125 research outputs found

    Neural Graph Transfer Learning in Natural Language Processing Tasks

    Get PDF
    Natural language is essential in our daily lives as we rely on languages to communicate and exchange information. A fundamental goal for natural language processing (NLP) is to let the machine understand natural language to help or replace human experts to mine knowledge and complete tasks. Many NLP tasks deal with sequential data. For example, a sentence is considered as a sequence of works. Very recently, deep learning-based language models (i.e.,BERT \citep{devlin2018bert}) achieved significant improvement in many existing tasks, including text classification and natural language inference. However, not all tasks can be formulated using sequence models. Specifically, graph-structured data is also fundamental in NLP, including entity linking, entity classification, relation extraction, abstractive meaning representation, and knowledge graphs \citep{santoro2017simple,hamilton2017representation,kipf2016semi}. In this scenario, BERT-based pretrained models may not be suitable. Graph Convolutional Neural Network (GCN) \citep{kipf2016semi} is a deep neural network model designed for graphs. It has shown great potential in text classification, link prediction, question answering and so on. This dissertation presents novel graph models for NLP tasks, including text classification, prerequisite chain learning, and coreference resolution. We focus on different perspectives of graph convolutional network modeling: for text classification, a novel graph construction method is proposed which allows interpretability for the prediction; for prerequisite chain learning, we propose multiple aggregation functions that utilize neighbors for better information exchange; for coreference resolution, we study how graph pretraining can help when labeled data is limited. Moreover, an important branch is to apply pretrained language models for the mentioned tasks. So, this dissertation also focuses on the transfer learning method that generalizes pretrained models to other domains, including medical, cross-lingual, and web data. Finally, we propose a new task called unsupervised cross-domain prerequisite chain learning, and study novel graph-based methods to transfer knowledge over graphs

    Feature-based transfer learning In natural language processing

    Get PDF

    Transfer Learning in Natural Language Processing through Interactive Feedback

    Get PDF
    Machine learning models cannot easily adapt to new domains and applications. This drawback becomes detrimental for natural language processing (NLP) because language is perpetually changing. Across disciplines and languages, there are noticeable differences in content, grammar, and vocabulary. To overcome these shifts, recent NLP breakthroughs focus on transfer learning. Through clever optimization and engineering, a model can successfully adapt to a new domain or task. However, these modifications are still computationally inefficient or resource-intensive. Compared to machines, humans are more capable at generalizing knowledge across different situations, especially in low-resource ones. Therefore, the research on transfer learning should carefully consider how the user interacts with the model. The goal of this dissertation is to investigate “human-in-the-loop” approaches for transfer learning in NLP. First, we design annotation frameworks for inductive transfer learning, which is the transfer of models across tasks. We create an interactive topic modeling system for users to find topics useful for classifying documents in multiple languages. The user-constructed topic model bridges improves classification accuracy and bridges cross-lingual gaps in knowledge. Next, we look at popular language models, like BERT, that can be applied to various tasks. While these models are useful, they still require a large amount of labeled data to learn a new task. To reduce labeling, we develop an active learning strategy which samples documents that surprise the language model. Users only need to annotate a small subset of these unexpected documents to adapt the language model for text classification. Then, we transition to user interaction in transductive transfer learning, which is the transfer of models across domains. We focus our efforts on low-resource languages to develop an interactive system for word embeddings. In this approach, the feedback from bilingual speakers refines the cross-lingual embedding space for classification tasks. Subsequently, we look at domain shift for tasks beyond text classification. Coreference resolution is fundamental for NLP applications, like question-answering and dialogue, but the models are typically trained and evaluated on one dataset. We use active learning to find spans of text in the new domain for users to label. Furthermore, we provide important insights on annotating spans for domain adaptation. Finally, we summarize the contributions of each chapter. We focus on aspects like the scope of applications and model complexity. We conclude with a discussion of future directions. Researchers may extend the ideas in our thesis to topics like user-centric active learning and proactive learning

    Transfer learning for historical corpora: An assessment on post-OCR correction and named entity recognition

    Get PDF
    Transfer learning in Natural Language Processing, mainly in the form of pre-trained language models, has recently delivered substantial gains across a range of tasks. Scholars and practitioners working with OCRed historical corpora are thus increasingly exploring the use of pre-trained language models. Nevertheless, the specific challenges posed by historical documents, including OCR quality and linguistic change, call for a critical assessment of the use of pre-trained language models in this setting. We consider two shared tasks, ICDAR2019 (post-OCR correction) and CLEF-HIPE-2020 (Named Entity Recognition, NER), and systematically assess using pre-trained language models with data in French, German and English. We find that using pre-trained language models helps with NER but less so with post-OCR correction. Pre-trained language models should therefore be used critically when working with OCRed historical corpora. We release our code base, in order to allow replicating our results and testing other pre-trained representations
    • …
    corecore