential state estimation of both proper and improper sig-

nal distributions, within a framework which caters for correlated nodal observation noises.

The analysis and simulations show that it provides unbiased and consistent estimates,

and enhanced performance for improper signals, compared with the distributed complex

Kalman filter (D-CKF). Simulations using both proper and improper signals illustrate the

performance gains of the proposed solutions.
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Chapter 6

Exploiting Sparsity in Widely

Linear Estimation

The Kalman filter is powerful tool for dealing with dynamic systems, however, in a numer-

ous applications it is the gradient descent based least mean square (LMS) algorithm that

is preferred due to its simplicity and low computational cost. For adaptive algorithms such

as the LMS, where the data pairs x and y are explicitly given, the aim is to estimate the

coefficients of the underlying system [18], which for complex systems can take on strictly

and widely linear forms. Widely linear algorithms are general and cater for both strictly

or widely linear system models, that is, the conjugate coefficient converges to zero when

the underlying transfer function is strictly linear. However, for the same steady-state per-

formance, the convergence rate of the widely linear (augmented) complex LMS (ACLMS)

algorithm is slower than its strictly linear counterpart the complex LMS (CLMS) [58].

In this Chapter, we address some convergence issues of the augmented complex

LMS (ACLMS) algorithm through the use of widely linear regularised cost functions,

analyse the effects of regularisation on the performance of the filter, and provide illustrative

simulations to illuminate the analysis.
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6.1 Background

6.1.1 Complex Least Mean Square (CLMS)

Without loss in generality, consider a measurement equation which relates a desired (ob-

served) signal dk ∈ C at time instant n to a regressor vector xk ∈ C
L×1 such that

dk = xH
k wo + qk (6.1)

where qk ∈ C is a zero-mean white noise process, and wo ∈ C
L×1 is the weight vector

to be estimated. The minimum MSE solution is found by minimising the standard cost

function

J = E{eke∗k} = E{|ek|2} (6.2)

where the error ek = dk − yk is the difference between the desired signal dk and the filter

output

yk = xH
k w (6.3)

whereby w is the filter coefficient estimate. The cost function is convex, and the minimum

of its derivative with respect to w∗ yields the Wiener solution

ŵ = E{xkx
H
k }−1E{dkxk} (6.4)

In practice, the true statistical moments in the Wiener solution are often unknown and

non-stationary. The CLMS is a gradient descent based algorithm, and approximates these

moments by their instantaneous estimates. The cost function is redefined to minimise the

instantaneous error, that is

Jk = eke
∗
k = |ek|2 = |dk − xH

k w|2 (6.5)

and is now time varying. The weight update vector can be expressed as

wk+1 = wk − µ∇wJk
∣∣
w=wk

(6.6)
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where µ is the adaption gain, and ∇wJk
∣∣
w=wk

= −ekxk the derivative of Jk with respect

to the weight vector [20]. The CLMS is a recursive algorithm, and can be summarised as

yk = xH
k wk (6.7)

ek = dk − yk (6.8)

wk+1 = wk + µekxk (6.9)

6.1.2 Augmented CLMS (ACLMS)

The ACLMS is the widely linear (augmented) extension of the CLMS, and is suited to

estimating the coefficients associated with the more general observation equation

dk = xH
k go + xT

k h
o + qk = xaH

k woa + qk (6.10)

where go ∈ C
L×1 and ho ∈ C

L×1 are weight vectors to be estimated, andwoa = [goT ,hoT ]T

and xa
k = [xT

k ,x
H
k ]T are the augmented coefficient and input vectors respectively. The

ACLMS cost function is of the form

Jwl
k = eke

∗
k = |ek|2

= |dk − xH
k g − xT

k h|2 = |dk − xaH
k wa|2 (6.11)

where the aim is to find the two weights wa = [gT ,hT ]T which minimise the cost function.

Following the same derivation as the CLMS, the ACLMS can be summarised as

yk = xH
k gk + xT

k hk = xaH
k wa

k

ek = dk − yk

wa
k+1 = wa

k + µekx
a
k (6.12)
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Equivalently, the update for the two coefficients can be separated, that is

gk+1 = gk + µekxk (6.13)

hk+1 = hk + µekx
∗
k (6.14)

Note that the ACLMS is more general then the CLMS, however, it has a slower convergence

rate than the CLMS due to the excess number weights to be estimated.

6.2 Regularised ACLMS (R-ACLMS)

Regularisation is used to avoid overfitting to a particular dataset by introducing addi-

tional information. It is usually implemented as a penalty for complexity, e.g. through

bounds on the vector space norm. Examples of regularisation include model order se-

lection techniques, such as the Akaike information criterion (AIC), minimum description

length (MDL), and the Bayesian information criterion (BIC); in these cases regularisation

is used to find a balance between performance, model order, and coefficient size.

Regularisation can be used to balance between accuracy and model complexity by

modifying the cost error function. A regularised version of the cost function (6.11) is given

by

Jr
k = Jwl

k + γ||wa||p (6.15)

where ||wa||p denotes the lp-norm of wa, and the term γ ≥ 0 controls the degree of

regularisation, for example when γ = 0 the cost function Jr
k becomes the widely linear

cost function Jwl
k .

The effect of regularisation in the cost function (6.15), is to enforce the coefficient

estimates g and h to their minimum norm, which introduces an estimation bias when the

true coefficients go and ho are non-zero.

To illuminate this point, consider a real valued noiseless observation equation with
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Figure 6.1: Comparison between the l1- and l2-norm regularised cost functions for
different values of γ. The standard cost function is achieved by setting γ = 0.

a scalar weight, that is,

dk = x∗kw
o (6.16)

where the optimum weight wo = 2, the input xk = 1 is a constant. The regularised cost

function is then given by

Jr
k = |dk − x∗kw|2 + γ||w||p (6.17)

A plot of this cost function for different spans of w is shown in Figure 6.1, where for

γ 6= 0 the minima of the cost functions do not correspond to the optimum weight wo = 2,

introducing bias into the estimation. However, the minima of the regularised cost functions

approach wo as γ is reduced. For wo = 0, the cost function minimums are unbiased for

any γ value.

6.2.1 Regularised Widely Linear Gradient Descent

The regularised cost function (6.15), regularises both coefficient vectors g and h, which

introduces an estimation bias when the true coefficients go and ho are nonzero. In the

case of the ACLMS, we are interested in preventing overfitting when the system to be

estimated is strictly linear. Therefore, it is the conjugate weight (h) that needs to be
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regularised, and the regularised cost function takes the following form:

Jr
k = Jwl

k + γ||h||p

= |dk − xH
k g − xT

k h|2 + γ||h||p (6.18)

whereby the minima of (6.18) corresponds to the optimum weights when the systems to

be estimated is strictly linear, that is ho = 0; otherwise for widely linear systems (ho 6= 0),

the cost function minima is not aligned with the optimum weights. Based on (6.18), we

have the following time updates for the filter coefficients

gk+1 = gk + µ∇gJ
r
k |g=gk

= gk + µekxk (6.19)

hk+1 = hk + µ∇hJ
r
k |h=hk

= hk + µekx
∗
k − αΣp(hk) (6.20)

where Σp(hk) =
(
∇h||h||p

)∣∣
h=hk

∈ C
L×1 denotes the subgradient of the lp-norm, and the

term α = µγ governs the fraction of the conjugate weight updated due to regularisation.

For the remainder of this paper, we will refer to the adaptive filters utilising the regularised

update equations (6.19)–(6.20) as the regularised-ACLMS (R-ACLMS).

In this work, we restrict our analysis to regularisation involving l1- and l2-norms.

The l1-norm subgradient is the component-wise sign function given by

Σ1(u) = sgn(u) =





u/|u| if u 6= 0

0 if u = 0

whereby for a vector input, we have

Σ1(hk) = [sgn(h
(1)
k ), · · · , sgn(h(L)k )]T (6.21)
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with h
(i)
k being the ith component of hk; while, the l2-norm subgradient is defined as

Σ2(hk) =
1

2
(hH

k hk)
− 1

2hk =
1

2

hk

||hk||1/22

(6.22)

Remark #1: Note that each component in the l1-norm gradient, Σ1(hk), consists of

the normalisation of hk such that each component has unit magnitude; while the l2-norm

gradient, Σ2(hk), consists of the normalisation of the conjugate vector by its l2-norm.

The augmented form for the R-ACLMS is as follows:

yk = xH
k gk + xT

k hk = xaH
k wa

k (6.23)

ek = dk − yk (6.24)

wa
k+1 = wa

k + µekx
a
k − α∆p,k (6.25)

where wa
k = [gT

k ,h
T
k ]

T , ∆p,k = [0TL,Σp(hk)
T ]T , and 0TL is a zero column vector of length

L. The update for the two coefficients can be separated, as shown in (6.19)–(6.20).

6.2.2 Cost Function Bias Analysis

For the analysis of the R-ACLMS, we utilise the standard independence assumptions, that

is, xk is independent and identically distributed in time with augmented covariance Ra
x,

and uncorrelated with the white observation noise process qk.

The derivative of the cost function Jr
k with respect to wa

k is given by

∇waJr
k |wa = −ekx

a
k + γ∆p (6.26)

Setting this derivative to zero and rearranging, we have

wa
min = [xa

kx
aH
k ]−1[dkx

a
k − γ∆p]

= [xa
kx

aH
k ]−1[xa

kx
aH
k woa + xa

kqk − γ∆p]

= woa + [xa
kx

aH
k ]−1[xa

kqk − γ∆p] (6.27)
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Utilising the independence assumptions and (6.27), the weight error becomes

w̃a = wa
min −woa = [xa

kx
aH
k ]−1[xa

kqk − γ∆p] (6.28)

Finally, applying the expectation operator to both side yields

E{w̃a} = E{[xa
kx

aH
k ]−1xa

kqk} − E{[xa
kx

aH
k ]−1γ∆p}

= −γE{[xa
kx

aH
k ]−1}∆p (6.29)

Remark #2: For the minima of the regularised cost function to align with the optimal

weight, it is required that ∆p = [0TL,Σp(h)
T ]T = 0. Based on (6.21) and (6.22), this is

the case only when wa = 0, otherwise the weight estimate is biased.

6.2.3 Mean Convergence Analysis

We start by substituting the desired signal (6.10) and R-ACLMS output (6.23) into the

error signal, that is

ek = dk − yk = xaH
k woa + qk − xaH

k wa
k (6.30)

then the weight update (6.25) can be written as

wa
k+1 = wa

k + µ
[
xa
kx

aH
k woa + xa

kqk − xa
kx

aH
k wa

k

]
− α∆p,k (6.31)

Subtracting the optimal weight vector wo from both sides of (6.31) yields

w̃a
k+1 = wa

k+1 −wo

= w̃a
k − µxa

kx
aH
k w̃a

k + µxa
kqk − α∆p,k (6.32)
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Figure 6.2: Coefficient convergence of the ACLMS and R-ACLMS for a strictly linear
system with a noncircular input signal.

Applying the statistical expectation operator to both sides and employing the indepen-

dence assumption, we have

E{w̃a
k+1} = (I− µRa

x)E{w̃a
k}+ µE{xa

kqk} − αE{∆p,k}

= (I− µRa
x)E{w̃a

k} − αE{∆p,k} (6.33)

Remark #3: Note that by setting α = 0, the R-ACLMS become the ACLMS, and the

convergence results for the ACLMS apply [58], whereby the ACLMS is stable for

0 < µ <
2

λmax(Ra
x)

(6.34)

with λmax(R
a
x) is the largest eigenvalue of Ra

x. Otherwise, for α 6= 0, the R-ACLMS has

an extra degree of freedom, and α can be chosen to set performance characteristics.
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6.3 Application Examples

We firstly illustrate the coefficient convergence of the adaptive filters for the strictly linear

system given by

dk = x∗kw
o + qk

where wo = 0.5 + j0.3, the input xk was a zero-mean noncircular (E{x2k} = 0.9), unit

variance, complex white Gaussian process, and qk was a complex circular Gaussian obser-

vation noise with variance 0.001. An adaption gain of µ = 0.01 was chosen for the ACLMS

and R-ACLMS algorithms, the regularisation parameter α for the l1 and l2 R-ACLMS al-

gorithms were set to 0.0004 and 0.001 respectively, and filter coefficient were initialsed to

zero.

Figure 6.2 shows the convergence of the real and imaginary parts of the standard

weight gk and conjugate weight hk, together with the mean square error (MSE) perfor-

mances. The results show that the R-ACLMS algorithms offer better weights and error

convergence rates for noncircular inputs. However, the performance gains of the R-ACLMS

algorithms are not inherited in widely linear systems as will be discussed in the following

example.

We next consider a system identification problem for (a) a strictly linear system

with 15 complex weights (coefficients) and (b) a widely linear system with 15 standard

complex weights and 15 conjugate weights. The input vector xk was a complex white

random process with identity covariance matrix Rx = I, while the variance of the complex

white observation noise qk and the regularisation parameters for the l1-norm and l2-norm

R-ACLMS algorithms were as above. In the figures that follow, the mean square error

(MSE) of the algorithms were computed by averaging 500 trails.

For the set of simulations shown in Figure 6.3, the input vector had a circular

Gaussian distribution, and an adaptation gain of µ = 0.01 was chosen for the CLMS,

while for the ACLMS and R-ACLMS algorithms µ was set at half of this value to ensure

that all the algorithms have the same steady-state performance as the CLMS. The results
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Figure 6.3: Performance comparison between the CLMS, the widely linear ACLMS,
the l1- and l2-norm regularised ACLMS (R-ACLMS) for strictly and widely linear
systems with a circular input vector E{xkx

T
k } = 0.
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Figure 6.4: Performance comparison between the CLMS, the widely linear ACLMS,
the l1- and l2-norm regularised ACLMS (R-ACLMS) for strictly and widely linear
systems with a noncircular input vector E{xkx

T
k } = 0.6I.

for the strictly linear system, show that the CLMS had the best convergence rate [58], while

the R-ACLMS algorithms converged slightly faster than the ACLMS. All the algorithms

reached similar steady-states, and the R-ACLMS algorithms provided unbiased weight

estimates. For the widely linear system in Figure 6.3b, the ACLMS offered the best

steady-state performance due to its unbiased weight estimate, while the R-ACLMS weight
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Figure 6.5: Performance comparison between the different algorithms for the predic-
tion of real-world Wind data at different prediction horizons.

estimates were biased (see Remark 2), but outperform the CLMS which under-modelled

the widely linear system.

Figure 6.4 illustrates the case when the input vector had a noncircular Gaussian

distribution E{xkx
T
k } = 0.6I. Again, the comparative differences between the algorithms

were the same: the CLMS had the best convergence rates, ACLMS had the best steady-

state MSE for the widely linear system, while the performances of the R-ACLMS algo-

rithms were somewhere in between the CLMS and ACLMS. The convergence rates of all

the algorithms were effected by the noncircularity of the input [58], and this was especially

pronounced for the ACLMS algorithm.

The final set of simulation in Figure 6.5, show the performance for multistep ahead

prediction of real-world Wind data, whereby the filters employed widely linear 4th order

autoregressive processes to make predictions. The results show that the R-ACLMS algo-

rithms were better suited to tracking the improper and nonstationary Wind data compared

with the ACLMS, due to their faster convergence rates.

6.4 Conclusions

The widely linear (augmented) complex least mean square (ACLMS) is suited to the gen-

erality of complex systems, both strictly and widely linear systems, but suffers from slow

convergence speeds. In this work, the conjugate weight regularised ACLMS (R-ACLMS)
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algorithm was presented to address the convergence issues of the ACLMS. The analysis

shows that regularisation of the standard cost function introduces a weight estimation

bias when the underlying system is widely linear, where the size of the bias is determined

by the size of the regularisation factor. Simulation results show that the R-ACLMS con-

verges faster than the ACLMS, and offers similar steady-state performance for strictly

linear systems, which makes R-ACLMS algorithms better suited to improper nonstation-

ary systems.
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Chapter 7

Conclusions

This thesis has highlighted important theoretical and practical aspects regarding complex

valued signal processing. Complex signals are natural and offer an alternative to real

signals in deriving theoretical and practical solutions to problems. They also present

a convenient and beneficial representation for various classes of data, including radar,

wind, communication signals and MRI. Further, complex signals arise in many practical

applications ranging from Fourier analysis to analytic signals.

The complex domain offers more powerful statistics, the notions of second-order

proper and improper complex random variables, give more degrees of freedom. Addition-

ally, a complex representation offers simultaneous modeling and fusion of two variables,

as well as a compact way of treating two real valued variables as one number satisfying

all the standard rules of algebra. This concluding chapter summarises the work presented

in this thesis and suggests some future directions.

7.1 Summary of Work

The objective of this thesis has been to explore and design adaptive real-time complex

valued signal processing algorithms and techniques for dealing with the generality of com-

plex signal. An important component of this has been the recent developments which

have brought to light problems concerning standard statistical complex signal processing
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approaches. The second order statistical properties of a complex vector z = x + jy has

conventionally been characterised by its covariance Cz = E{zzH}, and the other statis-

tical moment known as the pseudocovariance Pz = E{zzT } has typically been ignored

implicitly or explicitly in the design of algorithms, which leads to suboptimal solutions

from a second order statistical point of view. However, for a complete second order de-

scription, both these moments are necessary. It is only for the special class of complex

signals known as proper and circular (rotation invariant probability distributions), that

are characterised by a vanishing pseudocovariance (in other words, signals that are uncor-

related with their complex conjugates), that their covariance function suffices to capture

the full second order information.

The so called augmented complex statistics has highlighted the benefits of simulta-

neously catering for both Cz and Pz, through the estimation framework known as widely

linear modeling, which seeks to estimate desired signals based on the observations and

their complex conjugates. This thesis exploited these approaches to extend and develop

adaptive complex signal processing algorithms suited to the generality of complex data.

The main contributions of this thesis are as follows.

Chapter 3 presented a class of widely linear complex Kalman filters (KFs) for both

linear and nonlinear systems. The augmented complex KF (ACKF) was introduced and

shown to be second order optimal for the generality of complex signals (achieves the

Cramer-Rao lower bound), and the analysis showed that it offers better mean square error

(MSE) performance compared with the conventional complex KF (CCKF). For nonlinear

systems, the augmented extended KF (ACEKF) and augmented unscented KF (ACEKF)

were presented for systems with improper signal statistics to caters for the complete second

order information. Analysis of the mean square characteristics of CCKF has shown that it

is blind to the impropriety of the state and observation signals, however, the mean square

characteristics of the complex extended Kalman filter (CEKF) and complex unscented

Kalman filter (CUKF) are a function of the impropriety of the state noise noncircularity

for the nonlinear observation models. In Appendix A, nonlinear state space estimation

problems utilising complex particle filters in conjunction with augmented statistics was
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explored. The results show that the proposed solutions offer enhanced performance for im-

proper data. Appendix B proposes a widely linear solution to the DIFAR sonobuoy bearing

estimation problem for underwater acoustic sources based on the ACEKF in Chapter 3.

In Chapter 4, we introduced a widely linear state space based frequency estima-

tion technique in the context of three-phase power systems, under both balanced and

unbalanced operating conditions. The analysis and simulations showed that owing to the

underpinning state space representation, this approach offers enhanced accuracy and faster

convergence, together with robustness to noises. Further, circularity diagrams of Clarke’s

αβ transformed signals allowed for the identification of unbalanced faulty conditions.

We extended the Kalman filter algorithms proposed in Chapter 3 to the case of

distributed cooperative state space estimation in Chapter 5, whereby nodes in a network

collaborate locally with their neighbours to estimate signals. The propose distributed

augmented (widely linear) complex KF (D-ACKF) caters for general improper complex

signals, as well as the cross-correlations between the observation noises at neighbouring

nodes, unlike earlier distributed Kalman filtering solutions. The analysis and simulations

show that D-ACKF provides unbiased and consistent estimates, and enhanced performance

for improper signals.

Chapter 6 addressed the convergence issues related to the widely linear (augmented)

complex least mean square (ACLMS) algorithm through the use of widely linear regularised

cost functions. The conjugate weight regularised ACLMS (R-ACLMS) algorithm was

presented, and analysis showed that regularisation of the standard cost function introduces

a weight estimation bias when the underlying system is widely linear, where the size of the

bias is determined by the size regularisation factor. The simulation results showed that the

R-ACLMS converges faster than the ACLMS, and offers similar steady-state performance

for strictly linear systems, which makes R-ACLMS algorithms better suited to improper

nonstationary systems.
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7.2 Future Work

This thesis developed and illustrated the performance of widely linear complex state space

algorithms, and illustrated their performances within a number of applications. However,

these were by no means exhaustive. An interesting avenue of further research would be

to consider applications of widely linear modelling algorithms and augmented complex

statistics to a wider range of problems. A few topics are suggested below.

7.2.1 Complex Signals in Transform Domains

Complex signals are at the heart of transform domains such as the Fourier transforms,

where real or complex time domain data are mapped onto the frequency domain. For

example, we are often interested in estimating the sizes of the complex valued frequency

bins and suppressing the noises associated with them, and due to the nonstationarity and

impropriety of the analysed signals (e.g. speech), the second order optimum estimators

of these bins will generally take widely linear forms [59]. There is also work to be done

within spectral analysis techniques to address the possible benefits of augmented statistics

and widely linear estimation.

7.2.2 Higher Order Propriety

The definition for complex propriety is not limited to second order statistics, but is also

defined for higher order moments. There is one moment function corresponding to each

statistical moment for real valued data, whereas for complex data the number of moment

functions increases with the order of the moment. For example, a zero-mean complex

signal z has four third order moments (E{zzz}, E{zzz∗}, E{zz∗z∗}andE{z∗z∗z∗}) - for a

real random variable all these moments are equal [7]. In general, for a given order n, there

are (n+1) different moments1. Taking higher order information is particularly important

in applications involving nonlinear estimation and/or non-Gaussian data sources. Widely

linear kernels and neural networks have recently been introduced as way of incorporating

1Practically, only (m = floor[n/2] + 1) are required for a complete nth order statistical description,
since e.g. E{z∗z∗z∗} is a deterministic transformation of E{zzz}.
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higher order moments, however, this is an open avenue to further research.

7.2.3 Complex Signals in Communication Systems

Complex signals are ubiquitous within communication systems, where in-phase and

quadrature components are combined to form complex exponentials, and estimation and

detection are also typically carried out within the complex domain. An integral part of

modern communication systems involves estimating the communication channel, and the

arrival directions of signals and interferences. Due to the nonstationarity of the channel

and interferences, the general form of minimum MSE receivers will be widely linear for

improper data. Recently some initial research has been carried out to exploit widely lin-

earity within this field, such as the widely linear channels equalization [60], and widely

linear reception strategies [61], however, there is ample room for further research.

7.2.4 Complex Valued Imaging

Complex signals are also common in a number of imaging processing application [62]. For

example, many coherent imaging systems such as synthetic aperture radar (SAR) have

an inherent random phase, and are complex valued by nature [63]. Another example is

ultrasound imaging which is typically carried out non-coherently on the extracted envelope

of a signal, which is complex by an analytic representation or through a complex rotator

demodulation of the signal.

7.2.5 Complex Biomedical Engineering

Complex signals play an increasing important role in biomedical engineering, where var-

ious signal processing techniques are being exploited to gain better insights [64]. These

techniques include joint time-frequency analysis of non-stationary biomedical signals, an-

alytic and Hilbert transform analysis of nonlinear systems and oscillators, together with

biological clocks. Recent preliminary studies in this topic, such as the use of signal pro-

cessing to classify between brain dead and coma patients, have shown promising results,

and necessitate further investigations [65].
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Appendix A

Particle Filtering and Augmented

Complex Statistics

This Appendix explores nonlinear complex state space estimation problems utilising com-

plex valued particle filters in conjunction with augmented statistics. The particle filter

is a sequential Monte Carlo method offering a general numerical tool to approximate the

Bayesian posterior distribution in nonlinear and non-Gaussian filtering problems. Com-

pared to the Kalman filter and its extensions[40], which are generally designed for linear

systems with Gaussian distributions (catering for only the first two statistical moments),

the particle filter in both its real- and complex-valued forms has been shown to also

effectively capture higher order moments, and has found a wide range of applications

[66][67][68][69].

Conventional complex valued particle filters employing Gaussian distributions have

been designed (implicitly or explicitly) for the special class of signals known as second order

circular (proper) [68][70], that is, signals with rotation invariant probability distributions.

However, complex Gaussian signals are typically second order noncircular (improper);

this is due to the different signal powers in the real and imaginary parts, correlation of

the real and imaginary parts, or finite sample size [7]. It has been shown recently for

a number of complex valued algorithms that catering for the noncircularity of signals

yields significantly improved estimation performance [1][71][72], and the ability to unify
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the processing of proper and improper signals under one umbrella.

For instance, in the case of complex Gaussian distributions for general (noncircular)

complex signals, the probability density function (PDF) is a function of the augmented

covariance matrix [73] and consequently of both the covariance and pseudocovariance - it

is only in the special case of circular signals, that the pseudocovariance vanishes, and the

PDF is solely dependent on the covariance.

In this Appendix, we propose to employ augmented complex statistics in conjunc-

tion with particle filtering in order to provide sequential estimation for state space models

with general Gaussian complex noises. We also illuminate the performance of such an aug-

mented complex particle filter (ACPF), as well as that of the conventional complex particle

filter (CCPF), for signals with various degrees of noncircularity. Further, the augmented

complex Gaussian particle filter (ACGPF), which propagates the posterior distribution

using the sample mean and both the sample covariance and pseudocovariance, is proposed

and highlights the benefits of catering for noncircularity through the use of the pseudo-

covariance. Simulations on both proper and improper data support show the potential of

the proposed filters.

A.1 Background

A.1.1 Generalised Multivariate Complex Gaussian Distribution

In standard statistics of complex signals, a zero mean complex variable z = zr+ jzi ∈ C
N ,

the multivariate complex normal distribution (CND) z ∼ N (E{z},Rz) is given by

P[z] =
1

πN detRz

e−zHR−1
z

z (A.1)

which has been a standard widely used in the literature. Recent results show that CND

is only suitable for characterising Gaussian circular distributions [73], and that it is a

special case of the generalised (multivariate) complex normal distribution (GCND) z ∼
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N (E{z},Rz,Pz) with a PDF given by [7][73]

P[za] =
1

πN (detRa
z)

1/2
e−

1
2
zaH(Ra

z
)−1za (A.2)

which describes both circular and noncircular normal distributions, through the use of the

augmented covariance matrix Ra
z. It is straightforward to show that GCND degenerates

to CND for circular distributions (Pz = 0).

A.2 Complex Particle Filtering

A.2.1 Conventional Complex PF (CCPF)

The particle filter is a sequential Monte Carlo technique that estimates the posterior state

distribution using sequential importance sampling. The idea is to use a set of weighted

samples (particles), drawn from the posterior distribution, to directly implement an opti-

mal Bayesian estimate. Consider the complex valued state space model given by

xk = f [xk−1,vk] (A.3a)

yk = h[xk,nk] (A.3b)

where xk is the state to be estimated at time instant k, yk the noisy observation, f [·] and

h[·] the nonlinear (possibly time-varying) state transition and measurement functions,

while the vectors vk and nk comprise the uncorrelated state and measurement noises.

In standard complex estimation, the posterior distribution of the full state trajectory

x0:k = {x0, . . . ,xk} based on the observation sequence y1:k = {y1, . . . ,yk} is approximated

as [74]

P̂[x0:k|y1:k] ≈
1

M

M∑

i=1

δ[x0:k − x
(i)
0:k] (A.4)

where the independent and identically distributed (i.i.d.) samples {x(i)
0:k}Mi=1 are drawn from

the posterior distribution P[x0:k|y1:k] and δ[·] is the Dirac delta function. Expectations of
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the form

E{g[x0:k]} =

∫
g[x0:k]P[x0:k|y1:k]dx0:k (A.5)

where g[·] is either a linear or nonlinear function, can then be approximated as

E{g[x0:k]} ≈ 1

M

M∑

i=1

g[x
(i)
0:k] (A.6)

whereby, as the number of particles M approaches infinity, the approximation (A.6) will

converge to the true expectation almost surely. Note that although we are working with

the more general full posterior distribution P[x0:k|y1:k], the filtering distribution P[xk|y1:k]

is simply a marginal of the full distribution.

Sampling from the posterior density function is often mathematically intractable.

However, by utilising the concept of importance sampling, the samples can be generated

from a known proposal (or importance) density Q[x0:k|y1:k], instead of the true posterior

density function. It follows that the expectation in (A.5) can be rewritten as

E{g[x0:k]} =

∫
g[x0:k]

P[x0:k|y1:k]

Q[x0:k|y1:k]
Q[x0:k|y1:k]dx0:k

=

∫
g[x0:k]

wk

P[y1:k]
Q[x0:k|y1:k]dx0:k (A.7)

where the variables wk are the importance weights defined as

wk =
P[x0:k]P[y1:k|x0:k]

Q[x0:k|y1:k]
(A.8)

Now, by using a proposal density which can be factorised as

Q[x0:k|y1:k] = Q[x0:k−1|y1:k−1]Q[xk|x0:k−1,y1:k] (A.9)

together with making the assumption that the current state is independent of future

observations, allows for a sequential update of the importance weights, that is

wk =
P[yk|xk]P[xk|xk−1]

Q[xk|x0:k−1,y1:k]
wk−1 (A.10)
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In other words, the expression in (A.10) shows how to sequentially update the importance

weights given the prior P[xk|xk−1], likelihood P[yk|xk], and proposal Q[xk|x0:k−1,y1:k]

densities.

Based on the particles {x(i)
0:k}Mi=1 generated from the proposal density, the expecta-

tion in (A.6) is approximated as

E{g[x0:k]} ≈
1
M

∑M
i=1w

(i)
k g[x

(i)
0:k]

1
M

∑M
i=1w

(i)
k

=

M∑

i=1

w̃
(i)
k g[x

(i)
0:k] (A.11)

where w
(i)
k is the weight corresponding to particle x

(i)
0:k, and the variable w̃

(i)
k =

w
(i)
k /

∑M
n=1w

(n)
k is the corresponding normalised weight. Provided the support of the pro-

posal density includes the support of the true posterior distribution, the approximation in

(A.11) will asymptotically converge, and the full posterior distribution can be estimated

as

P̂[x0:k|y1:k] =
M∑

i=1

w̃
(i)
k δ[x0:k − x

(i)
0:k] (A.12)

A major problem of particle filtering is the issue of degeneracy, where, after a few

iterations, the majority of the particles are assigned negligible weights, which leads to

deteriorating performance. Degeneracy, however, can be reduced by resampling the parti-

cles; several resampling schemes have been proposed in the literature, including sampling

importance resampling (SIR), and residual resampling [70].

SIR involves remapping the particles and their corresponding weights to a set of

particles with equal weights, whereby M samples are randomly selected from the set

{x(i)
k }Mi=1 with corresponding probabilities {w̃(i)

k }Mi=1. Resampling can be implemented as

needed or at every time step. In this paper, we adopt the latter strategy.

A.2.2 Augmented Complex PF (ACPF)

To account for noncircular signal distributions, estimation of general Gaussian complex

signals should be based on augmented statistics, catering for both circular or noncircular
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distributions under the same umbrella. Hence, a more general approximation than that

in (A.4), of the true posterior density becomes

P̂[xa
0:k|ya

1:k] ≈ 1

M

M∑

i=1

δ[xa
0:k − x

a(i)
0:k ] (A.13)

which approximates the state based on both the observation sequence and its conjugate.

In (A.13), xa
0:k = {xa

0, . . . ,x
a
k} and ya

1:k = {ya
1 , . . . ,y

a
k}, while the samples {x(i)

0:k}Mi=1 are

drawn from the true posterior density P[xa
0:k|ya

1:k], as opposed to P[x0:k|y1:k] which only

describes circular distributions. We use densities with augmented arguments, such as in

(A.2) and P[xa
0:k|ya

1:k], to refer to densities which characterise both circular and noncir-

cular distributions, while, densities with non-augmented arguments, such as in (A.1) and

P[x0:k|y1:k], refer to densities which only describe circularity distributions.

The first aspect of the particle filtering framework where noncircularity can be

incorporated is in the selection of proposal densities1, which should be chosen to reflect

the circularity of the true posterior density. A common choice of proposal density is the

transition prior density, that is

Q[xk|x0:k−1,y1:k] = P[xa
k|xa

k−1] (A.14)

The second aspect where noncircularity of signals can be accounted for is during the

evaluation of the importance weights, and more specifically the likelihoods. The likelihoods

of the particles can be examined using either density functions suited only to describing

circular distribution [68][70] P[yk|xk], such as in (A.1), or using more general density

functions that can characterise both circular and noncircular distributions P[ya
k|xa

k], such

as that in (A.2).

For example, consider the case of a nonlinear state space model with additive

1The choice of proposal density is an important design issue for particle filters; in fact, the optimal
choice of proposal density is the unknown true posterior density.
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Gaussian noises,

xk = f [xk−1] + vk (A.15a)

yk = h[xk] + nk (A.15b)

Given the previous state xk−1, the transition prior is defined as in (A.1), that is

P[xk|xk−1] ∼ N (f [xk−1],Rv) (A.16)

However, when the state noise is noncircular, the true prior distribution is described by

(A.2), giving

P[xa
k|xa

k−1] ∼ N (f [xk−1],Rv,Pv) (A.17)

This way, the distribution incorporates the circularity of the state noise through the use

of the pseudocovariance Pv. Similarly, given the current state xk, the likelihood density

is correctly evaluated using an augmented density function,

P[ya
k|xa

k] ∼ N (h[xk],Rn,Pn) (A.18)

The augmented complex particle filter (ACPF) takes a similar form to the conventional

complex particle filter, but utilises augmented complex densities to cater for noncircular

signal distributions, and is summarised in Algorithm 12.

At this point it is worth pointing out that due to the topological isomorphism be-

tween augmented complex vectors and bivariate real vectors[7], real valued algorithms

have dual corresponding augmented complex versions and vice-versa, with identical

performances[1]. For any complex vector z = zr + jzi ∈ C
N , the duality mapping is

given by

za =



z

z∗


 =



I jI

I −jI




︸ ︷︷ ︸
≡Jz



zr

zi




︸ ︷︷ ︸
=zr

(A.19)
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Algorithm 12: The augmented complex PF (ACPF)

Initialisation:

• Draw state particles {x(i)
0 }Mi=1 from prior P[xa

0]

• Set the weights as: {w̃(i)
0 }Mi=1 =

1
M

For k = 1, 2, ...

• Sample from proposal density: x
(i)
k ∼ Q[xa

k|x
a,(i)
k−1 ,y

a
1:k]

• Evaluate importance weights:

w
(i)
k =

P[ya
k|x

a,(i)
k ]P[x

a,(i)
k |xa,(i)

k−1 ]

Q[x
a,(i)
k |xa,(i)

0:k−1,y
a
1:k]

• Normalise importance weights:

w̃
(i)
k = w

(i)
k /

( M∑

n=1

w
(n)
k

)

• Compute state estimate:

x̂k =
M∑

i=1

w̃
(i)
k x

(i)
k

• Resample using an appropriate scheme, such as sampling importance resampling
(SIR) or residual resampling

where I is the identity matrix (with appropriate dimensions), and the invertible orthogonal

mapping2 Jz : C2q → R
2q is such that J−1

z = 1
2J

H
z [20]. The derivation of the GCND above

is also based on this isomorphism.

Generally, state space models are naturally defined in either the real or complex

domain, and it is desirable to keep all of the computations in the original domain. This

facilitates understanding of the transformations the signals undergo, and we also benefit

from the notion of phase and circularity in the case of complex signals.

2For a vector z ∈ C
q, the corresponding orthogonal matrix Jz takes dimension 2q × 2q.
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A.2.3 Augmented Complex Gaussian PF (ACGPF)

The particle filter in its generic form has a number of disadvantages, including high com-

putational complexity and problems when estimating constants, which has led to a number

of variations and extensions which address these issues. One popular variation of the stan-

dard particle filter is the Gaussian particle filter (GPF), which essentially approximates

the posterior density of the unknown state as a Gaussian distribution [66][75], that is, it

only propagates the posterior mean and covariance as the extended Kalman filter (EKF).

The benefits of GPF include reduced complexity and a unified framework for estimating

both dynamic and constant states.

The main distinguishing point of the GPF algorithm is that after computation of

the normalised particle weights, the sample mean and covariance of the state are evaluated

as

µ̂k =
M∑

i=1

w̃
(i)
k x

(i)
k (A.20)

R̂x,k =
M∑

i=1

w̃
(i)
k

(
x
(i)
k − µ̂k

)(
x
(i)
k − µ̂k

)H
(A.21)

It is these two moments that are propagated to the next iteration, instead of the actual

particles, which means that resampling of the particles can be avoided, thus, leading to

reduced computational complexity.

However, as shown above, within a complex estimation framework the covariance

alone is insufficient for a complete second order characterisation of the particle distribu-

tions, and an estimate of the pseudocovariance matrix, given by

P̂x,k =

M∑

i=1

w̃
(i)
k

(
x
(i)
k − µ̂k

)(
x
(i)
k − µ̂k

)T
(A.22)

is also required for correct operation. A unified approach to the simultaneous estimation of

covariance and pseudocovariance matrices can be achieved by utilising augmented particle
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vectors x
a,(i)
k = [x

(i)T
k ,x

(i)H
k ]T to estimate the augmented covariance matrix, that is

R̂a
x,k =

M∑

i=1

w̃
(i)
k

(
x
a,(i)
k − µ̂a

k

)(
x
a,(i)
k − µ̂a

k

)H

=



R̂x,k P̂x,k

P̂∗
x,k R̂∗

x,k


 (A.23)

where the augmented mean µ̂a
k = [µ̂T

k , µ̂
H
k ]T . The individual estimates of the second

order moments, (A.21) and (A.22), can be cast in to the augmented structure (A.23) to

save in computations, thereafter, the distribution of the particles is approximated using

the generalised complex multivariate normal distribution (A.2), that is, N (µ̂k, R̂x,k, P̂x,k).

The augmented complex GPF (ACGPF) method is outlined in Algorithm 13.

A.3 Application Examples

To illustrate the advantages of the augmented particle filter algorithms over their con-

ventional counterparts, we considered the following case studies: 1) filtering of a noisy

complex-valued autoregressive process; 2) nonlinear bearings only tracking.

A.3.1 Complex autoregressive process

The performances of both the conventional complex particle filter (CCPF) and augmented

complex particle filter (ACPF) were examined using 200 particles for a first order complex

autoregressive process given by

AR(1): xk = 0.9xk−1 + uk

where the symbol uk denotes a noncircular white Gaussian driving noise with variance

E{uk−iu
∗
k−l} = E{|uk−i|2} = 0.001 and a varying pseudovariance E{u2k}. The observation

was a nonlinear function of the state, given by

yk = tanh[xk] + nk (A.24)
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Algorithm 13: The augmented complex Gaussian PF (ACGPF)

Initialisation:

• Draw state particles {x(i)
0 }Mi=1 from prior P[xa

0]

• Set the weights as: {w̃(i)
0 }Mi=1 =

1
M

For k = 1, 2, ...

• Sample from proposal density: x
(i)
k ∼ Q[xa

k|x
a,(i)
k−1 ,y

a
1:k]

• Evaluate importance weights:

w
(i)
k =

P[ya
k|x

a,(i)
k ]P[x

a,(i)
k |xa,(i)

k−1 ]

Q[x
a,(i)
k |xa,(i)

0:k−1,y
a
1:k]

• Normalise importance weights:

w̃
(i)
k = w

(i)
k /

( M∑

n=1

w
(n)
k

)

• Estimate mean, covariance and pseudocovariance:

x̂k = µ̂k =
M∑

i=1

w̃
(i)
k x

(i)
k

R̂x,k =
M∑

i=1

w̃
(i)
k

(
x
(i)
k − µ̂k

)(
x
(i)
k − µ̂k

)H

P̂x,k =

M∑

i=1

w̃
(i)
k

(
x
(i)
k − µ̂k

)(
x
(i)
k − µ̂k

)T

• Draw particles to be propagated from the GCND:

x
(i)
k ∼ N (µ̂k, R̂x,k, P̂x,k) =

where nk is a additive Gaussian complex doubly-white observation noise with variance

E{|nk−i|2} = 0.1 and a varying pseudovariance E{n2
k}. The ratio of the magnitude of

the pseudocovariance to covariance, η = |p| /c, was used as a measure of the degree of

circularity of the complex noises, where a complex random variable is circular for η = 0

and maximally noncircular for η = 1.

Figure A.1a illustrates the filtering results for a circular observation noise and a
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(a) Noncircular state noise
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(b) Noncircular observation noise

Figure A.1: Steady-state performance comparison between the conventional com-
plex particle filter (CCPF) and the augmented complex particle filter (ACPF) for
the AR(1) filtering problem: (a) circular observation noise and a noncircular state
noise with varying degrees of noncircularity; (b) circular state noise and noncircular
observation noise with varying degrees of noncircularity.

state noise with various degrees of noncircularity, while Figure A.1b shows the results for

a noncircular observation noise and a circular state noise. For both sets of simulations,

the ACPF outperformed the CCPF - especially for high degrees of noncircularity. The

ACPF had decreasing MSE as the degree of noise noncircularity η increased. As expected,

the two algorithms had the same performance for circular state and observation noise

distributions, that is, for η = 0. Observe that the performance of the CCPF was blind to

the noncircularity of state and observation noises.
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A.3.2 Bearings only tracking

Bearings only tracking (BOT) is a problem encountered in many practical applications,

including submarine tracking by passive sonar or aircraft surveillance by a radar in a

passive mode. The objective is the online estimation of the position and velocity of a

moving target using observer line of sight noisy bearing (phase) measurements. As the

range measurements are not available and the bearings are not linearly related to the

target state, the problem is inherently nonlinear. A single static sensor is unable to track

targets using bearing measurements only (due to the lack of range measurements, and in

order to estimate the range, the sensor has to maneuver). For two or more stationary

sensors, observability is not an issue, as the multiple bearing measurements can be used

to form a range estimate.

To estimate the trajectory of a target at time instant k, that is, its position (xk, yk)

and velocity (ẋk, ẏk), for a system with two observers located at (xo1,k, y
o
1,k) and (xo2,k, y

o
2,k),

the complex BOT state space is constructed as

xk = Fxk−1 +Bvk zk = h[xk] + nk

with the variables defined as follows:

• xk =

[
xk + jyk ẋk + jẏk

]T
is the target state vector,

• F and B are matrices defined as

F =



1 T

0 1


 and B =




T 2

2

T




where T is the sampling interval,

• zk is the observation vector and h[xk] is the scalar observation function defined as

h[xk] = β1,k + jβ2,k

where βi,k = tan−1 yk−yo
i,k

xk−xo
i,k

is the target bearing with respect to sensor i,
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Figure A.2: Performance of standard and augmented complex filters for BOT problem
with noncircular state and observation noises.

• vk = ẍk + jÿk is the white state noise used to account for the unknown target

accelerations, while nk is the complex white observation noise.

The advantages of the augmented complex Gaussian particle filter (ACGPF) over

the complex Gaussian particle filter (CGPF) within the context of bearings only target mo-

tion analysis are illustrated for a scenario with two static sensors located at (−2200,−4300)

and (1500, 3500). The system was simulated using a sampling interval of T = 1, and the

mean square errors (MSEs) of the different algorithms were computed by averaging 500

independent trials.

The particle filtering algorithms were compared using 1000 particles, noncircular

state and observation noises (with 0.9 and 0.8 degrees of noncircularity respectively) with
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distributions defined as

vk ∼ N (0, 0.05) nk ∼ N (0, 0.001)

Figures A.2a and A.2b show the average MSEs in estimating the position and velocity of

the target over 100 seconds. The results for the complex unscented Kalman filter (CUKF)

and its augmented version ACUKF are also shown for convenience [1]. All the augmented

algorithms outperformed their corresponding strictly linear counterparts, as they were able

to cater for the noncircular data distributions. The ACGPF underperformed compared

with the ACPF, because it approximates the posterior distribution at every iteration as

Gaussian, even when the true underlying distribution is non-Gaussian due to the nonlinear

observation function.

A.4 Conclusions

Complex Gaussian random variables that are correlated with their conjugates are charac-

terised by improper probability density functions. From a second order statistics point of

view, while the covariance captures the information regarding the total power of complex

signals, it is the second moment function known as the pseudocovariance, that conveys

the nature of the propriety of the signal. Within the particle filtering framework, we

have proposed the augmented complex PF (ACPF), based on augmented complex density

functions that caters for both circular and circular distributions. The augmented complex

Gaussian PF (ACGPF), which propagates the particle distribution based on the sample

mean, covariance as well as the sample pseudocovariance, has also been proposed for im-

proper signals. The performance of the filters have been tested using both circular and

noncircular data.
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Appendix B

An Enhanced Sonobuoy Bearing

Estimation Technique

In this Appendix, we consider the DIFAR sonobuoy bearing estimation problem for under-

water acoustic sources, and propose an new widely linear solution. Bearing or direction-

of-arrival (DOA) estimation is a problem encountered in a wide range of applications,

including navigation, surveillance and communication systems. In underwater environ-

ments, the DIFAR sonobuoy, consisting of two crossed dipoles and an omni-directional

hydrophone, is a typical arrangement used to provide three observations of a source signal

(target), which together allow for the bearing (angle) of a source (target) to be estimated.

In the ocean, however, there are many sources of background noise, such as environmen-

tal noise from wind, rain and waves, and biological noise from whales and other marine

mammals. These all contribute to the total power spectrum (both broadband and nar-

rowband) of the observed signals. Moreover, the propagation of acoustic signals in the

ocean is generally not uniform or isotropic, which also contributes to the difficulty of the

bearing problem in underwater environments [76][77][78].

The standard solutions for sonobuoy target detection and bearing estimation are

based on spectral analysis of the observed signals using the discrete Fourier transform

(DFT) [76][79][80] or using spectral modelling approaches, such as autoregressive moving

average (ARMA). However, these techniques usually suffer from limited frequency resolu-
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tion, which becomes especially pronounced for low signal to noise ratios (SNRs), leading

to poor performance. Moreover, due to their block-processing nature, these techniques are

not suited to rapidly moving targets, where the target bearing is nonstationary during the

collection of the data block used for the DFT. Among the popular solutions for underwater

sonobuoy bearing estimation is the DFT based ‘arctangent’ estimator [79] which utilises

time-averaged products of the observation data blocks to estimate the target bearing.

In this Appendix, embarking upon the recently introduced augmented complex

statistics and widely linear modelling, we propose an online sonobuoy target bearing esti-

mation solution, based on widely linear (augmented) complex state space model introduced

in Chapter 3. The second order statistics of both the state and observation noises are esti-

mated from the observation data, and their estimates are also updated online. It is shown

that the state space model is inherently nonlinear, and the augmented complex extended

Kalman filter is employed to address the problem. Simulations illustrate the robustness

of the proposed technique, yielding enhanced performance compared to the standard arc-

tangent estimator, especially in unfavourable signal-to-noise (SNR) conditions.

B.1 New State Space Formulation

Figure B.1 illustrates the arrangement of the sonobuoy sensors for a source at bearing β,

the crossed-dipole sensor observes the following three waveforms [79]

yo,k = sk + vo,k (B.1a)

yc,k = sk cos[β] + vc,k (B.1b)

ys,k = sk sin[β] + vs,k (B.1c)

where the subscripts o, c and s denote the omni, cosine and sine channels respectively,

while sk is the signal emitted by the source (target) at time instant k, and vo,k, vc,k and vs,k

are the uncorrelated, zero-mean, observation noises. . In the standard arctangent bearing

estimator, the discrete Fourier transform (DFT) of the observation signals are taken, and

the frequency domain representation of the equations above assume the following forms
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Figure B.1: A geometric view of the three sonobouy sensors (top view).

[79]

Yo,ω = Sω + Vo,ω (B.2a)

Yc,ω = Sω cos[β] + Vc,ω (B.2b)

Ys,ω = Sω sin[β] + Vs,ω (B.2c)

where ω is the frequency argument. A number of data snapshots or observations (M), are

collected before taking the DFT, and the source bearing β is inherently assumed to be

constant over this observation period. In the standard arctangent estimator, the target

bearing is estimated as

β̂ = arctan[ŝ/ĉ] (B.3)
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where the variables ĉ and ŝ are computed using the M observations, that is

ĉ = ℜ
{ M∑

m=1

Y (m)
c,ω Y (m),∗

o,ω

}
(B.4)

ŝ = ℜ
{ M∑

m=1

Y (m)
s,ω Y (m),∗

o,ω

}
(B.5)

The superscript m is in the range 1 ≤ m ≤ M and denotes the mth Fourier bin, while ℜ{·}

is the real part of a complex quantity. Observe that the variables ĉ and ŝ may alternatively

be estimated in the time domain (without taking Fourier transforms) as shown in [76].

The arctangent estimator is essentially based on the time (or frequency) averaged

products (correlations) of the omni directional sensor yo,k with the outputs from the sine

and cosine sensors, ys,k and yc,k. It does not attempt to cater for the dynamics of the source

signal sk, and deals with the individual observations (or frequency bins) independently of

each other.

However, it is possible to model or exploit possible transitional (correlation) prop-

erties in the source signal sk, which can be inferred from the M available observations,

and updated online. For this purpose, we here propose utilising a random-walk (first order

Markov) modelling of the signal sk, that is

sk = sk−1 + wk (B.6)

where wk is the driving noise, together with an augmented complex state space formulation

to address the bearing estimation problem, which takes on the following form

xk = xk−1 +wk (B.7)

yk = h[xk] + vk (B.8)

where xk is the state vector to be estimated, yk the noisy observation, h[·] the nonlinear

observation function, while wk and vk are respectively the state and observation noises

with covariance matrices Qk and Rk [17]. The state equation (B.7) can be explicitly
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expressed as




sk

zk

z∗k




︸ ︷︷ ︸
xk

=




sk−1

zk−1

z∗k−1




︸ ︷︷ ︸
xk−1

+




wk

ek

e∗k




︸ ︷︷ ︸
wk

(B.9)

where zk = cos[β] + j sin[β] = ejβ , and ek is the state noise used to model nonstationary

bearings β. Similarly, the observation equation in (B.8) takes the form




yo,k

uk

u∗k




︸ ︷︷ ︸
yk

=




sk

skzk

skz
∗
k




︸ ︷︷ ︸
h[xk]

+




vo,k

nk

n∗
k




︸ ︷︷ ︸
vk

=




1 0 0

0 sk 0

0 0 sk







sk

zk

z∗k



+




vo,k

nk

n∗
k




(B.10)

where uk = yc,k + jys,k is the complex representation of the sine and cosine observations

channels from (B.1a), and nk = vc,k + jvs,k is the corresponding noise.

The augmented (widely linear) state space model in (B.7) and (B.8) is nonlinear,

and can be used in conjunction with a number of algorithms to estimate the source bearing,

including the augmented complex extended and unscented Kalman filters as well as the

augmented complex particle filter, [1].

B.1.1 Noise Statistics

In state space estimation we need to specify the second order statistics of the state and

observation noises. To that end, given the observation noise variance of the omni channel,

that is, E{vo,kv∗o,k}, the variances of the other two observation noises, vc,k and vs,k, are
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given by

E{vc,kv∗c,k} = E{vs,kv∗s,k} =
1

γ
E{vo,kv∗o,k} (B.11)

where γ is the noise gain of either dipole, whereby γ = 1/2 or γ = 1/3 for 2D-isotropic or

3D-isotropic noise respectively [76], while the variance of the complex observation noise is

E{nkn
∗
k} = E{vc,kv∗c,k}+ E{vs,kv∗s,k}.

Therefore, the noise statistics to be computed are E{vo,kv∗o,k} and E{wkw
∗
k}, and

can be estimated online as follows. We start by forming a new variable defined as the

difference between two consecutive omni channel observations, that is

rk = yo,k − yo,k−1 (B.12)

then assuming that both noise processes, wk and vo,k, are white and stationary, it is can

be shown that

E{rkr∗k} = 2E{vo,kv∗o,k}+ E{wkw
∗
k} (B.13)

and that the correlation between rk and rk−1 becomes

E{rkr∗k−1} = −E{vo,k−1v
∗
o,k−1} = −E{o, vo,kv∗o,k} (B.14)

therefore, from (B.13) and (B.14), we obtain

E{vo,kv∗o,k} = −E{rkr∗k−1} (B.15)

E{wkw
∗
k} = E{rkr∗k}+ 2E{rkr∗k−1} (B.16)

Hence, the state and observation noise statistics of the state space model described by

(B.9) and (B.10), can be estimated and tracked online based on the observation data.

Remark #1: The state space formulation of the problem enables tracking of the

source (target) bearing in real-time, that is, the bearing estimate can be updated with
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every new observation.

Remark #2: The random-walk model in conjunction with the preprocessing of the

observation data (when computing the noise variances), allows for some of the correlation

structure of the source signal to be incorporated into the state space model, even when

the true source signal does not follow a random-walk model.

B.2 Simulations

To illustrate the potential of our augmented complex state space based solution for

sonobuoy bearing estimation, we considered examples where the source signal sk is mod-

eled as a sinusoid (as in [79]) and as a first order autoregressive process. The augmented

complex extended Kalman filter (ACEKF) is used to implement the approach described

above and is compared with the standard arctangent (arctan) bearing estimator. In all

the simulations, both the arctan and ACEKF algorithms utilise M = 1024 observations

to estimate the bearing.

B.2.1 Signal Model: Sinusoid

Consider the case where the signal is a sinusoid, that is

sk = cos[2πfTk] + nk (B.17)

with a frequency of f = 50Hz, sampled at a rate of fs =
1
T = 10kHz.

Figure B.2 shows the enhanced performances of the proposed ACEKF based solu-

tion compared with the arctan estimator, for the case where the source signal is a pure

sinusoid. The results show that the proposed technique was able to outperform the arc-

tan algorithm for low signal to noise (SNR) levels, while the two algorithms had similar

performances for SNRs greater than 0dB.
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Figure B.2: Performance comparison between the proposed augmented complex state
space approach and the arctan estimator for the case where the target source signal
is a sinusoid.

B.2.2 Signal Model: Autoregressive

We next modelled the source signal as a first order autoregressive process, that is

sk = 0.9sk−1 + nk

where nk is either a white Gaussian or uniform driving noise.

The results are shown in Figure B.3, where again the new ACEKF based algorithm

achieved a lower bearing estimation error than the arctan estimator, for both Gaussian

and uniform driving noises. Observe that the performance of the arctan estimator was

similar in all the simulations, while the performance of the proposed approach was superior

because fully exploits the correlation structure of the signals.

B.3 Conclusion

In this paper, we have proposed a new augmented (widely linear) complex state space

solution for the DIFAR sonobuoy bearing estimation problem, with the aim of catering

for the correlations in target source signals. This was archived through random-walk

modelling of the source signal. It has been shown that the second order statistics of the

state and observation noises can be estimated and updated online using the observation
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(a) Gaussian driving noise
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Figure B.3: Performance comparison between the proposed augmented complex state
space approach and the arctan estimator for the case where source signal is an au-
toregressive process with (a) a Gaussian; (b) a uniform driving noise.

data; this together with the augmented state space model nature of our solution enables

online tracking of target bearings. The enhanced performance of the proposed approach

over the standard arctan bearing estimator has been illustrated for the cases where the

source signals are sinusoidal and autoregressive processes.
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