2,290 research outputs found

    Use of quercetin in animal feed : effects on the P-gp expression and pharmacokinetics of orally administrated enrofloxacin in chicken

    Get PDF
    Modulation of P-glycoprotein (P-gp, encoded by Mdr1) by xenobiotics plays central role in pharmacokinetics of various drugs. Quercetin has a potential to modulate P-gp in rodents, however, its effects on P-gp modulation in chicken are still unclear. Herein, study reports role of quercetin in modulation of P-gp expression and subsequent effects on the pharmacokinetics of enrofloxacin in broilers. Results show that P-gp expression was increased in a dose-dependent manner following exposure to quercetin in Caco-2 cells and tissues of chicken. Absorption rate constant and apparent permeability coefficient of rhodamine 123 were decreased, reflecting efflux function of P-gp in chicken intestine increased by quercetin. Quercetin altered pharmacokinetic of enrofloxacin by decreasing area under curve, peak concentration, and time to reach peak concentration and by increasing clearance rate. Molecular docking shows quercetin can form favorable interactions with binding pocket of chicken xenobiotic receptor (CXR). Results provide convincing evidence that quercetin induced P-gp expression in tissues by possible interaction with CXR, and consequently reducing bioavailability of orally administered enrofloxacin through restricting its intestinal absorption and liver/kidney clearance in broilers. The results can be further extended to guide reasonable use of quercetin to avoid drug-feed interaction occurred with co-administered enrofloxacin or other similar antimicrobials.Peer reviewedFinal Published versio

    Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance

    Get PDF
    Small-animal imaging has become an important technique for the development of new radiotracers, drugs and therapies. Many laboratories have now a combination of different small-animal imaging systems, which are being used by biologists, pharmacists, medical doctors and physicists. The aim of this paper is to give an overview of the important factors in the design of a small animal, nuclear medicine and imaging experiment. Different experts summarize one specific aspect important for a good design of a small-animal experiment

    Generating Electricity within the Physiological Environment for Low Power Implantable Medical Device Applications: Towards the development of in-vivo biofuel cell technologies

    Get PDF
    Electrochemical studies were performed to explore electron transfer (ET) between human white blood cells (WBC) and carbon fiber electrodes (CFE). Currently, an active area of research involves encouraging ET between microbes and various electrodes in a biofuel cell (BFC). ET between microbes and electrodes are thought to occur i) directly through plasma membrane-bound electron transport chain proteins; and/or ii) indirectly through the release of metabolic products or biomolecules near the electrode surface. An important motivation of this research is the need for alternative long lasting power sources for implantable diagnostic and therapeutic devices. A particular interest is reducing the size and weight of implantable devices. Currently employed internal batteries largely contribute to both. BFCs are promising prospects as they couple the oxidation of a biofuel (such as glucose) to the reduction of molecular oxygen to water. Both glucose and oxygen are abundantly present within our body's cells and tissues. The goal of this project is to explore the feasibility of utilizing WBCs (a human cell model) to generate electricity by fostering direct or indirect ET between these cells - or more specifically, between the metabolic processes of these cells - and the anode of a BFC. ET from the metabolic processes of whole cells to electrodes had, to the best of our knowledge, only previously been demonstrated for microbes. The electrochemical activities of WBCs isolated from whole human blood by red blood cell (RBC) lysis, peripheral blood mononuclear cells (PBMCs) isolated on a Ficoll-Paque gradient, as well as cells from a BLCL cell line and two leukemia cell lines (K562 and Jurkat) were all investigated by incorporation of the cells into the anode compartment of a proton exchange membrane fuel cell (PEMFC). Cyclic voltammetry was employed as an electrochemical technique to investigate the ET ability of the cells, as it can reveal both thermodynamic and kinetic information regarding oxidation-reduction processes at the CFE surface. The results of our studies demonstrate that upon activation, biochemical species, such as serotonin, are released by PBMCs, which may become irreversibly oxidized at the electrode surface

    PET-imaging in depression and antidepressant therapies : focus on the serotonin system and the cerebral glucose metabolism

    Get PDF
    The main scope of the research summarised in this dissertation comprises the use of positron emission tomography to investigate the role of the serotonin transporter in depression and antidepressant therapies. Hereby, several studies were performed using the PET radiotracer [11C]DASB, which specifically targets the serotonin transporter. To allow qualitative and safe research with this radiotracer, the first research topic focussed on the optimization of the radiotracer’s purification procedure and its quality control. Using this radiotracer, a first-in-dog study was carried out to investigate the radiotracer’s distribution and to define the appropriate image quantification methods. Subsequently, this radiotracer was used to perform a dose-occupancy in the dog to estimate the optimal dosing regimen to treat dogs with behavioural disorders with escitalopram. A second part of the dissertation focuses on rats and the current position of repetitive transcranial magnetic stimulation (rTMS) in the rat. Hereby, several additional objectives were put forward. The first objective comprised the evaluation of the accuracy of a for rodents adapted human neuronavigation system to perform rTMS in the rat. A second objective was the investigation of the construct validity of two depression models in terms of altered regional glucose metabolism. This was investigated via a PET study using the radiotracer [18F]FDG. Finally, for the preferred depression model, which was the one based on chronic corticosterone injections, the scope was extended from the serotonin transporter to the serotonin 5-HT1A and 5-HT2A receptors to explore the role of the serotonin system in the pathophysiology of this depression model in the rat. For this purpose, three radiotracers were applied: [11C]DASB, [18F]MPPF, and [18F]altanserin. This allowed to image the serotonin transporters, the 5-HT1A receptors, and the 5-HT2A receptors, respectively

    Xenobiotic metabolism: the effect of acute kidney injury on non-renal drug clearance and hepatic drug metabolism.

    Get PDF
    Acute kidney injury (AKI) is a common complication of critical illness, and evidence is emerging that suggests AKI disrupts the function of other organs. It is a recognized phenomenon that patients with chronic kidney disease (CKD) have reduced hepatic metabolism of drugs, via the cytochrome P450 (CYP) enzyme group, and drug dosing guidelines in AKI are often extrapolated from data obtained from patients with CKD. This approach, however, is flawed because several confounding factors exist in AKI. The data from animal studies investigating the effects of AKI on CYP activity are conflicting, although the results of the majority do suggest that AKI impairs hepatic CYP activity. More recently, human study data have also demonstrated decreased CYP activity associated with AKI, in particular the CYP3A subtypes. Furthermore, preliminary data suggest that patients expressing the functional allele variant CYP3A5*1 may be protected from the deleterious effects of AKI when compared with patients homozygous for the variant CYP3A5*3, which codes for a non-functional protein. In conclusion, there is a need to individualize drug prescribing, particularly for the more sick and vulnerable patients, but this needs to be explored in greater depth

    BEYOND PEROXISOME: ABCD2 MODIFIES PPARα SIGNALING AND IDENTIFIES A SUBCLASS OF PEROXISOMES IN MOUSE ADIPOSE TISSUE

    Get PDF
    ABCD2 (D2) has been proposed as a peroxisomal long-chain acyl-CoA transporter that is essential for very long chain fatty acid metabolism. In the livers of mice, D2 is highly induced by fenofibrate, a PPARα ligand that has been widely used as a lipid lowering agent in the treatment of hypertriglyceridemia. To determine if D2 is a modifier of fibrate responses, wild-type and D2 deficient mice were treated with fenofibrate for 14 days. The absence of D2 altered expression of gene clusters associated with lipid metabolism, including PPARα signaling. Using 3T3-L1 adipocytes, which express high levels of D2, we confirmed that knock-down of D2 modified genomic responses to fibrate treatment. We next evaluated the impact of D2 on effects of fibrates in a mouse model of dietinduced obesity. Fenofibrate treatment opposed the development of obesity, hypertriglyceridemia, and insulin resistance. However, these effects were unaffected by D2 genotype. We concluded that D2 can modulate genomic responses to fibrates, but that these effects are not sufficiently robust to alter the effects of fibrates on diet-induced obesity phenotypes. Although proposed as a peroxisomal transporter, the intracellular localization of D2, especially in adipose tissue, has not been validated with direct experimental evidence. Sequential centrifugation of mouse adipose homogenates generated a fraction enriched with D2, but lacked well-known peroxisome markers including catalase, PEX19, and ABCD3 (D3). Electron microscopic imaging of this fraction confirmed the presence of D2 protein on an organelle with evidence of a dense matrix and a diameter of ~200 nm, the typical structure and size of a microperoxisome. D2 and PEX19 antibodies recognized distinct structures in mouse adipose. Immunoisolation of the D2-containing compartment from adipose tissue confirmed the scarcity of PEX19. Proteomic profiling of the D2 compartment revealed the presence of proteins associated peroxisome, endoplasmic reticulum (ER), and mitochondria. We conclude that D2 is localized to a distinct subclass of peroxisomes that lack many peroxisome proteins and may physically associate with mitochondria and the ER
    • …
    corecore