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Machine learning models cannot easily adapt to new domains and applications. This draw-

back becomes detrimental for natural language processing (NLP) because language is perpetually

changing. Across disciplines and languages, there are noticeable differences in content, grammar,

and vocabulary. To overcome these shifts, recent NLP breakthroughs focus on transfer learning.

Through clever optimization and engineering, a model can successfully adapt to a new domain

or task. However, these modifications are still computationally inefficient or resource-intensive.

Compared to machines, humans are more capable at generalizing knowledge across different

situations, especially in low-resource ones. Therefore, the research on transfer learning should

carefully consider how the user interacts with the model. The goal of this dissertation is to inves-

tigate “human-in-the-loop” approaches for transfer learning in NLP.

First, we design annotation frameworks for inductive transfer learning, which is the transfer



of models across tasks. We create an interactive topic modeling system for users to find topics

useful for classifying documents in multiple languages. The user-constructed topic model bridges

improves classification accuracy and bridges cross-lingual gaps in knowledge. Next, we look at

popular language models, like BERT, that can be applied to various tasks. While these models are

useful, they still require a large amount of labeled data to learn a new task. To reduce labeling, we

develop an active learning strategy which samples documents that surprise the language model.

Users only need to annotate a small subset of these unexpected documents to adapt the language

model for text classification.

Then, we transition to user interaction in transductive transfer learning, which is the trans-

fer of models across domains. We focus our efforts on low-resource languages to develop an

interactive system for word embeddings. In this approach, the feedback from bilingual speak-

ers refines the cross-lingual embedding space for classification tasks. Subsequently, we look at

domain shift for tasks beyond text classification. Coreference resolution is fundamental for NLP

applications, like question-answering and dialogue, but the models are typically trained and eval-

uated on one dataset. We use active learning to find spans of text in the new domain for users to

label. Furthermore, we provide important insights on annotating spans for domain adaptation.

Finally, we summarize the contributions of each chapter. We focus on aspects like the

scope of applications and model complexity. We conclude with a discussion of future directions.

Researchers may extend the ideas in our thesis to topics like user-centric active learning and

proactive learning.
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Chapter 1: Introduction

Language is a form of communication and a means of self-expression. Through language,

we convey information, beliefs, and emotions. For better or worse, it is a medium that evolves

with humans. As a result, we see variation in language across different geographic locations

and time periods. Currently, there are 7,117 languages in the world and 3,982 of them have a

written system (Eberhard et al., 2020). Over time, new words are added to the vocabulary and the

semantics for existing ones often change. The dynamic nature of language makes it challenging

yet compelling to study.

To analyze these shifts in human language, natural language processing (NLP) uses com-

puters. NLP has its humble beginnings in symbolic systems with influential works like Computing

Machinery and Intelligence (Turing and Haugeland, 1950) and Syntactic Structures (Chomsky,

1975). The symbolic systems are built from handwritten rules and could not make any decisions

beyond what is hard-coded. In the 1990s, statistical NLP becomes prevalent after the expan-

sion of the Internet and improved machinery. The Internet enables more text to be accumulated

for data collection and the upgraded hardware provides more computing power to analyze lan-

guage. With these resources, NLP researchers aggressively use statistics and machine learning to

model the information content on the Web. Since the 2010s, NLP research has shifted its focus

to GPU-powered neural networks. These deep learning models require less feature engineering
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and encourage end-to-end training. Despite the ever-changing trends in the field, modeling the

variations in language remains a challenge.

In NLP research, machine learning plays an important role for training models. A long-

standing problem of machine learning is adapting the models to unobserved situations. Typically,

these models are trained on a large, annotated dataset. Then, their predictions are quite accurate

for data from the same training distribution. However, when it comes to out-of-domain data, these

models may fail to generalize and the results are disappointing. Humans can quickly process new

information and link them to past experiences, but artificial intelligence (AI) cannot easily acquire

new knowledge if only trained on a few examples. This brittleness is especially harmful for NLP

because language is constantly changing. A model that has only trained on English documents

may fail to understand text in Shona, a written language of Zimbabwe. A model that has only

trained on documents before 2019 may not detect a global pandemic as an important topic. How

can NLP models overcome these dynamic shifts in language?

To adapt machine learning models to new problems, we look to transfer learning (Pan and

Yang, 2010; Ruder, 2019). This area of research is concerned with transferring the knowledge

from models over different domains and downstream tasks. In NLP, we care about accumulating

general knowledge about language. One way to achieve this is through pre-training. The term

refers to preliminary training on massive corpora with a self-supervised loss function that does

not require labeled data. An example is the language modeling loss that measures the likelihood

of a word given its context. After pre-training, the model is then adapted by further training it on

data from the task and domain of interest. Given the success of these methods, most research in

transfer learning focus on improving model architecture and optimization.

While these structural modifications are important, model adaptation still relies on labeled
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data and computing power. During some emergent situations, we may not have the resources to

label a large dataset, tune model parameters, and train the model on the entire dataset. How else

could we quickly adapt the model to new domains and tasks? Previously, we have mentioned

that language evolves with humans. Without much experience and thinking, humans can easily

transfer their knowledge across several problems. On the other hand, machines must rely on

abundant data and computing resources to achieve such a skill (Griffiths et al., 2019). There-

fore, we should consider ways that a human could help redirect the model toward generalizing

language understanding.

Ideally, we would want the user to briefly interact with the model. Through repeated inter-

actions, the model acquires the relevant pieces of knowledge from the user. The type of user-AI

interaction would depend on the task at hand. If we want to teach the English model to classify

text in Shona, a bilingual user could align some keywords between the two languages. If we want

an outdated model to learn about the COVID-19 pandemic, a user could label spans of text related

to the Coronavirus. In both situations, we find missing gaps in knowledge for the user to fill in.

However, it is unclear how to locate these missing gaps and update the model based on human

input. Thus, this dissertation investigates the methodology for incorporating user feedback to

facilitate model transfer in NLP.

1.1 Motivation

The origins of transfer learning in NLP can be found in latent semantic analysis (Deer-

wester et al., 1990), an algorithm that creates low-dimensional vector representations of docu-

ments based on word occurrences. The purpose of these vector representations, now also known

3



as embeddings, is to encode important, general knowledge about the data. Later on, text model-

ing follows a more statistical approach through topic modeling where the documents are defined

as probabilistic mixtures of topics (Blei et al., 2003). After decades of statistical NLP, neural

networks are used to train word embeddings (Mikolov et al., 2013c) that can then form vector

representations for documents. As neural NLP progresses, researchers emphasize the impor-

tance of transferring knowledge through learning general representations (Bengio et al., 2013).

In recent years, the transformer models, like BERT (Devlin et al., 2019), learn contextual word

embeddings to capture semantics in different contexts. As a result, the embeddings can more

effectively represent words in new contexts and help transfer the model to various applications.

The goal of transfer learning is to adapt models for shifts in the data domain or downstream

task. This thesis is concerned with two types of transfer learning: inductive transfer learning and

transductive transfer learning (Pan and Yang, 2010). Inductive transfer learning involves trans-

ferring models for different tasks. An example would be developing a model that can be used for

multiple tasks like text classification, question answering, and natural language inference (Peters

et al., 2018). Transductive transfer learning deals with transferring knowledge across different

domains for the same task. An example would be building a sentiment classifier for different

languages (Chen et al., 2018b). We formally define these two types of transfer learning in Sec-

tion 2.2. Through transfer learning, we improve the model’s ability to generalize across different

settings.

The research in transfer learning primarily emphasizes the developments in model archi-

tecture and mechanisms. From topic models to word embeddings to transformer models, each

breakthrough focuses on how text is encoded and how the model is trained. The results are im-

pressive, but these innovations may be impractical for low-resource situations. What happens
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when we lack resources, like data or computing power? Given a new task, we need to collect

labeled data, which could possibly take years to preprocess and annotate (Lewis, 1992; Marcus

et al., 1994). While Mechanical Turk has simplified dataset creation, collecting vast amounts of

high-quality annotation from crowdsourced workers is still difficult (Callison-Burch and Dredze,

2010). After obtaining labeled data, we still need to adapt the model. Training a model like

BERT can cost thousands of dollars in cloud compute and over a thousand of pounds in carbon

emissions, which is nearly equivalent to a flight from New York to San Francisco (Strubell et al.,

2019)!

In many real-life settings, there are not enough resources to label large amounts of data

and train an enormous model on the data. During the 2010 Haiti Earthquake, international relief

workers heavily rely on analyzing social media posts to mitigate destruction (Yates and Paquette,

2010). Early in 2020, language scientists gather reports on the Coronavirus pandemic to help

with clinical research (Voorhees et al., 2020). For emerging situations like these, we require

an approach that can immediately adapt the model for the current situation. If researchers only

prioritize advancements in model architecture, the true potential of transfer learning may never

be completely realized.

The model implementation is only a small component of AI systems (Sculley et al., 2015).

In fact, much of the system design relies on the feedback loops. How do we update the model

given new information or changes in the external world? A straightforward approach is having a

human who can guide the process for updating models. Much of the research in human-in-the-

loop machine learning stems from the need to explain model predictions (Swartout, 1983). For

external users and even model developers, the AI system is often a black box. In the General Data

Protection Regulation, the European Union emphasizes the “right to explanation” when using AI
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for decision-making (European Parliament and Council of the European Union, 2016). For high-

stakes situations, we should only use models that are interpretable (Rudin, 2019). Nowadays,

machine learning research is focused on human-centric AI with the purpose of increasing trans-

parency and control for users (Renner, 2020). Users are considered stakeholders of an AI system,

so the models must consider their feedback and needs (Shneiderman, 2022).

Beyond transparency and control, we argue that transfer learning may also benefit from

human-AI interaction. When humans discover a new problem, they can quickly apply past skills

and experiences (Taatgen, 2013), but machine learning models fail to transmit knowledge as

successfully as humans do (Griffiths et al., 2019). So, simple feedback from a human could

provide the right signal for model adaptation. The idea of transferring models through interaction

sounds reasonable, but the implementation and consequences are unclear. How should we design

a user feedback loop for transfer learning? Therefore, the research in transfer learning should

prioritize interactive approaches, especially when it comes to language.

1.2 Objectives

The dissertation develops methods for interactive transfer learning and analyzes the effect

of human feedback on natural language understanding. Human interaction is either conducted

in a controlled user study or simulated by computer algorithms. The specific goals and research

questions are as follows:

1. Scope of Applications: As transfer learning indicates shift in either domain or task, the

interactive learning component differs in each situation. We explore human interaction for

inductive and transductive transfer learning problems. How should users interact with the
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model to adapt it to a new task? How should users interact with the model to adapt it to a

new domain? What are the similarities and differences between these interactions?

2. Low-resource Settings: Many languages are low-resource, which means that data and

knowledge resources are scarce. For low-resource NLP, transfer learning might rely even

more on human feedback. Along with having insufficient training data, computational

resources may also be limited. To conserve resources, user feedback needs to provide

the most useful information about the task. How can we design the user interaction to

overcome situations in which we lack resources like data, time, or computing power?

3. Model Complexity: NLP models show various levels of complexity. A logistic regression

model may only have one hundred parameters while GPT-3 has 175 billion of them. Large

language models can solve more difficult tasks and are more adept at transfer learning.

Compared to smaller models, they may depend less on user feedback or require a different

form of interaction. As model complexity increases, how should we change the interaction

between the user and the model?

1.3 Organization

Chapter 2 provides background information on transfer learning and interactive learning.

First, we discuss the failures of supervised learning to motivate the need for transfer learning.

Then, we describe various problems and settings in transfer learning. The two main divisions are

inductive transfer learning, which involves shift in task, and transductive transfer learning, which

refers to shift in the domain space. The chapter then introduces interactive learning by describing

the ways for the machine learning models to learn from user feedback. We discuss how active
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learning selects data for humans to label and describe work in human-AI collaboration.

Chapters 3 to 6 are split into two parts. Part I presents application of interactive learning on

inductive transfer learning. Part II focuses on user interaction for transductive transfer learning.

In each part, we organize the chapters in increasing order of model complexity and task difficulty.

By doing this, we can observe changes in the user feedback loop as the problem of knowledge

transfer becomes more complicated.

Part I starts the discussion on inductive transfer learning with Chapter 3. In this chapter, we

create a system called MTAnchor for users to cross-lingually align topics for text classification.

While topics help transfer knowledge across languages, human interaction can help refine topics

for classification tasks. In Chapter 4, we describe our work on ALPS, which is an active learning

algorithm that helps adapt pre-trained language models for downstream tasks. By finding text

that surprises the model, we can focus labeling efforts on these unpredictable examples. With the

surprisal values, we reduce the amount of labeled data needed to quickly adapt language models

for text classification.

Next, we transition to transductive learning in Part II. In Chapter 5, we discuss CLIME, a

human-in-the-loop framework that aligns the cross-lingual word embedding space according to

user feedback. CLIME can be combined with active learning to further improve classification

accuracy. This shows that both document-level and word-level annotations help with transfer

learning. Chapter 6 focuses on domain shift for more complicated tasks like coreference resolu-

tion. For coreference resolution, models are typically developed with one dataset and may not

generalize to new domains. We use active learning to label spans for quickly adapting models.

For sampling data, we look at spans that confuse mention detection or clustering. We conclude

with insights about labeling spans for adapting coreference resolution models to new domains.
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Finally, Chapter 7 summarizes contributions and discusses future research directions. Fu-

ture work can develop user-centric active learning where the sampling strategy considers data that

users prefer to label. Beyond active learning, there is proactive learning, a framework that not

only determines which examples to label but also matches each example to the most appropriate

annotator. Additionally, we mention the importance of online, interactive updates. Rather than

adapt models through retraining, more work should develop online algorithms to immediately

update models and reduce latency in the user feedback loop.
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Chapter 2: Background

The dissertation is about interactive approaches to transfer learning in NLP, so this chapter

provides background information on transfer learning and interactive learning. Before we discuss

transfer learning, we first introduce supervised learning in Chapter 2.1. Supervised learning is

the traditional framework for training machine learning models. We analyze the failures of super-

vised learning during sudden shifts in tasks and data domains. Next, we delve into transfer learn-

ing, which aims to overcome these issues in supervised learning (Section 2.2). Transfer learning

can be inductive (Section 2.2.1) or transductive (Section 2.2.2). We explore the taxonomy and

history of transfer learning in NLP by examining seminal models and algorithms. Finally, we look

at interactive learning to understand the effect of human feedback on machine learning models

(Section 2.3). We focus on active learning (Section 2.3.1), a structured framework for obtain-

ing instance-level annotations, and discuss innovative human-in-the-loop interfaces for NLP tasks

(Section 2.3.2).

2.1 Supervised Learning

Machine learning is a computer program using experience to improve upon performance, as

measured by certain metrics, on some class of tasks (Mitchell, 1997). Supervised learning is the

traditional way of training machine learning models on large amounts of labeled data. Through
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supervised learning, AI systems can automate several tasks across various fields. Goodfellow

et al. (2016) provides an overview of such breakthroughs, like AlexNet, a a neural network that

can successfully recognize more than 10,000 objects in the ImageNet database (Krizhevsky et al.,

2012). While supervised learning shows tremendous success, the caveat is that the training set

must resemble the data that appears at test time. In the following sections, we will describe details

and limitations of supervised learning.

Suppose that we have a training dataset of n instances, X = x1, . . .xn, with correspond-

ing labels y = y1, . . . , yn. We will also refer to an instance xi as an example. Assume each

instance xi belongs to feature space X and each label yi belong to label space Y . For classifica-

tion problems, the label space Y is a finite set of items. For regression problems, the label space Y

is the set of real numbers R. For simplicity, we will assume the task is a classification problem

where Y is a finite set of labels. Now, the goal of training is to learn a mapping g : X → Y such

that g assigns the correct label yi to instance xi.

A common framework in supervised learning is to learn a function f : X → R|Y| and

let g(x) = arg maxy∈Y f(x)y. An interpretation of f(x)y is that it scores how likely instance x

is assigned as label y. Then, g assigns the label to x such that score f(x)y is maximized. To learn

function f , we look to minimize expected risk, which we define as

R(f) = Ep(x,y) [L(f(x), y)] =

∫
L(f(x), y) dp(x, y). (2.1)

The expected risk measures the loss L of our model prediction for an arbitrary instance x with

label y drawn from the data distribution p(x, y). The loss function L measures the amount of

error in model prediction. In other words, the risk measures how poorly the function f learns the
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task and the loss computes the difference between one prediction f(x) and the actual label y. A

common choice for L is cross-entropy loss,

LCE(f(x), y) = − log f(x)y. (2.2)

Intuitively, machine learning should aim to minimize expected risk. Low expected risk

implies that the model should correctly label most instances on average. Unfortunately, R(f) is

impossible to compute because we do not know the true distribution p(x, y). So, we instead use

empirical risk to approximate expected risk. The empirical risk is the average loss over examples

in the training dataset,

R̂(f) =
1

n

n∑
i=1

L(f(xi), yi). (2.3)

For this approximation to work, we assume that the instance-label pairs (x1, y1), . . . , (xn, yn)

are i.i.d, distributed independently and identically to the true distribution p(x, y). Under this

assumption, we can train models through minimizing empirical risk R̂(f) rather than having

to compute expected risk R(f). Consequently, the bounds on this approximation depends on

the size of the training dataset. As we approach an infinite number of training instances, the

difference between empirical risk R̂(f) and expected risk R(f) decreases. Thus, supervised

learning has higher chance of success if trained on large, labeled datasets.

In practice, we usually have a validation dataset. After we train the model on the training

dataset, we evaluate on the validation dataset. The results help us tune model hyperparameters

and show us if there is overfitting. This term means that the model is only learning the task for the

training dataset but does not generalize to arbitrary instances x from the true data distribution.
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After model development with the validation dataset, we then perform the final evaluation on the

test dataset and report results.

Having a validation dataset may reduce overfitting, but the size of the training dataset is

still a bottleneck. Without training on enough data, the empirical risk R̂(f) cannot closely ap-

proximate the expected risk R(f). Intuitively, this makes sense because the model needs to learn

from as much data as possible. Then, it can correctly make predictions for any example at test

time because a similar example has likely been observed before.

2.1.1 Model Complexity

Obtaining a large amount of labeled data is important for training machine learning mod-

els. Another critical factor is the model complexity. It generally refers to the model’s expressive

power, or in other words, the ability to capture the complexity of the function f that it is learn-

ing (Hu et al., 2021). If f is a simple function (e.g. linear), then we do not need a complex model

to learn it. Sometimes, a complex model may overfit to random noise from the data. However, if

f is a complicated function (e.g. high-degree polynomial), we would need a complex model. A

simple model may underfit and not properly capture the complexity of f . There are various ways

to measure model complexity. In statistical learning, Rademacher complexity is commonly used

to measure the degree of a hypothesis space fitting random noise (Bartlett and Mendelson, 2002).

Other measures may be model-specific. For example, the complexity of decision trees could be

determined by tree depth or number of leaf nodes.

Hu et al. (2021) indicate that model size is an important factor to consider when quantifying

model complexity. A model with more parameters has more expressive power and is more prone
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to overfitting on the training data. For this thesis, we will measure model complexity by the

number of parameters. When we discuss the contributions in Parts I and II, we order each work

according to the model complexity to understand its connection to transfer learning. While more

complex models may generalize to more domains and tasks, they may not be practical for low-

resource situations (Chapters 3, 5). Therefore, we consider models of varying complexity in this

thesis.

2.1.2 Poverty of the Stimulus

As long as we curate a large training dataset that resembles the situation at test time, we

can use supervised learning to train a robust machine learning model for a task. In reality, it

is impractical to create such a training dataset for every possible task. Complete and accurate

annotations are expensive to build a machine learning system (Roh et al., 2019). For example,

an annotator may take fifteen hours or more to label entities and relations for only a hundred of

news articles (Settles et al., 2008a), which is not nearly enough to train a model. In emergency

situations, we need to quickly train a model with limited resources and cannot afford the costs

associated with labeling. For some languages, there may not be enough unlabeled data to begin

with! With scarcity in labeled data, how can we train machine learning models?

In linguistics, the “Poverty of the Stimulus” argument claims that people do not learn lan-

guage exclusively through experience (Chomsky, 1980; Pullum and Scholz, 2002). The evidence

is straightforward: young children acquire linguistic abilities despite limited exposure to their

environment. Therefore, humans must be born with basic knowledge of language. From a statis-

tical modeling perspective, Mitchell (1980) frame this innate knowledge as inductive bias, which
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is “any basis for choosing one generalization over another, other than strict consistency with

the observed training instances”. Training AI systems may be viewed as automatically learning

inductive bias (Baxter, 2000).

Today’s research is largely dominated by data-driven deep learning, but these state-of-the-

art models require an abundance of labeled data. While machine learning systems use enormous

amount of computing power and data to automate specific tasks, humans solve several prob-

lems with limited computation capacity and experience (Griffiths et al., 2019). For cognitive

reasoning problems, humans make more robust decisions than language models, especially on

out-of-distribution data (Collins et al., 2022). Therefore, we need to rethink supervised learning

and develop models that can also learn under a “poverty of the stimulus”. In the next section, we

show how transfer learning can bridge knowledge between machine learning models.

2.2 Transfer Learning

The success of supervised learning is limited by the amount of labeled data. While humans

can learn new concepts quickly (Taatgen, 2013), AI fails to instantly generalize across new do-

mains. Transfer learning emerges to mitigate this issue in supervised learning. In a 2016 NeurIPS

tutorial, Andrew Ng prophesizes, “Transfer learning will be next driver of machine learning suc-

cess”. If we want to deploy AI systems across all fields and sectors, we must innovate approaches

beyond supervised learning.

In transfer learning, we assume that the source model is reliable to use for a certain domain

and task. Our goal is to adapt the source model into a target model. The target model is difficult

to train on its own, so we need to rely on the source model. For example, the source model
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could be a topic classifier for news articles in English. The model can correctly predict whether

the article is mainly about sports, medicine, technology, etc. Now, we want to use this model

for two other applications: classifying news articles in Shona and predicting the author of the

English articles. If we have no labeled data in Shona, how may we modify the English classifier

to make predictions for Shona? If we labeled data about authorship is scarce, how do we apply

the knowledge about topics to predict the author?

Transfer learning is machine learning with a shift in domain D or task T (Pan and Yang,

2010). A domain D = {X , p(X)} is defined by a feature space X and a marginal probability

distribution p(X) over X . The random matrix X represents the examples x1, . . . ,xn where

xi ∈ X . A task T = {Y , p(Y ), p(Y |X)}, is defined by the label space Y , a prior distribution

on the label space p(Y ), and a conditional probability distribution p(Y |X). The random vector

Y represents labels y1, . . . , yn where yi ∈ Y . During training, the model usually learns the label

distribution p(Y |X).

Now, suppose that the source model is trained on source domain DS for source task TS .

In the above example, the source domain is English news articles and the source task is topic

categorization. The model can reasonably compute pS(YS |XS), which is the distribution of the

topic labels given the English article. However, it has difficulty transferring information to either

a target domain DT or task TT . The target domain is news articles in Shona. The target task is

predicting the author of the news article. How can the model learn pT (YT |XT ) from DS? and

TS where either DS 6= DT or TS 6= TT ? In other words, how would the English topic classifier

help us predict topics for Shona articles or determine the authors of the English articles?

Prior work defines different types of transfer learning (Pan and Yang, 2010; Ruder, 2019).

This thesis focuses on the two main types: inductive transfer learning and transductive transfer
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learning. Inductive learning is concerned with training a model from labeled data. For inductive

transfer learning, the source task TS and target task TT are different, but labeled data may be

available in the target domain DT . Like inductive learning, the goal is to learn pT (YT |XT ) with

the labeled data in the target domain. However, for transfer learning, we want the source model

to learn this distribution. Thus, in inductive transfer learning, the source model needs to transfer

knowledge from the source task TS to the target task TT .

On the other hand, transductive learning involves making predictions for unseen data by

considering all data (labeled and unlabeled). For transductive transfer learning, the source

task TS and target task TT are the same, but labeled data is only available in the source domain

DS . Like transductive learning, we can use unlabeled data in the target domain DT to learn

pT (YT |XT ). However, since this is transfer learning, the goal is for the source model to learn this

new distribution, rather than training a new model from scratch (Arnold et al., 2007). Therefore,

transductive transfer learning uses the knowledge learned about the source domain to help make

predictions for the target domain.

In the following sections, we cover prior work in these two types of transfer learning.

Section 2.2.1 is about models for inductive transfer learning, which often involve learning general

representations from a source task to help transfer knowledge to the target task. Section 2.2.2

looks at methods for transductive transfer learning that help align information across domains or

languages.
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2.2.1 Inductive Transfer Learning

The objective of inductive transfer learning is to adapt a model, which is trained on the

source task, for a target task. That is, we assume YS 6= YT , a shift in the label space. As a result,

this typically implies pS(YS) 6= pT (YT ) and pS(YS |XS) 6= pT (YT |XT ), unless there is the

rare chance of a one-to-one mapping between source and target labels. In many situations, the

target task is challenging to learn because of scarcity in labeled data. If a related task is easier to

learn, we can first train the model on the related task and then modify it for the target task. We

have mentioned the example before of using a topic classifier to help predict authorship. There

is likely some correlation between topics and authors, so the knowledge about topics may help

with the authorship task.

Another reason for inductive transfer learning is shift in the scope of application. A sit-

uation that often occurs is refining the label set after training a classifier and realizing that the

original set of classes is too broad. Then, we would need to relabel the entire dataset and train

the model all over again. An example application is out-of-scope intent detection (Zhan et al.,

2021). Intent detection is the task of predicting intents from utterances and out-of-scope refers to

unknown intents. The model is initially trained to predict which type of billing issue is mentioned

in the customer complaints. However, the company then realizes that service issues are prevalent.

To avoid unhappy customers, how can the company researchers quickly adapt the model to refine

the intent predictions?

The common framework for inductive transfer learning involves two stages: pre-training

and adaptation. During pre-training, we train a model on the source task. For adaptation, we

refine the source model for the target task. Many works for transfer learning in NLP execute this
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two-stage scheme, including early works like LSA (Deerwester et al., 1990) and recent break-

throughs like BERT (Devlin et al., 2019). For LSA, the algorithm that uses SVD to learn low-

dimensional vector representations of documents can be viewed as pre-training. Then, the adap-

tation occurs when using these representations for tasks like text classification. For BERT, the

pre-training task is language modeling and the adaptation method is fine-tuning, which we will

explain later in this section.

Ideally, the pre-trained model should be applied to not only one but several target tasks.

Similar to representation learning (Bengio et al., 2013), the goal is to understand documents in

a universal context. For language, we need to somehow encode semantic and syntactic features

about the documents. Thus, pre-training typically requires extensive time and resources to gain

general knowledge about language. While pre-training is costly, the second adaptation step tends

to be quicker and less expensive. So, we only have to perform pre-training once and reuse the pre-

trained model for each adaptation. The two-stage model development overall reduces resources

and improves accuracy. For the rest of the section, we will focus on NLP methods that first

pre-train a source model and then adapt it for target tasks.

Traditional Text Modeling Many traditional pre-training methods use statistics on word oc-

currences to create document representations. Thus, this eliminates the need for labeled data to

pre-train these initial representations. One of the earliest works to embed documents is latent se-

mantic analysis (Deerwester et al., 1990, LSA). First, the algorithm computes the term-document

matrix X such that Xi,j is the number of times that word wi occurs in document dj of the train-

ing corpus. Then, we decompose X with singular value decomposition so that X = UΣV >.

To obtain the rank k approximation, we take the largest k singular values in Σ to get submatrix
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Σk. Then, we select corresponding rows in U and V to get submatrices Uk and Vk, respectively.

The k-dimensional representation for word i is Ei = Σku
>
i where ui is the ith row of Uk. The

k-dimensional representation for document dj is Dj = Σkv
>
j where vj is the jth column of Vk.

LSA uses linear algebra to obtain low-dimensional, dense representations of textual data.

An issue with LSA is that words similar in meaning may rarely co-occur. To handle this

problem, one approach is Brown clustering (Brown et al., 1992) which groups words into different

classes ci. With a class-based bigram model, the conditional probability of word wi+1 following

word wi is computed as:

p(wi+1 |wi) = p(ci+1 | ci)p(wi+1 | ci), (2.4)

where p(ci+1 | ci) is the class transition probability and p(wi+1 | ci) is the word emission prob-

ability. As in n-gram models, the goal is to maximize log likelihood of sequence w1, . . . , wn.

After substituting Equation 2.4, we can show that maximizing log likelihood is equivalent to op-

timizing average mutual information. Therefore, Brown clustering uses hierarchical clustering

to iteratively increase average mutual information by merging words into classes. The algorithm

overcomes data sparsity in NLP as words similar in meaning may rarely co-occur. From the

Brown word classes, we can derive word representations useful for downstream applications like

part-of-speech tagging.

The downside to Brown clustering is that a word can only be assigned to one cluster. An

approach that groups similar words together but does not enforce hard assignments is topic model-

ing. A topic model assumes documents are mixtures over topics and topics are distributions over

words. The most popular method for building a topic model is latent Dirichlet allocation (Blei

et al., 2003, LDA), which sets the topic-word distribution with a Dirichlet prior (Figure 2.1). LDA
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Figure 2.1: LDA topic model where word w is generated from a topic z with distribution φz,
a Dirichlet prior with parameter β. Topic z is generated from θ, the document-topic Dirichlet
distribution with parameter α. The generative model uses latent topics to transfer knowledge
about language across different data domains.

is generative, meaning that it jointly models the feature space and the label space (in this case,

topics). The challenge with topic models is that topics are never observed and must be inferred.

Inference for LDA is computed with either Gibbs sampling or variational Bayes. To apply topic

modeling to text classification, we typically use document-topic likelihood as features to rep-

resent documents in downstream tasks. While several works in topic modeling are generative,

an anchor-based topic model is a computationally quick, spectral approach (Arora et al., 2012,

2013). The method depends on anchor words, which are words that appear with high probability

in only one topic. In documents, we often observe anchor words like “lipstick” for a topic about

cosmetics and “carburetor” for a topic about automobiles. Using co-occurrence between anchor

words and other words, the algorithm can determine the distribution over words for each topic.

Then, we fix the topic-word distribution and use an inference algorithm (e.g. Variational Bayes)

to learn topics for each document. Chapter 3 covers the advantages of anchor-based topic models

in an interactive setting.

How do we adapt these models for the target task? First, we use these methods to engineer
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representations for documents or words without using labeled data. Then, these representations

can be passed into a classifier for a downstream task. This type of model adaptation is an instance

of feature extraction. By computing word likelihood and co-occurrence, we obtain features that

help transfer knowledge for simple NLP tasks.

Neural Word Embeddings Traditional text modeling relies on matrix factorization and word

occurrence statistics. With the advent of neural networks, research focuses on applying deep

learning to compute representations for text. While LSA and LDA embed documents as vectors,

word2vec embeds word types as vectors. For the word2vec models, Mikolov et al. (2013a) train

word embeddings with neural networks on large, unlabeled corpus. They propose two choices of

architecture: continuous bag-of-words (CBOW) and skip-gram. For each target word wt in corpus

D, the CBOW model tries to predict wt in a window of m context words with a loss function

defined as

LCBOW = − 1

|D|

|D|∑
t=1

log p(wt |wt−m, . . . , wt−1, wt+1, . . . , wt+m), (2.5)

p(wt |wt−m, . . . , wt+m) =
exp

{
Ct
>St
}

|V|∑
i=1

exp
{
Ci
>St
} . (2.6)

Here, Ci is the context embedding for word wi, Ei is the word embedding for word wi, and St is

the sum of embeddings over words in the context window of target word wt,

St =
∑

−m≤j≤m, j 6=0

Et+j. (2.7)
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By training on the LCBOW objective, the model learns Ci and Ei for each word in the vocabulary

V . On the other hand, the skip-gram model optimizes the log-likelihood of corpus D so that

LSKIP = − 1

|D|

|D|∑
t=1

∑
−m≤j≤m, j 6=0

log p(wt+j |wt), (2.8)

p(wt+j |wt) =
exp

{
Ct+j

>Et

}
|V|∑
i=1

exp
{
Ci
>Et

} . (2.9)

The skip-gram model also learns a context representation Ci and a word representation Ei for

each word wi. For both models, the conditional likelihood p(wj |wi) is computed using softmax.

The denominator in this expression is expensive to compute, so Mikolov et al. (2013c) propose

negative sampling for a faster approximation:

p(wt+j |wt) = log σ(Ct+j
>Et) +

k∑
i=1

Ewi∼pn
[
log σ(Ci

>Et)
]

(2.10)

where k negative samples are sampled from negative distribution pn. Levy and Goldberg (2014)

discover that the skip-gram model with negative sampling is an implicit matrix factorization of

the word-context matrix C>E.

After word2vec, GLoVE vectors (Pennington et al., 2014) show similar success with eas-

ier parallelization. Whereas word2vec aims to predict target word, GLoVE optimizes for co-

occurrence through matrix factorization. FastText (Bojanowski et al., 2017) is a subword ex-

tension of the word2vec skip-gram model. The model trains an embedding for each character

n-gram, rather than for each word. Then, the embedding for each word is the sum over the em-

beddings of the character n-grams. Through encoding morphological features, fastText provides
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Figure 2.2: BERT (Devlin et al., 2019) is a bidirectional transformer model. The model is pre-
trained with masked language modeling and next sentence prediction (left). After pre-training
the model, it can be fine-tuned for many downstream tasks (right).

accurate representations for rare words in the vocabulary.

The neural architecture of these models require pre-training on large corpora. Word2vec

pre-trains on a Google News corpus with six million words. GLoVE uses Wikipedia dumps, Gi-

gaword corpus, and Common Crawl data. FastText trains on Wikipedia dumps in nine languages.

These pre-trained word embeddings are used as features to represent text (Turian et al., 2010). So,

similar to traditional text modeling, the way to adapt pre-trained embedding models is through

feature extraction. However, unlike traditional text representations, neural word embeddings can

encode distributional semantics that are not captured before.

Pre-trained Language Models Neural word embeddings are generated from shallow networks.

As computing power increases with the rise of GPUs, model capacity also skyrockets. New NLP

models contain more layers than before and datasets become even more massive. ELMo intro-

duces contextualized word embeddings (Peters et al., 2018). Words can share different meanings

(e.g. “training” a model is not exactly the same as “training” for a sport), so their representations
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should not be static. ELMo uses a bidirectional LSTM and a language modeling objective for pre-

training. The contextualized embedding is formed by summing over weighted and concatenated

hidden states. Radford et al. (2018) introduce GPT which uses the transformer model as a de-

coder. Unlike RNNs, transformers do not have to process sequential data in order (Vaswani et al.,

2017). The model relies on multi-head self-attention to learn long range-dependencies between

items in a sequence. Thus, transformers can be parallelized to reduce computing time and costs.

Another innovation of these contextualized models lies in how they are adapted. Fine-

tuning is introduced as another way to adapt pre-trained models for downstream tasks (Mou

et al., 2016; Howard and Ruder, 2018). In feature extraction, weights of the pre-trained model

are frozen. When adapting a model through fine-tuning, these weights are updated as the model

trains on data for the target task. For these transformer models, fine-tuning can further increase

accuracy over static feature extraction. In later chapters, we will see how fine-tuning improves

model adaptation.

These works lead up to the seminal BERT model (Devlin et al., 2019), a bidirectional

encoder-decoder transformer. The model has two pre-training loss objectives: masked language

modeling and next sentence prediction (Figure 2.2). For masked language modeling, a subset of

input tokens are masked, and the model has to predict masked tokens from the context. For next

sentence prediction, the model has to predict whether a pair of sentences are contiguous. The

pre-training data consists of the BooksCorpus and English Wikipedia. BERT reaches state-of-

the-art performance in several NLP tasks, like text classification, question answering, and natural

language inference.

RoBERTa improves upon BERT by removing the next sentence prediction objective and

trains on larger mini-batches (Liu et al., 2019). XLNet uses autoregressive language modeling to
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pre-train by maximizing log-likelihood of sequence with respect to all possible permutations of

the factorization order (Yang et al., 2019).

After the success of BERT, many researchers attempt to allocate as many resources as possi-

ble during pre-training. The massive T5 transformer model contains eleven billion parameters and

pre-trains on the “Colossal Clean Crawled Corpus”, which is twice as large as Wikipedia (Raf-

fel et al., 2020). OpenAI releases GPT-3, an autoregressive transformer model with 175 billion

parameters (Brown et al., 2020). GPT-3 shows astounding capabilities in text generation and at-

tempts to learn target task with as few examples as possible. People have difficulty distinguishing

text generated from GPT-3 and writings from actual humans (Clark et al., 2021).

2.2.2 Transductive Transfer Learning

The goal of transductive transfer learning is to transmit information across domains. In

Section 2.2, we define a domain D by its feature space X and a marginal probability distribution

p(X). We assume that the source model is trained on a source domain DS and labeled data is

limited in the target domain DT . So, we must somehow adapt the source model for the target

domain. During domain shift, we typically observe the two following situations:

1. The marginal probability distributions of source and target domains differ, pS(XS) 6=

pT (XT ). This scenario is known as domain adaptation (Section 2.2.2.1). For instance,

the distribution of words is different between news articles and scientific reports.

2. The feature spaces of source and target domains differ, XS 6= XT . In this dissertation, we

refer to this as cross-lingual learning because feature spaces are different across various

languages (Section 2.2.2.2).
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Figure 2.3: Figure of domain-adversarial training from Ganin et al. (2016) for training a feature
extractor. The learned representations are passed into the label classifier and domain classifier
to jointly minimize classification loss and maximize domain loss. Adversarial training has influ-
enced many works in domain adaptation. It also shows a great amount of engineering effort spent
toward transferring knowledge.

2.2.2.1 Domain Adaptation

Supervised models are less robust when they encounter shifts in the data domain. The goal

of domain adaptation is to accommodate these changes in marginal distribution p(X). Whereas

inductive transfer learning has access to some labeled data for the target task, domain adaptation

typically assumes very few or no labeled data for the target domain. An example of a problem

in domain adaptation is taking a topic classifier trained on news articles and now applying it

to scientific reports in the same language. The feature space X is the same, but the marginal

probability distribution has shifted from pS(XS) to pT (XT ). For scientific reports, we see more

occurrences of technical terms that may rarely appear in news articles.

Distribution similarity Many works in domain adaptation focus on finding representations that

minimize the divergence between source and target marginal distributions, pS(XS) and pT (XT ).
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The high-level idea is that increasing similarity between the feature distributions will help the

model detect common characteristics between the domains. For example, if we consider news

articles and scientific reports, we want to emphasize terms that appear in both domains. That

way, we can use these terms to transfer knowledge from one domain to another. If COVID-19 fre-

quently occurs in news articles labeled as “medicine”, then the scientific report that also discusses

COVID-19 should be labeled as “medicine” too. There are different ways to measure divergence

between two probability distributions, such as Jensen-Shannon divergence and Kullback-Leibler

divergence. Ben-David et al. (2007) propose using the A distance Kifer et al. (2004) to measure

divergence,

dA(pS, pT ) = 2 sup
A∈A

pS(A)− pT (A) (2.11)

where A is the collection of all subsets of feature space X . In other words, the A distance

measures the largest possible change between pS and pT over a data subset of instances from

X . The A distance is also the minimum empirical risk of a classifier that is supposed to predict

whether instances are from the source or target domain. For ease of computation, we use a variant

called proxy A distance to measure divergence between pS and pT . Blitzer et al. (2007) apply

the proxy A distance to sentiment classification. Another measure for comparing probability

distributions is maximum mean discrepancy,

MMD(pS, pT ) =
∥∥∥Ex∼pS [f(x)]− Ex∼pT [f(x)]

∥∥∥
H

(2.12)

where f maps x to a reproducing kernel Hilbert space. The function f can be a kernel or neural

network. So, maximum mean discrepancy measures the difference between means of pS and pT .
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This distance function is also used in domain adaptation (Chen et al., 2009; Pan et al., 2010).

Domain-adversarial training Methods for increasing distributional similarity involve statisti-

cal measures. A more recent and common framework for domain adaptation is domain-adversarial

training (Ganin et al., 2016). Here, neural networks are used to train representations for the

source and target domain. Inspired by the proxyA distance, domain-adversarial training seeks to

confuse a domain classifier. While training for a classification task, the model has to simultane-

ously optimize the adversarial loss (Figure 2.3). Therefore, the model trains representations that

are both label-discriminative and domain-agnostic. In the previous example, domain-adversarial

training would aim to train representations such that the domain classifier cannot distinguish a

news article from a scientific report. At the same time, these representations should be obvious

enough so that the label predictor still accurately predicts the topic of the news articles.

Domain-adversarial training has been employed in NLP tasks, like relation extraction (Fu

et al., 2017) and duplicate question detection (Shah et al., 2018). Chen et al. (2018b) apply ad-

versarial training in cross-lingual sentiment classification to learn language-agnostic representa-

tions. This is a crossover between domain adaptation and cross-lingual learning, another problem

in transductive transfer learning.

Recently, researchers have scrutinized domain-adversarial training and discover that other

self-supervised techniques are more effective for domain adaptation. Wang et al. (2020) notice

that to continue training BERT with domain-adversarial layers does not improve accuracy. Simply

fine-tuning BERT in the usual fashion already achieves similar results across domains. Further-

more, domain-adversarial training is expensive and unstable to use with transformer models.

Karouzos et al. (2021) confirm the instability of domain-adversarial training for large language
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models. They propose a new domain adaptation method where the source model simultaneously

trains on the target domain with language modeling loss and source domain with the task-specific

(e.g. text classification) loss. Shen et al. (2022) theoretically prove that domain-invariant features

are unnecessary for domain adaptation and show benefits of contrastive pre-training.

Domain adaptation is an important problem that has received much attention over the years.

Pre-training seems to accomplish similar results that past techniques, like domain-adversarial

training, has achieved. Thus, future work may focus more on pre-training techniques for im-

proved domain adaptation. In the next section, we discuss adapting models across languages.

The challenge is that the languages may share few words in common, which makes it difficult to

transfer knowledge.

2.2.2.2 Cross-lingual Learning

Given the linguistic diversity in the world, building AI systems for multiple languages is a

critical goal in NLP. The issue is that many languages lack data needed to train robust machine

learning models. In this setting, there is at least one language with plenty of data. The high-

resource language is the source language and the low-resource language is the target language.

An appropriate choice of source language could be one with lots of data and related to the target

language (Lin et al., 2019). The source language has vocabulary VS and the target language has

vocabulary VT . The goal is to train models on the source language and then adapt them for the

target language. Aside from labeled data, we may also have other resources such as a dictionary

or parallel sentences. Therefore, we apply monolingual models from inductive transfer learning

(Section 2.2.1) in the cross-lingual setting through word-level, document-level, or topic-level
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alignment. For the rest of the section, we talk about cross-lingual alignment for three models:

topic modeling, word embeddings, and transformer models.

Multilingual topic modeling Topic modeling is a fully unsupervised method (Section 2.2.1),

so many early works extend these models for languages with no labeled data. The Polylingual

Topic Model, PLTM, is a cross-lingual version of LDA where there is a set of topics for each

language (Mimno et al., 2009). PLTM requires a one-to-one alignment between documents of

different languages such that the documents are comparable. The definition of comparable doc-

uments is a pair of texts that cover similar content (McEnery and Wilson, 2003). For example,

today’s articles from the New York Times and Beijing Daily are not parallel translations of each

another. They are comparable because they broadly cover the same set of topics. JointLDA is

another cross-lingual extension of LDA that does not require aligned documents (Jagarlamudi

and Daumé, 2010). However, a bilingual dictionary is needed to align topics across languages.

Interestingly, the multilingual model of JointLDA has less perplexity than the monolingual LDA

models for each language. Therefore, modeling cross-lingual topics helps transfer information

between source and transfer languages. Hu et al. (2014b) introduce a polylingual tree-based

topic model to improve machine translation with domain knowledge from both source and target

languages.

Cross-lingual word embeddings Compared to topic-level alignment, cross-lingual research

more commonly uses word-level alignment. By projecting words of different languages into

one vector space, cross-lingual word embeddings help transfer information across languages.

Rapp (1999) propose one of the first cross-lingual word embedding models that depend on dic-
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tionary entries and co-occurrence patterns. Following the success of neural word embeddings

(Section 2.2.1) in English, Mikolov et al. (2013b) use word2vec models to train monolingual

models and learn a translation matrix with dictionary entries that can map vectors from source

to target languages. Specifically, they learn translation matrix W such that the following loss is

minimized,

LMSE =
n∑
i=1

∥∥WES
i −ET

i

∥∥2 (2.13)

where ES
i is the word embedding for source word wi and ET

i is the word embedding of its

translation in the target language. Many models for cross-lingual word embeddings follow this

sort of algorithm. Then, Xing et al. (2015) place orthogonality constraints on W so that all

embeddings are unit length. That way, the cross-lingual word embeddings can be compared with

dot product for downstream tasks like machine translation.

The downside to these approaches is the reliance on dictionary entries. Vulić and Korhonen

(2016) note that high-quality cross-lingual embeddings are hard to train for languages that have

scarce or inaccurate English translations. Artetxe et al. (2017) develop a method that learns cross-

lingual word embeddings with as few translations as possible. They use a self-learning approach

that iteratively learns the mapping and more dictionary entries. The initial dictionary can be as

few as twenty-five entries that are easy to translate.

Other ways to learn cross-lingual mapping include CCA (Faruqui and Dyer, 2014) and

retrofitting (Faruqui et al., 2015). Retrofitting approaches treat dictionary entries as edges con-

necting word nodes and learn parameters to optimize over this graph. Ettinger et al. (2016)

generalize the approach to retrofit word alignments from parallel corpora. Thus, retrofitting does

not learn a translation matrix W and instead trains on individual constraints for each word. In
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Figure 2.4: The size of pre-training data (GiB) across eighty-eight languages for multilingual
transformers (Conneau et al., 2020). The mBERT and XLM models are pre-trained on the Wiki-
100 corpus (orange). XLM-R trains on the CC-100 dataset (blue), which is much larger and covers
more languages than Wiki-100. Extremely vast amounts of data are already used to develop large
multilingual models, so further adaptation should involve cheaper methods.

the Attract-Repel algorithm, antonymy constraints are also used for retrofitting word embed-

dings (Mrkšić et al., 2017). An issue with retrofitting is that it never changes words that are

unobserved in the set of constraints. So, explicit retrofitting uses an end-to-end neural network

to refine all word embeddings (Glavaš and Vulić, 2018). Chapter 5 explores retrofitting word

embeddings from linguistic constraints given by users.

Multilingual transformers Recent development in cross-lingual learning rely on transformer

models, which have astounding capability in inductive transfer learning (Section 2.2.1). Like in

the monolingual case, multilingual transformer models have the advantage of contextualization

over the static, cross-lingual word embeddings. While releasing BERT, Devlin et al. (2019) ad-

ditionally provide a multilingual variant called mBERT. Wu and Dredze (2019) find that mBERT

is stronger than cross-lingual word embeddings for zero-shot cross-lingual tasks like natural lan-

guage inference, document classification, and dependency parsing. Thus, efforts in multilingual

NLP shift toward building cross-lingual transformer models.

XLM improves cross-lingual pre-training by adding a translation language modeling objec-

tive (Lample and Conneau, 2019). First, it takes in parallel sentences as one input. Like masked
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language modeling, it masks the words in the parallel sentences for the model to predict. XLM-

R (Conneau et al., 2020) makes further improvements on XLM by using RoBERTa rather than

BERT and increasing size of training data (Figure 2.4). From experiments, they vary the number

of pre-training languages and notice that accuracy for low-resource languages increases until a

certain point. This is known as the curse of multilinguality. Their solution is to increase model

capacity by increasing hidden size. Pfeiffer et al. (2022) propose an alternative way without

scaling the number of model parameters. Their XMOD model uses modular components dur-

ing pre-training so that information about each individual language is preserved. While XLM-R

and XMOD show state-of-the-art performance on low-resource languages, training these models

are computationally expensive. Future work in cross-lingual learning should focus on reducing

additional costs to further adapt these models for specific domains.

This section has introduced a variety of problems in transfer learning. The current solutions

for transfer learning are quite costly. The trend is to pre-train the model on as much information

as possible so that it can be easily adapted in different situations. In the next section, we begin

to discuss prior work on interactive learning in NLP. The background work may inspire us to

develop interactive methods in transfer learning that are cheaper and more effective.

2.3 Interactive Learning

Machine learning practitioners understand the theory and implementation of AI systems,

but external users may not understand and trust machines. If we want people to use AI, then

we need to make machine learning interpretable (Swartout, 1983). As Biran and Cotton (2017)

loosely define, “systems are interpretable if their operations can be understood by a human, either
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Figure 2.5: Figure from (Settles, 2009) showing the active learning cycle. We repeatedly se-
lect examples in the unlabeled data pool, have an oracle annotate selected examples, add these
examples to the training set, and train the model on the new dataset.

through introspection or through a produced explanation”. If people can justify model outputs,

then they are more inclined to deploy AI in real-life situations. So, human-centric AI is primarily

motivated by the need for transparency and control (Renner, 2020). Through human-AI collab-

oration, the human can refine the model for downstream tasks and particular needs (Feng and

Boyd-Graber, 2019). This kind of interaction is necessary to properly deploy machine learning

systems in the real world.

This dissertation wants to take a step further and understand whether transfer learning can

benefit from interactive machine learning (Section 1.1). Here, we define interactive machine

learning as the setting in which the machine learns through training on data and interacting with

other agents. The rest of the section focuses on prior work in interactive machine learning. First,

we look at active learning where the goal is to sample data that can most effectively train a model

(Section 2.3.1). We assume the existence of an oracle that can label any data. Then, we discuss

recent work in human-in-the-loop NLP (Section 2.3.2). These works motivate later chapters that

apply human-AI interaction to transfer learning.
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2.3.1 Active Learning

In the typical machine learning framework, the model trains on labeled data given by the

user. Here, the model is a passive learner because it accepts any kind of training data. An active

learner is a model that actively queries labels of training examples from a large, unlabeled data

pool. We assume that an oracle, like a human annotator, can provide labels for the queried exam-

ples. The objective is to reach higher accuracy after training the model with this small sample of

labeled data. Thus, active learning strives to reduce annotation cost and time (Figure 2.5).

Active learning is well-studied empirically and theoretically, especially in NLP (Settles,

2009). However, these observations and analyses only apply to linear models. Widely-used

methods, like uncertainty sampling (Lewis and Gale, 1994), may not work as well for neural

networks (Lowell et al., 2019). Recent work in active learning attempt to adapt active learning

for deep learning. The rest of the section looks at traditional active learning algorithms (Sec-

tion 2.3.1.1) and recent work in deep active learning (Section 2.3.1.2).

2.3.1.1 Traditional Active Learning

One of the earliest works in active learning is membership query synthesis (Angluin, 1988).

In this framework, each query is any point x in the feature spaceX and an oracle can provide label

y for example x. Lewis and Gale (1994) argue that membership query synthesis is infeasible be-

cause AI cannot generate (at the time) comprehensible text for humans to annotate. Instead, they

limit data sampling to a large, unlabeled data pool U . Additionally, they assume that there is al-

ready a small, labeled dataset L to start with. They introduce uncertainty sampling, a framework

that chooses the most uncertain example x∗ for the active learner to learn. The paper focuses on
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binary text classification with a naı̈ve Bayes classifier. Instance x∗ is chosen if p(y |x∗) is closest

to 0.5 than other examples in the data pool. Later on, this method is generalized for multi-label

classification as maximum entropy sampling that samples the example with the largest predictive

entropy:

x∗ENT = arg max
x∈U

−
∑
y∈Y

p(y |x) log p(y |x), (2.14)

where y is any label in label space Y .

Maximum entropy sampling is arguably the most popular active learning strategy. As long

as the model provides estimate for p(y |x), then it is straightforward to compute uncertainty for

each example. There are many other ways to compute uncertainty of an example. For instance,

the most uncertain example can be the one that the model is least confident about. Least confi-

dence sampling (Culotta and McCallum, 2005) chooses the example such that:

x∗LC = arg min
x∈U

p(arg max
y∈Y

p(y |x) |x). (2.15)

They apply least confidence sampling to conditional random fields for structured prediction tasks.

What if the classifier is not probabilistic? For support vector machines, Tong and Koller (2001)

propose measuring uncertainty as the example’s distance to the maximum-margin hyperplane.

Thus, the concept of uncertainty can be extended to other types of machine learning models.

Active learning also samples the example that can possibly change the model the most

if its label is known. Expected gradient length uses classification loss gradient to compute ex-

pected model change because machine learning models are typically optimized with the loss

gradient (Settles et al., 2008b). Suppose that fL is the model trained on a labeled dataset L. The
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algorithm chooses an instance such that

x∗EGL = arg max
x∈U

∑
y∈Y

p(y |x)
∥∥∇L(fL∪〈x,y〉(x), y)

∥∥ , (2.16)

where L is the classification loss and fL∪〈x,y〉 is the model trained on the union of L and training

example 〈x, y〉. Thus, the sampled example should impact the model parameters the most and

thereby reduce classification loss through training. Another similar method is expected error

reduction which samples the instance that can reduce training error the most (Roy and McCallum,

2001). For both expected gradient length and expected error reduction, computation takes a long

time. Thus, these algorithms are not as well-known as maximum entropy sampling.

A disadvantage of the mentioned active learning algorithms is that they tend to select out-

liers. The example that confuses the model the most might be the one that rarely occurs. So,

diversity sampling is a family of active learning strategies that counteract this issue. The goal is

to pick examples that are diverse in feature distribution or representation. Diversity sampling is

also known as representative sampling because the sampled examples should represent the unla-

beled data pool. Xu et al. (2003) develop a representative sampling method for support vector

machines, which are models that optimize the hinge loss function. First, they train the model on

already labeled data L. Then, they find a subset of the unlabeled data pool U that lies in the mar-

gin. Finally, they apply k-MEANS clustering to this subset and sample examples that are closest

to the k-MEANS centers. Other works in representative sampling also apply clustering techniques

to diversify active learning samples. Hu et al. (2010) use non-deterministic clustering methods to

improve cluster robustness. Bodó et al. (2011) use spectral clustering to sample data for support

vector machines.
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These methods are primarily for models like naı̈ve Bayes and support vector machines.

Recently, the research in active learning has shifted its focus toward developing sampling strate-

gies for deep learning. In the next section, we discuss novel active learning algorithms for neural

models.

2.3.1.2 Deep Active Learning

Neural networks have shown state-of-the-art performance in several fields, including NLP

(Section 2.2). However, the models are computationally expensive and require a substantial

amount of training data. Active learning should mitigate the expensive costs of training neural

models. For deep learning, active learning is challenging for multiple reasons. First, deep models

are less interpretable (Feng et al., 2018), which makes it difficult to estimate how different ex-

amples influence the model. Second, methods, like uncertainty sampling, depend on confidence

scores p(y |x) but neural networks are poorly calibrated (Guo et al., 2017). Finally, many early

frameworks for active learning are serial because the active learning strategy selects one example

on each iteration for the model to train. Neural networks are trained with mini-batches of data,

so active learning should instead select batches of data.

Wang and Shang (2014) adapts prior active learning strategies to deep learning. Zhang et al.

(2017) propose the first active learning strategy for neural text classification that uses expected

gradient length (Settles et al., 2008b) to select sentences that contain words with the most label-

discriminative embeddings. Alongside text classification, active learning has been applied to

neural models for semantic parsing (Duong et al., 2018), named entity recognition (Shen et al.,

2018), and machine translation (Liu et al., 2018).
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Impressive breakthroughs in active learning have been applied on image datasets. Sener and

Savarese (2018) develop CORESET, a representative sampling strategy for convolutional neural

networks. The method is inspired by coresets (Agarwal et al., 2005), which is the concept in com-

putational geometry that large datasets can be represented by a small subset of points. To sample

a coreset, the CORESET algorithm selects examples that can solve the k-center problem (Wolf,

2011). Another innovation in deep active learning is the BADGE algorithm (Ash et al., 2020). The

algorithm combines uncertainty and diversity sampling by conducting k-MEANS clustering in a

hallucinated gradient embedding space. Across different models, BADGE shows improvement in

accuracy against many prior works in active learning.

Bayesian active learning is another family of methods that use Bayesian neural networks

to capture epistemic uncertainty, the uncertainty over model parameters (Gal et al., 2017). Tradi-

tional uncertainty algorithms only capture aleatoric uncertainty, which is uncertainty in knowl-

edge or data, because they sample data for deterministic models. Siddhant and Lipton (2018)

run a large-scale study that shows potential of Bayesian active learning in NLP. However, with

recent transformer models, Bayesian approaches may not be feasible. Applying reinforcement

learning to active learning also demonstrates success in cross-lingual NLP (Fang et al., 2017; Vu

et al., 2019). Since labeled data is abundant in the source language across different tasks, then

reinforcement learning can help learn an active learning policy for the source language than can

be applied to the target languages.

Most active learning work focus on sampling data for improving the source model on the

source domain. In this dissertation, we will discuss how active learning can help transfer the

source model to a target domain or task. Chapter 4 looks at using active learning for inductive

transfer learning, while Chapter 6 focuses on active learning for transductive transfer learning.
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(a) Topic Overview

(TA and TR)

(b) List Overview 
(LA and LR)

OR

Figure 2.6: The ALTO (Poursabzi-Sangdeh et al., 2016) interface that presents documents in topic
groups or sequential list order.

2.3.2 Human-in-the-loop NLP

Active learning is one possible framework for interactive learning. The area is well-studied

but limited to instance-level annotation. More information could be needed for more challenging

tasks. Aside from active learning, there are other ways for machines to learn from human feed-

back. Settles (2011) build DUALIST, a NLP interface that enables users to both assign documents

and words to the classes. For example, the user label the “baseball” class for baseball-related

documents and words like umpire, innings, and pitcher. DUALIST enhances traditional active

learning through selecting words most relevant to downstream task. User study experiments

show success on word sense disambiguation, sentiment analysis, and information extraction.

Interaction is natural to include in topic modeling because topic models are more inter-

pretable to humans than other NLP models. Choo et al. (2013) innovate one of the first interactive

topic modeling systems called UTOPIAN. Hu et al. (2014a) use human-AI interaction to improve

LDA topic models with user feedback on word correlation. The ALTO interface integrates ac-
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tive learning with topic modeling (Poursabzi-Sangdeh et al., 2016). Topic modeling provides a

general overview to help users label documents quickly and accurately (Figure 2.6). Lund et al.

(2017) use anchor-based topic models to reduce computing time for fast, interactive updates.

Feedback from non-experts can also improve other NLP tasks. For instance, human users

can fix mistakes of a natural language parser (He et al., 2016). Users can write difficult questions

to stump question-answering systems (Wallace et al., 2019). These user-generated questions are

adversarial examples that can strengthen question-answering models. Gao et al. (2018) propose

APRIL, a human-in-the-loop framework that combines active learning and reinforcement learning

for document summarization. APRIL learns to summarize from user preferences without needing

any reference summaries. For entity linking, humans can disambiguate entity mentions in low-

resource settings (Klie et al., 2020).

These interactive learning algorithms and interfaces are innovative ways to bolster NLP

models with human knowledge (Wang et al., 2021). However, these works tend to focus on user-

centric goals like interpretability, explainability, transparency, and control (Section 2.3). How

does the model also benefit from user-AI interaction then? We have discussed some shortcomings

in transfer learning where labeled data from the target task or domain is still needed to fully adapt

the model (Section 2.2). In this scenario, the user can provide input to help transfer knowledge

from source to target settings. In the following chapters, we develop interactive approaches for

transfer learning and understand its effects on model adaptation.

42



Part I

Interactive Feedback for Inductive Transfer Learning
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Chapter 3: From Topic Modeling to Text Classification1

In NLP, topic modeling is widely used to quickly understand large text collections. The

structure of topic models is interpretable and simple: documents are mixtures of topics and topics

are distributions over words. Analysts can easily use topic models to preview large text collec-

tions. Due to its ease of use, topic models can become interactive for people to improve and find

topics (Section 2.3.2).

In this chapter, we apply interactive topic modeling to inductive transfer learning. The

setting is inductive because topics act as features for text classification. However, there is also

transductive transfer involved as users strive to create a cross-lingual topic model. So, we inves-

tigate the effect of interactive topic modeling on both kinds of transfer learning settings.

To handle the transfer across languages, we propose a multilingual anchoring algorithm,

which is an extension to anchor-based topic inference for comparable corpora (Chapter 2.2.1). In

addition, we introduce MTAnchor, a human-in-the-loop system that uses multilingual anchoring

to align topics and enables users to make further adjustments to the model.2 Through inter-

action, the model produces interpretable, low-dimensional representations of documents. The

topic model generates coherent topic alignments for comparable corpora because users them-

1Michelle Yuan, Benjamin Van Durme, and Jordan Boyd-Graber. 2018. Multilingual anchoring: Interactive topic

modeling and alignment across languages. In Proceedings of Advances in Neural Information Processing Systems

2http://github.com/forest-snow/mtanchor_demo.
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selves align topics. Furthermore, these vector representations improve knowledge transfer for

text classification.

3.1 Anchor-based Topic Models

In Section 2.2.1, we discuss how topic models like LDA are typically probabilistic by mod-

eling topics as a distribution over words and documents as a mixture of topics, which is sampled

from a Dirichlet distribution (Figure 2.1). However, the runtime for LDA is slow and precludes

interactive updates. A computationally attractive way to model topics is the anchor word al-

gorithm. The algorithm uses the row-normalized word co-occurrence matrix Q̄, where Q̄i,j =

p(w2 = j |w1 = i). The vector Q̄i is the ith row of Q̄ and represents the conditional distribution

of words in a document given that word i has occurred. Anchor word a appears with high proba-

bility in only one topic, so Q̄a resembles a topic’s word distribution in topic models like LDA. For

example, if “concealer” is an anchor word for a cosmetics topic, then its conditional distribution

will have high probability for cosmetics-related words and low probability for other words. Still,

these are not the distributions that typically define probabilistic topic models: the probability of

a word given a topic.

3.1.1 Anchoring

To discover topic distributions, anchor word approaches (Arora et al., 2013) search for

coefficients that describe non-anchor words’ document contexts with anchor words’ conditional

distributions. The word “liner” has meanings that are explained by “album” in a music topic,

“concealer” in a cosmetics topic, and “carburetor” in an automotive topic. Then, the conditional
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distribution of “liner” can be expressed as a convex combination of the conditional distributions

of “album”, “concealer”, and “carburetor”. Given anchor words a1, . . . , aK , the conditional dis-

tribution of word i can be approximated as

Q̄i ≈
K∑
k=1

Ci,kQ̄ak subject to
K∑
k=1

Ci,k = 1 and Ci,k ≥ 0. (3.1)

The coefficient Ci,k represents p(z = k |w = i), the probability of topic k given a word i. These

coefficients are recovered using the RecoverL2 algorithm (Arora et al., 2013), which minimizes

the quadratic loss between Q̄i and
∑K

k=1Ci,kQ̄ak . Using Bayes’ rule, we can obtain the standard

topic matrix A,

Ai,k = p(w = i | z = k) ∝ p(z = k |w = i)p(w = i) = Ci,k

V∑
j=1

Q̄i,j. (3.2)

For a large vocabulary size V , finding these anchor words is a challenge, but understanding the

geometric intuition behind the anchoring algorithm can help us select the right words. Points

inside a convex hull are expressed as the convex combination of their vertices. If we want to

approximate Q̄i as the convex combination of Q̄a1 , . . . , Q̄aK (Equation 3.1), then Q̄a1 , . . . , Q̄aK

should be the vertices of the convex hull of Q̄. However, finding the vertices to a V -dimensional

convex hull is time-consuming (Arora et al., 2012). Instead, Arora et al. (2013) use FastAnchor-

Words, a greedy approach similar to Gram-Schmidt orthogonalization, to construct an approxi-

mate convex hull of Q̄ and expand it as much as possible with each choice of anchor word. Other

methods include projecting Q̄ to a low-dimensional space and finding the vertices of its exact

convex hull (Lee and Mimno, 2014), adding another dimension to capture metadata (Nguyen
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et al., 2015), or finding nonparametric anchor words (Yurochkin et al., 2017).

3.1.2 Multiword Anchoring

Finding topics in anchor-based models is fast, so it can be used in an interactive setting

where users iteratively choose anchor words for every topic. Nevertheless, users may want to

choose multiple anchor words for a topic, such as selecting both “concealer” and “lipstick” for a

cosmetics topic. Therefore, Lund et al. (2017) propose multiword anchoring: users select a set Gk

of multiple anchor words for topic k. After users select G1, . . . ,GK , Q̄ is augmented so that new

rows Q̄V+1, . . . , Q̄V+K represent these pseudo-anchors in the conditional word co-occurrence

space. These vectors Q̄V+k are constructed as,

Q̄V+k,j =


∑
i∈Gk

Q̄−1i,j

|Gk|


−1

. (3.3)

The motivation for using the harmonic mean (Equation 3.3) is that the function can centralize

input values and ignore large outliers. Finding topics follows the same algorithm as before using

single word anchors. Instead of modeling Q̄i as the convex combination of Q̄a1 , . . . , Q̄aK , a

convex combination of Q̄V+1, . . . , Q̄V+K models Q̄i with minimal quadratic loss.

3.2 Bridging Languages: How Do You Say Anchor in Chinese?

Anchor-based topic models are well-defined for individual languages, but a multilingual

model requires topics that are thematically connected across languages. Discovering two separate

sets of anchor words does not suffice. In this section, we propose multilingual anchoring as an
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algorithm to cross-lingually link topics and their corresponding anchor words.

First, we can connect anchor words across languages as anchor links. For example, “an-

chor” may be linked to “錨(máo)” in Chinese under a nautical context. After anchor words are

linked, all words in the same topic across languages will be form a coherent multilingual topic.

A straightforward way to link words across languages is through a dictionary, much as a human

would. Just as possessing a Chinese dictionary does not enable someone to speak Chinese, a

dictionary does not magically create multilingual topics. To construct an overall coherent model,

anchor links should be carefully selected.

We define these links in more detail. A vocabulary V is a set of word types w. A bilin-

gual dictionary B is a subset of the Cartesian product VS × VT , where VS,VT are vocabular-

ies of two different languages. An element (wS, wT ) of B represents a dictionary entry where

words wS ∈ VS and wT ∈ VT are translations of each other. While B is a binary relation, it is

not necessarily a function. Other multilingual topic models require that the dictionary is a one-

to-one correspondence (Jagarlamudi and Daumé, 2010; Boyd-Graber and Blei, 2009; Gutiérrez

et al., 2016). We relax this restriction on B to extract as much information from the dictionary as

possible.

We could select anchor words a1, . . . , aK independently for each language by considering

all words wS ∈ VS and wT ∈ VT as possible candidates for anchors (e.g., independent runs of

anchor algorithm). Instead, we want to jointly choose anchor words for both languages. First,

we use dictionary entries to create links between words. Then, we choose anchor words aSk for

language S and aTk for language T such that aSk and aTk are linked. Through this process, we

obtain a set of K anchor words for each language and can obtain topics using RecoverL2 (Arora

et al., 2013).
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concealer cosmopolitan

lipstick
liner

concealer

carburetor album

linermelody

melody

Figure 3.1: Visualizing the importance of choice in anchor words for approximating conditional
distributions. The chosen anchor words are the black dots and their span is the white triangle.
On the left, the span of anchor words is small, so the words “melody” and “liner” are too close
together. On the right, the span of anchor words is large, so the conditional distributions of words
“melody” and “liner” are approximated more accurately.

3.2.1 Multilingual Anchoring

If there is only one anchor word for each topic, our goal of building a coherent multilingual

topic model would fail. Any imperfection in the dictionary would scupper the topic model. Fortu-

nately, Arora et al. (2013) assert that there exist many anchor word choices for a topic. Even if we

reduce the pool for candidate anchors, we can still find suitable anchor words for each topic. Re-

call that anchor words are the vertices to the convex hull of words in the conditional distribution

space (Section 3.1). Finding the actual vertices of the convex hulls is too expensive, so FastAn-

chorWords searches for a set of anchors with maximal span. This span should approximate the

convex hull of Q̄. Without a large enough span, we can never find accurate approximations for

words in the conditional distribution space. All words w will have indistinguishable conditional

distributions (Figure 3.1). As a result, every topic will have indistinct word distributions and the

resulting topics will be copies of one another.

To maximize span of anchor words, FastAnchorWords (Arora et al., 2013) chooses anchor
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concealer

forest

carburetor

cosmopolitan

album

bourgeoisie

螘ቭ

䌕蜉

玕ရ瑊

祜

य़᮷䨝

Bourgeoisie does not have a 
Chinese translation, so it 

cannot be picked as an anchor 
word even if it is the farthest 
word from the convex hull.

य़᮷䨝��G£�GòK¼L��LV�WKH�SRLQW�IDUWKHVW�
DZD\�IURP�WKH�&KLQHVH�FRQYH[�KXOO��EXW�
LWV�WUDQVODWLRQ�FRVPRSROLWDQ�LV�WRR�FORVH�
WR�WKH�(QJOLVK�FRQYH[�KXOO��WKHUHE\�
HOLPLQDWLQJ�WKHP�DV�DQFKRU�ZRUG�

FKRLFHV�

Forest and its translation 祜�
�VËQO°Q� are not the furthest 
points from their respective 

convex hull, but neither are too 
close.  So, they are chosen as the 

next anchor words. 

Figure 3.2: Selecting anchor links for multilingual anchoring. The purple (blue) area represents
the conditional distribution space of words in the English (Chinese) corpus. The white triangle
designates the space spanned by chosen anchor words. Dashed lines depict anchor links across
spaces. Black points denote words already chosen as anchors, white points are unchosen words,
and pink stars are most optimal anchors for the current iteration. Multilingual anchors should
maximize area spanned by white triangles in both spaces.

word ak such that

ak = arg max
w

d
(
span

(
Q̄a1 , ..., Q̄ak−1

)
, Q̄w

)
, (3.4)

where d(P ,x) is defined as the Euclidean distance from vector x to subspace P , or the norm of

the projection of x onto the orthogonal complement of P .

To extend the greedy approach to multilingual settings, we need anchor words that can

guide topic inference in multiple languages. This motivates our approach for linking words with

a dictionary. By choosing linked anchor words, the algorithm can align topics cross-lingually

so that the aligned topics form one multilingual topic. However, randomly choosing translation

pairs as anchor links will not produce coherent multilingual topics. We need multilingual anchors

that also inherit the geometric properties of monolingual anchors. So, the span of anchor words

should be maximized in both languages for optimal topic inference. To clearly state our objective,
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we define P lj as the subspace spanned by j chosen anchor words in the conditional distribution

space of language l,

P lj = span
(
Q̄l
al1
, ..., Q̄l

alj

)
. (3.5)

Word w is a good choice of a kth anchor if Q̄w is far enough from P lk−1 so that having Q̄w as

an additional vertex can greatly expand span of anchors. A word might be a great choice for an

anchor in one language, but we cannot select it if its translation is a poor choice for the other

language (Figure 3.2). We need to pick linked words w ∈ VS and v ∈ VT such that w is far

from PSk−1 and v is also far away from PTk−1. Then, adding w and v as anchor words can increase

total span of anchor word set in both languages. Using this intuition, we maximize the lower

bound on the distance from anchor words to PSk−1 and PTk−1. We select anchor words w and v

such that

aSk , a
T
k = arg max

w,v
min

{
d
(
PSk−1, Q̄S

w

)
, d
(
PTk−1, Q̄T

v

)}
subject to (w, v) ∈ B. (3.6)

We greedily select anchors aSk ∈ VS, aTk ∈ VT such that Equation 3.6 is satisfied on every it-

eration k. Words with multiple translations are elegantly addressed: if an anchor word w is

picked already, then it is not likely to be picked again. The algorithm expands both convex hulls

simultaneously with each iteration. Indeed, more translations aid our anchor search because

there will be more linked anchors to choose from. Even if the algorithm chooses anchor words

similar in meaning within the same language, interactivity can help remove duplicate topics (Sec-

tion 3.2.2). After picking a set of anchor words for each language, multilingual anchoring follows

FastAnchorWords (Section 3.1.1). Topic matrices AS and AT are separately recovered (Equa-
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tions 3.1, 3.2). These matrices are the output of multilingual anchoring. In the next sections, we

show how MTAnchor further updates AS and AT based on human feedback.

Lacking dictionary entries If dictionary entries are scarce, then we cannot constrain the an-

chor words to only be words from the dictionary. So, we independently find anchor words for

each language using RecoverL2. This reduction to monolingual settings resembles other cross-

lingual models: JointLDA reduces to LDA and PTLDA reduces to TLDA when there are no dictio-

nary entries (Jagarlamudi and Daumé, 2010; Hu et al., 2014b).

Predicting labels from topics Multilingual anchoring is an unsupervised method, but the topic

distribution acts as a low-dimensional representation for each document (Bengio et al., 2013;

Xiao and Guo, 2013; Rastogi et al., 2015). To infer the topic distribution of documents, we pass

in the topic matrices as inputs into variational inference (Blei et al., 2003), where topic varia-

tional parameter β is fixed and only document variational parameter α is fitted (Sections 2.2.1).

Then, we train a linear SVM on the topic distributions of documents (Fan et al., 2008) to classify

document labels.

3.2.2 Interactive Topic Alignment

Multilingual anchoring uses translations to find anchor words that can lead to better topics

for both languages. However, we cannot completely rely on dictionary entries to construct the

topic model. In reality, translations may not be available, could be a poor fit for the dataset, or

might be wrong. In addition to problems with the dictionary, the data may be too noisy, or the

anchoring algorithm returns a topic model unsuited for our needs (e.g., if a user needs to separate
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Figure 3.3: The user interface for exploring topics in English and Chinese documents. Anchor
words are in the center, while the most likely words for each topic are on the left and right sides
of the interface. The user can drag words from the side and add them as anchor words. When
the user hovers over “亞種(yàzhǒng)”, then its translation, “subspecies”, appears at the bottom
of the screen. When the user presses on the word, all occurrences of it and its translation are
highlighted in yellow. Users can type words in the “Search words” box to find which words are
in the vocabulary. These features help the user explore topics in an unfamiliar language.

news from opinion and the topic model puts them together). Thus, we incorporate interactivity

into MTAnchor so that we can extract linguistic and cultural knowledge from humans.

First, MTAnchor takes in a pair of comparable corpora and a bilingual dictionary as inputs.

Next, it uses multilingual anchoring (Section 3.2.1) to find sets of anchor words for each lan-

guage. After the algorithm recovers topic matrices, the interface shows information about the

topic model. The user can press on the red “X” to delete any incoherent or duplicate topics (Fig-

ure 3.3). The user can also add new topics by pressing on “Add Topics”. The interface will create

a new blank row beneath the existing topics. Then, the user can add words as anchors to the new

topic. These features are similar to the ones used for interactively modeling monolingual topics

(Section 2.3.2).
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Once the user finishes choosing anchor words for each topic, they press “Update Topics”.

This is a signal for MTAnchor to retrieve new anchor words from the interface and run multiword

anchoring (Section 3.1.2). The algorithm approximates Q̄w for every word w in the vocabulary

and then recomputes the topic matrices for each language. When MTAnchor finds new topics, the

user can see the updated topics on the interface. At this point, anchors no longer have to be linked

by dictionary entries because MTAnchor does not select anchors based on Equation 3.6. After the

initial alignment, users define anchors and customize the topic model to their own needs.

3.3 Multilingual Topic Modeling Experiments

The first dataset consists of Wikipedia articles: 11,043 in English and 10,135 in Chinese.

We shorten the articles to contain no more than three sections. We lemmatize the English articles

using WordNet Lemmatizer (Bird et al., 2009) and segment the Chinese articles using Stanford

CoreNLP (Manning et al., 2014). For both languages, the articles fall under one of six categories:

film, music, animals, politics, religion, and food.

Another dataset consists of Amazon reviews: 53,558 in English and 53,160 in Chinese

(mostly from Taiwan) (Constant et al., 2009). Each review has a rating, ranging from one to five.

Since about half of the reviews have a rating of five, we change the classification task to a binary

problem by labeling reviews with rating of five as “1” and the rest as “0”. For the Wikipedia and

Amazon datasets, the training-test split is set to 80:20. For the Chinese-English dictionary, we

use entries from MDBG.3

To test low-resource languages, we use data from the LORELEI Sinhalese language pack (Strassel

3https://www.mdbg.net/chinese/dictionary?page=cc-cedict.
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and Tracey, 2016). These language packs are created to develop technologies that can process

data in low-resource languages. In the pack, only a small subset of documents is labeled based on

need type.4 So, we treat the classification task as a semi-supervised problem. There are eight pos-

sible labels: evacuation, food supply, search/rescue, utilities, infrastructure, medical assistance,

shelter, and water supply (Strassel et al., 2017). Out of the 1,100 (4,790) English (Sinhalese)

documents, only 77 (49) of them have labels. For each language, half of the labeled documents

are in the training set and the other half are in the test set. For the Sinhalese-English dictionary,

we use entries from the LORELEI Sinhalese language pack.

We run experiments to evaluate three methods: multilingual anchoring, MTAnchor, and

MCTA (Multilingual Cultural-common Topic Analysis) (Shi et al., 2016). We choose MCTA as a

baseline because it is a recent work on multilingual topic models with readily available code and

aligns topics using a bilingual dictionary. We train models on multilingual anchoring and MCTA

with twenty topics. For MTAnchor, we initially show users twenty topics, but the final number

of topics is their choice. All methods are implemented in Python on a 2.3 GHz Intel Core i5

processor.

The data for the MTAnchor user study are the English-Chinese Wikipedia articles. We

invite twenty participants on Amazon Mechanical Turk (MTurk) to partake in the study. Each

user is given thirty minutes to interact with the interface.5 MTAnchor scales with the number

4Documents in LORELEI language pack have multiple need types, but we have simplified the classification task

by assigning only the first label to each document.

5Synopsis of user instructions: “There are 11,000 English Wikipedia articles and 10,000 Chinese Wikipedia

articles, which belong to one of six categories: film, music, animals, politics, religion, food. Your goal is to find

topics that can help classify documents within 30 minutes.”
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of unique word types, rather than number of documents or number of words in the documents,

so updates to the system take no longer than seven seconds on average. We only approve HITs

from workers who have completed the task for the first time. After worker finishes the task, the

interface provides a unique code for them to enter on MTurk. These rules ensure fair assessment

of workers’ interaction with MTAnchor.

3.3.1 Evaluating multilingual topics

Ideally, topic models should have topics that are interpretable and useful as classification

features. So, we primarily base evaluation on two measures: classification accuracy and topic

coherence. Measuring topic coherence considers both intrinsic and extrinsic scores (Lau et al.,

2014). The difference between the two is the reference corpus.6 The intrinsic score uses the

trained corpus itself, whereas the extrinsic score uses an external, larger dataset. The Sinhalese

extrinsic coherence scores are not available because a large reference corpus cannot be formed for

low-resource languages. By measuring both, we can evaluate the model’s interpretability within

a local and global context.

We evaluate these metrics separately for each language: English (EN), Chinese (ZH), and

Sinhalese (SI). To classify labels from topics, we use the same procedure as described in Sec-

tion 3.2.1. Then, we measure intra-lingual (I) and cross-lingual accuracy (C) with F1 scores.

Intra-lingual accuracy refers to percentage of documents classified correctly using a classifier

trained on documents in the same language. Cross-lingual accuracy refers to percentage of docu-

ments classified correctly using a classifier trained on documents in a different language (testing

6Measuring topic coherence requires a reference corpus to sample lexical probabilities.
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Figure 3.4: Classification accuracy over time until MCTA converges. For the Wikipedia dataset,
multilingual anchoring converges within 5 minutes, but MCTA takes 5 hours and 18 minutes to
converge. Multilingual anchoring outperforms MCTA in speed and classification accuracy.

the algorithm’s ability to generalize). For topic coherence, we use the NPMI (normalized point-

wise mutual information) variant of automated topic interpretability scores over the fifteen most

probable words in a topic (Lau et al., 2014). For intrinsic scores (I), we use the trained corpus

itself as the reference corpus. For extrinsic scores (E), we use 2.2M English Wikipedia articles

and 1.1M Chinese Wikipedia articles.

During the user study, we hold out 100 documents as a development set for each corpus.

Each time the user updates topics, the interface shows classification accuracy on the development

set. When the user finally submits final anchor words, we evaluate their topics on the test set.

3.3.2 Results

In experiments, multilingual anchoring converges much faster than MCTA (Figure 3.4). We

compare test accuracy across experiments for multilingual anchoring, MTAnchor, and MCTA, but

only report the maximum and median scores from MTAnchor user experiments (Table 3.1). We
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Dataset Method EN-I
ZH-I
SI-I

EN-C
ZH-C
SI-C

Wikipedia (EN-ZH) Multilingual anchoring 69.49% 71.24% 50.37% 47.76%
MTAnchor (maximum) 80.71% 75.33% 57.62% 54.54%
MTAnchor (median) 69.49% 71.44% 50.27% 47.22%
MCTA 51.56% 33.35% 23.24% 39.79%

Amazon (EN-ZH) Multilingual anchoring 59.79% 61.10% 51.73% 53.20%
MCTA 49.53% 50.64% 50.27% 49.49%

LORELEI (EN-SI) Multilingual anchoring 20.78% 32.65% 24.49% 24.68%
MCTA 12.99% 26.53% 4.08% 15.58%

Table 3.1: Comparison of test accuracy among multilingual topic modeling methods. Multilin-
gual anchoring scores higher in classification accuracy than MCTA. MTAnchor does as well as
multilingual anchoring on average with few users showing significant improvement in accuracy.

Dataset Method EN-I
ZH-I
SI-I

EN-E
ZH-E
SI-E

Wikipedia (EN-ZH) Multilingual anchoring 0.141 0.178 0.084 0.128
MTAnchor (maximum) 0.195 0.198 0.103 0.147
MTAnchor (median) 0.141 0.178 0.084 0.129
MCTA 0.126 0.085 0.000 0.037

Amazon (EN-ZH) Multilingual anchoring 0.069 0.061 0.031 0.045
MCTA -0.028 0.019 0.017 0.011

LORELEI (EN-SI) Multilingual anchoring 0.077 0.000 0.025 n/a
MCTA 0.132 0.000 0.036 n/a

Table 3.2: Comparison of topic coherence among multilingual topic modeling methods. Multi-
lingual anchoring scores higher in topic coherence than MCTA. MTAnchor does as well as multi-
lingual anchoring on average, but a few users can produce more interpretable topics.

also compare topic coherence across all experiments (Table 3.2). For English-Chinese datasets,

multilingual anchoring performs better than MCTA in all metrics. For English-Sinhalese LORELEI

dataset, topics from multilingual anchoring are more useful for classification tasks but are less

coherent than MCTA topics.

In every metric, the MTAnchor maximum score across all users is higher than scores from

other methods. The MTAnchor median score across all users is approximately same as those

of multilingual anchoring for all metrics. A few users outperform multilingual anchoring by
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Figure 3.5: Classification accuracy of each participant in the MTAnchor user study over time.
Each plot indicates the language of topics that the classifier is trained on and the language of
topics that the classifier is tested on. The black horizontal line denotes multilingual anchoring
score (no interactive updates). Each colored line represents a different user interaction and shows
the fluctuation in scores on development set (top). Each colored point represents the final clas-
sification score on the test set; the point’s x-coordinate indicates total duration of user’s session
(bottom).

spending more time interacting with the model (Figure 3.5). Within thirty minutes, a user can

improve topic coherence and reach up to a 0.40 increase in any one of the classification scores.
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Dataset Method Topic

Wikipedia MCTA dog san movie mexican fighter novel california
主演改編本小說拍攝角色戰士

Multilingual
anchoring

adventure daughter bob kong hong robert movie
主演改編本片飾演冒冒冒險險險講述編劇

MTAnchor kong hong movie office martial box reception
主演改編飾演本片演演演員員員編編編劇劇劇講述

Amazon MCTA woman food eat person baby god chapter
來貨頂頂水耳機貨物張傑傑同樣

Multilingual
anchoring

eat diet food recipe healthy lose weight
健健健康康康幫吃身體全面同事中醫

LORELEI MCTA help need floodrelief please families needed victim

Multilingual
anchoring

aranayake warning landslide site missing nbro areas

Table 3.3: Top seven words of sample English and Chinese topics are shown with anchors bolded.
Topics from multilingual anchoring and MTAnchor are more relevant to document labels, thereby
making them more useful as features for classification.

3.4 Analyzing Multilingual Topics

Multilingual anchoring is a spectral approach to modeling multilingual topics. The al-

gorithm converges much faster than generative methods (Figure 3.4) and resulting topics form

better vector representations for documents (Table 3.1). An advantage of anchoring over gen-

erative models is its robustness and practicality (Arora et al., 2013). Generative methods need

long documents to correctly estimate topic-word distributions, but anchoring handles documents

of any size (Arora et al., 2012). This is evident in models built on the Amazon dataset, which

contains reviews with only one to three sentences. The health topic for multilingual anchoring is

more interpretable than that of MCTA (Table 3.3).
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Arora et al. (2013) observe that more specific words appear in the top words of anchor-

based topics. This is clearly shown in the LORELEI experiments; a topic from MCTA has general

words like “help” and “need”, while a topic from multilingual anchoring has specific words like

“aranayanke”, a town in Sri Lanka, and “nbro”, which stands for the National Building Research

Organization (Table 3.3). Both topics are about the 2016 Sri Lankan floods, but the topic from

MCTA cannot specify the “need” type of documents. So, accuracy is higher when using topics

from multilingual anchoring to classify documents. However, LORELEI experiments show that

multilingual anchoring topics are less interpretable than MCTA topics. This might be caused by

the obscure top topic words. Arayanake is a Sri Lankan town and “nbro” stands for National

Building Research Organization. These words may have lowered coherence because they do

not co-occur frequently with other top topic words. In this case, using MTAnchor can possibly

increase topic coherence.

In the user study, a few participants create topics that are more applicable for specific tasks.

In one experiment, a user finds the topic with anchor words “adventure” and “冒險(màoxiǎn)”

too vague. The user knows that the task is to classify Wikipedia articles into one of six categories,

so they add movie-related terms as anchors, like “movie”, “演員(yǎnyuán)”, and “編劇(biānjù)”.

Afterward, their topics significantly improves in classification accuracy and coherence. Other

participants do not significantly change the topic model through interactive updates. More work

can look into improving MTAnchor so that updates change topic distributions more drastically.

Interestingly, the classification and topic coherence scores for English topics increase con-

siderably after user interaction compared to Chinese topics. The participants are anonymous

MTurk workers, so we are not aware of their language skills. We believe that workers are most

likely fluent in English because the MTurk website is only available in English. If this fact holds
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true, then it can explain why the English topics have much higher scores than the Chinese ones. It

also shows that people can improve topic models with prior knowledge, which supports the need

for human-in-the-loop algorithms. In the future, it would be interesting to observe how language

fluency affects quality of multilingual topics.

3.5 Conclusion

We propose an interactive, multilingual topic model called MTAnchor. Users align and cus-

tomize topics across languages. By aligning topics, the users create cross-lingual representations

of the documents. These representations can be used for tasks like text classification. While

the interaction mainly helps with transductive transfer learning, it also involves inductive trans-

fer learning because the topic distributions serve as features for other applications. MTAnchor

exemplifies the importance of user feedback for both types of transfer learning.

In this chapter, users interact with topic models to create representations for text classifica-

tion. In Chapter 4, we will look at adapting language models for text classification. Specifically,

we focus our efforts on BERT, a commonly used transformer model. The model is more accurate

but also requires more labeled data. So, we try to reduce the amount of labeled data through

active learning.

62



Chapter 4: From Language Modeling to Text Classification1

The transformer models can generalize across several NLP tasks due to innovations like

the pre-training task, contextualization, and self-attention mechanism (Section 2.2.1). Yet the

price of adopting transformer-based models is to collect and label more training data. If these

models are not fine-tuned on enough examples, their accuracy drastically varies across different

hyperparameter configurations (Dodge et al., 2020). Moreover, computational resources are a

major drawback as training one model can cost thousands of dollars in cloud computing and

hundreds of pounds in carbon emissions (Strubell et al., 2019).

To overcome these issues with modern NLP models, active learning is a fitting solution.

However, traditional active learning depends on warm-starting the model with information about

the task (Ash and Adams, 2019). Also, the model may experience larger gains in accuracy if the

right data is labeled from the start (Felt et al., 2015). In this chapter, we focus on the cold-start

setting where the model has fine-tuned on few to no examples. Given the knowledge already en-

coded in pre-trained models, the annotation for a new task should focus on the information miss-

ing from pre-training. This chapter develops ALPS (Active Learning by Processing Surprisal),

an active learning strategy for BERT-based models.2 While many methods randomly choose an

1Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-Graber. 2020a. Cold-start active learning through self-

supervised language modeling. In Proceedings of Empirical Methods in Natural Language Processing

2https://github.com/forest-snow/alps
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initial sample, ALPS selects the first batch of data using the masked language modeling loss. We

evaluate our approach on four text classification datasets spanning across three different domains.

ALPS outperforms active learning baselines in accuracy and algorithmic efficiency. The success

of ALPS highlights the importance of cold-start active learning for inductive transfer learning.

4.1 Preliminaries

We formally introduce the setup, notation, and terminology that will be used throughout

this chapter.

Pre-trained Encoder Pre-training uses the language modeling loss to train encoder parameters

for generalized representations We call the model input x = (wi)
l
i=1 a “sentence”, which is a

sequence of l tokens w from a vocabulary V . Given weights W , the encoder h maps x to a

d-dimensonal hidden representation h(x;W ). We use BERT (Devlin et al., 2019) as our data

encoder, so h is pre-trained with two tasks: masked language modeling (MLM) and next sentence

prediction. The embedding h(x;W ) is computed as the final hidden state of the [CLS] token

in x. We also refer to h(x;W ) as the BERT embedding.

Fine-tuned Model We fine-tune BERT on the downstream task by training the pre-trained

model and the attached sequence classification head (Section 2.2.1). Suppose that f represents

the model with the classification head, has parameters θ = (W ,V ), and maps input x to a C-

dimensional vector with confidence scores for each label. Specifically, f(x; θ) = σ(V ·h(x;W ))

where σ is a softmax function.

Let D be the labeled data for our classification task where the labels belong to set Y =
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Algorithm 1 Active learning for Sentence Classification

Require: Initial model f(x; θ0) with pre-trained encoder h(x;W0), unlabeled data pool U , num-
ber of queries per iteration k, number of iterations T , sampling algorithm A

1: D = {}
2: for iterations t = 1, . . . , T do
3: if A is cold-start for iteration t then
4: Mt(x) = f(x; θ0)
5: else
6: Mt(x) = f(x; θt−1)
7: end if
8: Qt ← Apply A on model Mt(x) and data U to select k sentences to query
9: Dt ← Label queries Qt

10: D = D ∪Dt
11: U = U \ Dt
12: θt ← Fine-tune f(x; θ0) on D
13: end for
14: return f(x; θT )

{1, ..., C}. During fine-tuning, we take a base classifier f with weights W0 from a pre-trained

encoder h and fine-tune f on D for new parameters θt. Then, the predicted classification label is

ŷ = arg maxy∈Y f(x; θt)y.

Active Learning for Sentence Classification Assume that there is a large unlabeled datasetU =

{(xi)}ni=1 of n sentences. The goal of active learning is to sample a subset D ⊂ U efficiently

so that fine-tuning the classifier f on subset D improves test accuracy. On each iteration t, the

learner uses strategy A to acquire k sentences from dataset U and queries for their labels (Algo-

rithm 3). Strategy A usually depends on an acquisition model Mt (Lowell et al., 2019). If the

strategy depends on model warm-starting, then the acquisition model Mt is f with parameters

θt−1 from the previous iteration. Otherwise, we assume that Mt is the pre-trained model with

parameters θ0. After T rounds, we acquire labels for Tk sentences. We provide more concrete

details about active learning simulation in Section 4.4.
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4.2 The Uncertainty–Diversity Dichotomy

In Section 2.3.1, we talk about two general frameworks for active learning: uncertainty

sampling and diversity sampling. Dasgupta (2011) describes uncertainty and diversity as the “two

faces of active learning”. While uncertainty sampling efficiently searches the hypothesis space by

finding difficult examples to label, diversity sampling exploits heterogeneity in the feature space.

Uncertainty sampling requires model warm-starting because it depends on model predictions,

whereas diversity sampling can be a cold-start approach. A successful active learning strategy

should integrate both aspects, but its exact implementation is an open research question. For

example, a naı̈ve idea is to use a fixed combination of strategies to sample points. Nevertheless,

Hsu and Lin (2015) experimentally show that this approach hampers accuracy. BADGE (Ash et al.,

2020) optimizes for both uncertainty and diversity by using confidence scores and clustering.

This strategy beats previous work in uncertainty sampling and diversity sampling.

4.2.1 BADGE

The goal of BADGE is to sample a diverse and uncertain batch of points for training neural

networks. The algorithm transforms data into representations that encode model confidence and

then clusters these transformed points. First, an unlabeled point x passes through the trained

model to obtain its predicted label ŷ. Next, a gradient embedding gx is computed for x such that

it embodies the gradient of the cross-entropy loss on (f(x; θ), ŷ) with respect to the parameters

of the model’s last layer. The gradient embedding is

(gx)i = (f(x; θ)i − 1(ŷ = i))h(x;W ). (4.1)
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The i-th block of gx is the hidden representation h(x;W ) scaled by the difference between

model confidence score f(x; θ)i and an indicator function 1 that indicates whether the predictive

label ŷ is label i. Finally, BADGE chooses a batch to sample by applying k-MEANS++ (Arthur and

Vassilvitskii, 2006) on the gradient embeddings. These embeddings consist of model confidence

scores and hidden representations, so they encode information about both uncertainty and the

data distribution. By applying k-MEANS++ on the gradient embeddings, the chosen examples

differ in feature representation and predictive uncertainty.

4.2.2 Limitations

BADGE combines uncertainty and diversity sampling to profit from advantages of both

methods but also brings the downsides of both: reliance on warm-starting and computational

inefficiency.

Model Uncertainty and Inference Dodge et al. (2020) observe that training is highly un-

stable when fine-tuning pre-trained language models on small datasets. Accuracy significantly

varies across different random initializations. The model has not fine-tuned on enough exam-

ples, so model confidence is an unreliable measure for uncertainty. While BADGE improves over

uncertainty-based methods, it still relies on confidence scores f(x; θ)i when computing the gra-

dient embeddings (Equation 4.1). Also, it uses labels inferred by the model to compensate for

lack of supervision in active learning, but this inference is inaccurate for ill-trained models. Thus,

warm-start methods may suffer from problems with model uncertainty or inference.
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Algorithmic Efficiency Many diversity-based methods involve distance comparison between

embedding representations, but this computation can be expensive, especially in high-dimensional

space. For instance, CORESET is a farthest-first traversal in the embedding space where it chooses

the farthest point from the set of points already chosen on each iteration (Sener and Savarese,

2018). The embeddings may appropriately represent the data, but issues, like the “curse of di-

mensionality” (Beyer et al., 1999) and the “hubness problem” (Tomasev et al., 2013), persist. As

the dimensionality increases, the distance between any two points converges to the same value.

Moreover, the gradient embeddings in BADGE have dimensionality of Cd for a C-way classifica-

tion task with data dimensionality of d (Equation 4.1). These issues make distance comparison

between gradient embeddings less meaningful and raises costs to compute those distances.

4.3 A Self-supervised Active Learner

Cold-start active learning is challenging because of the shortage in labeled data. Prior

works, like BADGE, often depend on model uncertainty or inference, but these measures can

be unreliable if the model has not trained on enough data (Section 4.2.2). To overcome the

lack of supervision, what if we apply self-supervision to active learning? For NLP, the language

modeling task is self-supervised because the label for each token is the token itself. If the task has

immensely improved transfer learning, then it may reduce generalization error in active learning

too.

For our approach, we adopt the uncertainty-diversity BADGE framework for clustering em-

beddings that encode information about uncertainty. However, rather than relying on the classifi-

cation loss gradient, we use the MLM loss to bootstrap uncertainty estimates. Thus, we combine
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Figure 4.1: To form surprisal embedding sx, we pass in unmasked x through the BERT MLM head
and compute cross-entropy loss for a random 15% subsample of tokens against the target labels.
The unsampled tokens have entries of zero in sx.

uncertainty and diversity sampling for cold-start active learning.

4.3.1 ALPS

Surprisal Embeddings Inspired by how BADGE forms gradient embeddings from the classifi-

cation loss, we create surprisal embeddings from language modeling. Surprisal theory measures

the cost of processing a word by its difficulty to predict from its content (Levy, 2008). There-

fore, we use the language modeling loss to compute surprisal of a token. For sentence x, we

compute surprisal embedding sx by evaluating x with the MLM objective. To evaluate MLM loss,

BERT randomly masks 15% of the tokens in x and computes cross-entropy loss for the masked
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tokens against their true token labels. When computing surprisal embeddings, we make one cru-

cial change: none of the tokens are masked when the input is passed into BERT. However, we

still randomly choose 15% of the tokens in the input to evaluate with cross-entropy against their

target token labels. The unchosen tokens are assigned a loss of zero as they are not evaluated

(Figure 4.1).

These decisions for not masking input and evaluating only 15% of tokens are made be-

cause of experiments on the validation set (Section 4.6). Proposition 1 provides insight on the

information encoded in surprisal embeddings. Finally, the surprisal embedding is l2-normalized

as normalization improves clustering (Aytekin et al., 2018). If the input sentences have a fixed

length of l, then the surprisal embeddings have dimensionality of l. The length l is usually less

than the hidden size of BERT embeddings.

Proposition 1. For an unnormalized surprisal embedding sx, each nonzero entry (sx)i estimates

I(wi), the surprisal of its corresponding token within the context of sentence x.

Proof. Extending notation from Section 4.1, assume that m is the MLM head, with parameters

φ = (W ,Z), which maps input x to a l × |V| matrix m(x;φ). The ith row m(x;φ)i contains

prediction scores for wi, the ith token in x. Suppose that wi is the jth token in vocabulary V .

Then, m(x;φ)i,j is the likelihood of predicting wi correctly.

Now, assume that context is the entire input x and define the language model probability

pm as,

pm(wi |x) = m(x;φ)i,j. (4.2)

Salazar et al. (2020) have a similar definition as Equation 4.2 but instead have defined it in terms

of the masked input. We argue that their definition can be extended to the unmasked input x.
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Algorithm 2 Single iteration of ALPS

Require: Pre-trained encoder h(x;W0), unlabeled data pool U , number of queries k
1: for sentences x ∈ U do
2: Compute sx with MLM head of h(x;W0)
3: end for
4: M = {sx | x ∈ U}
5: C ← k-MEANS cluster centers ofM
6: Q = {arg minx∈U ‖c− sx‖ |c ∈ C}
7: return Q

During BERT pre-training, the MLM objective is evaluated on the [MASK] token for 80% of the

time, random token for 10% of the time, and the original token for 10% of the time. This helps

maintain consistency across pre-training and fine-tuning because [MASK] never appears in fine-

tuning (Devlin et al., 2019). Thus, we assume that m estimates occurrence of tokens within a

maskless context as well.

Next, the information-theoretic surprisal (Shannon, 1948) is defined as I(w) = − log p(w | c),

the negative log likelihood of word w given context c. If wi is sampled and evaluated, then the

ith entry of the unnormalized surprisal embedding is,

(sx)i = − logm(x;φ)i,j = − log pm(wi |x)

= I(wi).

Proposition 1 shows that the surprisal embeddings consist of estimates for token-context

surprisal. Intuitively, these values can help with active learning because they highlight the in-

formation missing from the pre-trained model. For instance, consider the sentences: “this is

my favorite television show” and “they feel ambivalent about catholic psychedelic synth folk
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Dataset Domain Train Dev Test # Labels

AG NEWS News articles 110,000 10,000 7,600 4
IMDB Sentiment reviews 17,500 7,500 25,000 2
PUBMED 20k RCT Medical abstracts 180,040 30,212 30,135 5
SST-2 Sentiment reviews 60,615 6,736 873 2

Table 4.1: Sentence classification datasets used in experiments.

music”. Tokens from the latter have higher surprisal than those from the former. If this is a sen-

timent classification task, the second sentence is more confusing for the classifier to learn. The

surprisal embeddings indicate sentences challenging for the pre-trained model to understand and

difficult for the fine-tuned model to label.

The most surprising sentences contain many rare tokens. If we only train our model on the

most surprising sentences, then it may not generalize well across different examples. Plus, we

may sample several, atypical sentences that are similar to each other, which is often an issue for

uncertainty-based methods (Kirsch et al., 2019). Therefore, we incorporate clustering in ALPS to

maintain diversity.

k-MEANS Clustering After computing surprisal embeddings for each sentence in the unlabeled

pool, we use k-MEANS to cluster the surprisal embeddings. Then, for each cluster center, we

select the sentence that has the nearest surprisal embedding to it. The final set of sentences are the

queries to be labeled by an oracle (Algorithm 2). Although BADGE uses k-MEANS++ to cluster,

experiments on the validation set show that k-MEANS works better for surprisal embeddings

(Section 4.6).
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4.4 Active Sentence Classification

We evaluate ALPS on sentence classification for three different domains: sentiment reviews,

news articles, and medical abstracts (Table 4.1). To simulate active learning, we sample a batch

of 100 sentences from the training dataset, query labels for this batch, and then move the batch

from the unlabeled pool to the labeled dataset (Algorithm 3). The initial encoder h(x; θ0), is an

already pre-trained, BERT-based model (Section 4.4.2). In a given iteration, we fine-tune the base

classifier f(x; θ0) on the labeled dataset and evaluate the fine-tuned model with classification

micro-F1 score on the test set. We do not fine-tune the model f(x; θt−1) from the previous

iteration to avoid issues with warm-starting (Ash and Adams, 2019). We repeat for ten iterations,

collecting a total of 1,000 sentences.

4.4.1 Baselines

We compare ALPS against warm-start methods (Entropy, BADGE, FT-BERT-KM) and cold-

start methods (Random, BERT-KM). For FT-BERT-KM, we use BERT-KM to sample data in the

first iteration. For other warm-start methods, data is randomly sampled in the first iteration.

Entropy Sample k sentences with highest predictive entropy (Lewis and Gale, 1994; Wang and

Shang, 2014).

BADGE Sample k sentences based on diversity in loss gradient (Section 4.2.1).

BERT-KM Cluster pre-trained, l2-normalized BERT embeddings with k-MEANS and sample

the nearest neighbors of the k cluster centers. The algorithm is the same as ALPS except that
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AG NEWS PUBMED

Random < 1 < 1
Entropy 7 10
ALPS 14 24
BADGE 23 70
BERT-KM 28 58
FT-BERT-KM 33 79

Table 4.2: Average runtime (minutes) per sampling iteration during active learning simulation for
large datasets. BADGE, FT-BERT-KM, and BERT-KM take much longer to run.

BERT embeddings are used.

FT-BERT-KM This is the same algorithm as BERT-KM except the BERT embeddings h(x;Wt−1)

from the previously fine-tuned model are used.

4.4.2 Setup

For each sampling algorithm and dataset, we run the active learning simulation five times

with different random seeds. We set the maximum sequence length to 128. We fine-tune on a

batch size of thirty-two for three epochs. We use AdamW (Loshchilov and Hutter, 2019) with

learning rate of 2e-5, β1 = 0.9, β2 = 0.999, and a linear decay of learning rate.

For IMDB (Maas et al., 2011), SST-2 (Socher et al., 2013), and AG NEWS (Zhang et al.,

2015), the data encoder is the uncased BERT-Base model with 110M parameters. For PUBMED (Der-

noncourt and Lee, 2017), the data encoder is SCIBERT, a BERT model pre-trained on scientific

texts (Beltagy et al., 2019). All experiments are run on GeForce GTX 1080 GPU and 2.6 GHz

AMD Opteron 4180 CPU processor; runtimes in Table 4.2.
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Figure 4.2: Test accuracy of simulated active learning over ten iterations with 100 sentences
queried per iteration. The dashed line is the test accuracy when the model is fine-tuned on the
entire training dataset. Table 4.1 provides the dataset sizes. Overall, models trained with data
sampled from ALPS have the highest test accuracy, especially for the earlier iterations.

4.4.3 Results

The model fine-tuned with data sampled by ALPS has higher test accuracy than the base-

lines (Figure 4.2). For AG NEWS, IMDB, and SST-2, this is true in earlier iterations. We often see

the most gains in the beginning for crowdsourcing (Felt et al., 2015). Interestingly, clustering the

fine-tuned BERT embeddings is not always better than clustering the pre-trained BERT embed-

dings for active learning. The fine-tuned BERT embeddings may require training on more data

for more informative representations.

For PUBMED, test accuracy greatly varies between the strategies. The dataset belongs to

a specialized domain and is class-imbalanced, so naı̈ve methods show poor accuracy. Entropy

sampling has the lowest accuracy because the classification entropy is uninformative in early

iterations. The models fine-tuned on data sampled by ALPS and BADGE have about the same ac-
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curacy. Both methods strive to optimize for uncertainty and diversity, which alleviates problems

with class imbalance.

Our experiments cover the first ten iterations because we focus on the cold-start setting. As

sampling iterations increase, test accuracy across the different methods converges. Both ALPS

and BADGE already approach the model trained on the full training dataset across all tasks (Fig-

ure 4.2). Once the cold-start issue subsides, uncertainty-based methods can be employed to

further query the most confusing examples for the model to learn.

4.5 Analysis

Sampling Efficiency Given that the gradient embeddings are computed, BADGE has a time

complexity of O(Cknd) for a C-way classification task, k queries, n points in the unlabeled

pool, and d-dimensional BERT embeddings. Given that the surprisal embeddings are computed,

ALPS has a time complexity of O(tknl) where t is the fixed number of iterations for k-MEANS

and l is the maximum sequence length. In our experiments, k = 100, d = 768, t = 10, and

l = 128. In practice, t will not change much, but n and C could be much higher. For large

dataset PUBMED, the average runtime per iteration is 24 minutes for ALPS and 70 minutes for

BADGE (Table 4.2). So, ALPS can match BADGE’s accuracy more quickly.

Diversity and Uncertainty We estimate diversity and uncertainty for data sampled across dif-

ferent strategies. For diversity, we look at the overlap between tokens in the sampled sentences

and tokens from the rest of the data pool. A diverse batch of sentences should share many of

the same tokens with the data pool. In other words, the sampled sentences can represent the data

pool because of the substantial overlap between their tokens. In our simulations, the entire data
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Figure 4.3: Plot of diversity against uncertainty estimates from active learning simulations. Each
point represents a sampled batch of sentences. The shape indicates the active learning strategy
and the color represents the sample iteration. The lightest color corresponds to the first iteration
and the darkest color represents the tenth iteration. While uncertainty estimates are similar across
different batches, ALPS shows a consistent increase in diversity without drops in uncertainty.

pool is the training dataset (Section 4.4). So, we compute the Jaccard similarity between VD, set

of tokens from the sampled sentences D, and VD′ , set of tokens from the unsampled sentences

U \ D,

Gd(D) = J(VD,VD′) =
|VD ∩ VD′|
|VD ∪ VD′ |

. (4.3)

If Gd is high, this indicates high diversity because the sampled and unsampled sentences have

many tokens in common. If Gd is low, this indicates poor diversity and representation.

To measure uncertainty, we use f(x, θ∗), the classifier trained on the full training dataset.

In our experiments, classifier f(x, θ∗) has high accuracy (Figure 4.2) and inference is stable

after training on many examples. Thus, we can use the logits from the classifier to understand
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its uncertainty toward a particular sentence. First, we compute predictive entropy of sentence

x when evaluated by model f(x, θ∗). Then, we take the average of predictive entropy over all

sentences in a sampled batch D. We use the average predictive entropy to estimate uncertainty of

the sampled sentences,

Gu(D) =
1

|D|
∑
x∈D

C∑
i=1

(f(x; θ∗)i) ln(f(x; θ∗)i)
−1. (4.4)

We compute Gd and Gu for batches sampled in the active learning experiments of AG NEWS and

PUBMED. Diversity is plotted against uncertainty for batches sampled across different iterations

and active learning strategies (Figure 4.3). For AG NEWS, Gd and Gu are relatively low for

ALPS in the first iteration. As iterations increase, samples from ALPS increase in diversity and

decrease minimally in uncertainty. Samples from other methods have a larger drop in uncertainty

as iterations increase. For PUBMED, ALPS again increases in sample diversity without drops in

uncertainty. In the last iteration, ALPS has the highest diversity among all the algorithms.

Sample Sentences We take a closer look at the kind of sentences that are sampled by ALPS.

Table 4.3 compares sentences that are chosen by ALPS and random sampling in the first active

learning iteration. The tokens highlighted are the ones evaluated with surprisal loss. Random

sampling can fall prey to data idiosyncrasies. For example, AG News has sixty-two articles

about the German golfer Bernhard Langer, and random sampling picks multiple articles about

him on one of five runs. For PubMed, many sentences labeled as “methods” are simple sentences

with a short, independent clause. While random sampling chooses many sentences of this form,

ALPS seems to avoid this problem. Since the surprisal embedding encodes the fluctuation in
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AG NEWS PUBMED

ALPS
Jason Thomas matches a career-high
with 26 points and American wins
its fifth straight by beating visiting
Ohio, 64-55, Saturday at Bender Arena
(Sports)

The results showed that physical activity
and exercise capacity in the intervention
group was significantly higher than the
control group after the intervention . (re-
sults)

Sainsbury says it will take a 550 million
pound hit to profits this year as it invests
to boost sales and reverse falling market
share (Business)

Flumazenil was administered after the
completion of endoscopy under sedation
to reduce recovery time and increase pa-
tient safety . (objective)

Random
Bernhard Langer and Hal Sutton
stressed the importance of playing this
year’s 135th Ryder Cup . . . (Sports)

The study population consisted of 20 in-
terns and medical students (methods)

BLOOMFIELD TOWNSHIP, Mich. –
When yesterday’s Ryder Cup pairings
were announced, Bernhard Langer knew
his team had been given an opportunity.
(Sports)

The subject , health care provider , and
research staff were blinded to the treat-
ment . (methods)

Table 4.3: Sample sentences from AG News and PubMed while using ALPS and Random in the
first iteration. For ALPS, highlighted tokens are the ones that have a nonzero entry in the surprisal
embedding. Compared to random sampling, ALPS samples sentences with more diverse content.

information content across the sentence, ALPS is less likely to repeatedly choose sentences with

similar patterns in surprisal. This may diversify syntactic structure in a sampled batch.

Surprisal Clusters Prior work uses k-MEANS to cluster feature representations as a cold-start

active learning approach (Zhu et al., 2008; Bodó et al., 2011). Rather than clustering BERT

embeddings, ALPS clusters surprisal embeddings. We compare the clusters between surprisal

embeddings and BERT embeddings to understand the structure of the surprisal clusters. First,

we use t-SNE (Maaten and Hinton, 2008) to plot the embeddings for each sentence in the IMDB

training set (Figure 4.4). The labels are not well-separated for both embedding sets, but the

surprisal embeddings seem easier to cluster. To quantitively measure cluster quality, we use the
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(a) BERT embeddings with k-MEANS centers (b) Surprisal embeddings with k-MEANS centers

Figure 4.4: T-SNE plots of BERT embeddings and surprisal embeddings for each sequence in the
IMDB training dataset. The enlarged points are the centers determined by k-MEANS (left) and k-
MEANS++ (right). The points are colored according to their classification labels. In both sets of
embeddings, we cannot clearly separate the points from their labels, but the distinction between
clusters in surprisal embeddings seems more obvious.

Silhouette Coefficient for which larger values indicate desirable clustering (Rousseeuw, 1987).

The surprisal clusters have a coefficient of 0.38, whereas the BERT clusters have a coefficient of

only 0.04.

These results, along with the classification experiments, show that naı̈vely clustering BERT

embeddings is not suited for active learning. Possibly, more complicated clustering algorithms

can capture the intrinsic structure of the BERT embeddings. However, this would increase the

algorithmic complexity and runtime. Alternatively, one can map the feature representations to

a space where simple clustering algorithms work well. During this transformation, important

information for active learning must be preserved and extracted. Our approach uses the MLM

head, which has already been trained on extensive corpora, to map the BERT embeddings into the

surprisal embedding space. As a result, simple k-MEANS can efficiently choose representative

sentences.
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Dataset k Iterative Single

IMDB 200 0.63 ± 0.04 0.61 ± 0.03
500 0.74 ± 0.05 0.76 ± 0.04

1000 0.82 ± 0.01 0.82 ± 0.01

PUBMED 200 0.63 ± 0.03 0.64 ± 0.03
500 0.80 ± 0.02 0.82 ± 0.01

1000 0.84 ± 0.00 0.84 ± 0.00

Table 4.4: Test accuracy on IMDB and PubMed between different uses of ALPS for various k,
the number of sentences to query. We compare using ALPS iteratively (Iterative) as done in
Chapter 4.4 with using ALPS to query all k sentences in one iteration (Single). The test accuracy
does not change much, showing that ALPS is flexible to apply in different settings.

Single-iteration Sampling In Section 4.4, we sample data iteratively (Algorithm 3) to fairly

compare the different active learning algorithms. However, ALPS does not require updating the

classifier because it only depends on the pre-trained encoder. Rather than sampling data in small

batches and re-training the model, ALPS can sample a batch of k sentences in one iteration (Al-

gorithm 2). Between using ALPS iteratively and deploying the algorithm for a single iteration,

the difference is insignificant (Table 4.4). Plus, sampling 1,000 sentences only takes about 97

minutes for PUBMED and 7 minutes for IMDB.

With this flexibility in sampling, ALPS can accommodate different budget constraints. For

example, re-training the classifier may be costly, so users want a sampling algorithm that can

query k sentences all at once. In other cases, annotators are not always available, so the number

of obtainable annotations is unpredictable. Then, users would prefer an active learning strategy

that can query a variable number of sentences for any iteration. These cases illustrate practical

needs for a cold-start algorithm like ALPS.

Using BERT-Base for PUBMED The results for PUBMED in Figure 4.2 use a SCIBERT model.

Beltagy et al. (2019) show the advantages of using SCIBERT on tasks for scientific domains. So,
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Figure 4.5: The results for active learning simulation of the BERT-Base encoder for PUBMED.
Entropy sampling still has lowest accuracy, but there is no optimal strategy among the rest of
them. The accuracy of ALPS and BADGE is lower than the experiments in Figure 4.2 that use
SCIBERT.

for the main experiments, we are inclined to use the SCIBERT encoder rather than BERT-Base.

Figure 4.5 repeats the active learning simulation on PUBMED with a BERT-Base encoder. The

accuracy for ALPS and BADGE are no longer as high as they were in the SCIBERT experiments.

One possible explanation for this is that BERT-Base does not recognize many words in PUBMED.

Similar to entropy sampling, the words are equally surprising to the model. On the other hand,

SCIBERT has already pre-trained on scientific texts and has a general understanding of when

certain terms should appear. The SCIBERT model can then better detect which sentences are

actually confusing in the scientific domain. Future work may look at how various pre-training
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IMDB SST-2

k = 100 k = 200 k = 100 k = 200

ALPS 0.60± 0.03 0.69 ± 0.04 0.57 ± 0.06 0.64 ± 0.04
ALPS-tokens-0.1 0.61 ± 0.05 0.63± 0.11 0.56± 0.07 0.63± 0.04
ALPS-tokens-0.2 0.55± 0.07 0.65± 0.05 0.57 ± 0.05 0.63± 0.05
ALPS-tokens-1.0 0.59± 0.05 0.65± 0.07 0.56± 0.05 0.62± 0.05
ALPS-masked 0.59± 0.03 0.63± 0.09 0.56± 0.03 0.60± 0.02

Table 4.5: Comparison of validation accuracy between the variants of ALPS to sample data for
IMDB and SST-2 in the first two iterations. ALPS-tokens-p varies the percentage p of tokens
evaluated with MLM loss when computing surprisal embeddings. ALPS-masked passes in the
input with masks as originally done in pre-training. Overall, ALPS has higher mean and smaller
variance in accuracy.

strategies (Gururangan et al., 2020) could affect the accuracy of ALPS for active learning.

4.6 Ablation

We provide results from ablation experiments. Here, we look at the effects of token mask-

ing, token sampling, and clustering technique on ALPS,

Token masking In our preliminary experiments on the validation set, accuracy improves after

passing in the original input with no masks (Table 4.5). The purpose of the [MASK] token during

pre-training is to train the token embeddings to learn context so that it can predict the token labels.

Since we are not training the token embeddings to learn context, masking the tokens does not help

much for active learning. We use active learning for fine-tuning, so the input should be in the

same format for active learning and fine-tuning. Otherwise, there is a mismatch between the two

stages.
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Figure 4.6: Comparing validation accuracy between using k-MEANS and k-MEANS++ to select
centroids in the surprisal embeddings. Using k-MEANS reaches higher accuracy.

Token sampling percentage When BERT evaluates MLM loss, it only focuses on the masked

tokens, which are from a 15% random subsample of tokens in the sentence. We experiment with

varying this subsample percentage on the validation set (Table 4.5). We try sampling 10%, 15%,

20%, and 100%. Overall, we notice that mean accuracy are roughly the same, but variance in

accuracy across different runs is slightly higher for percentages other than 15%.

After the second active learning iteration, we notice that accuracy mean and variance be-

tween the different token sampling percentages converge. So, the token sampling percentage

makes more of a difference in early stages of active learning. Devlin et al. (2019) show that

the difference in accuracy between various mask strategies is minimal for fine-tuning BERT. We

believe this can also be applied to what we have observed for ALPS.

84



(a) Surprisal embeddings with k-MEANS++ cen-
ters

(b) Surprisal embeddings with k-MEANS centers

Figure 4.7: T-SNE plots of surprisal embeddings for IMDB training data. The centers are either
picked by k-MEANS++ (left) or k-MEANS (right). There is less overlap between the centers with
k-MEANS compared to k-MEANS++. So, using k-MEANS is better for exploiting diversity in the
surprisal embedding space.

Clustering technique BADGE applies k-MEANS++ on gradient embeddings to select points to

query. Initially, we also use k-MEANS++ on the surprisal embeddings but validation accuracy

is only slightly higher than random sampling. Since k-MEANS++ is originally an algorithm for

robust initialization of k-MEANS, we instead apply k-MEANS on the surprisal embeddings. As

a result, we see more significant increase in accuracy over baselines, especially for PubMed

(Figure 4.6). Additionally, the t-SNE plots show that k-MEANS selects centers that are further

apart compared to the ones chosen by k-MEANS++ (Figure 4.7). This shows that k-MEANS can

help sample a more diverse batch of data.

4.7 Conclusion

While transformers are powerful models for inductive transfer learning, their accuracy and

stability require fine-tuning on large amounts of data. Active learning can help direct limited an-

85



notations most effectively so that labels complement, rather than duplicate, unlabeled data. Since

the pre-training loss is useful for inductive transfer learning, ALPS uses the language modeling

loss to find examples that surprise the model. Thus, ALPS is a strategy that samples data for

improved model adaptation to downstream tasks.

Next, we transition to transductive transfer learning. In Chapter 3, we have already seen

how user interaction can help align topics across languages. We extend that work and solely focus

on improving cross-lingual text classification. We develop CLIME, a system for updating word

embeddings based on user feedback about keywords. The bilingual speakers annotate nearest

neighbors of words that are most salient for the classification task. Compared to MTAnchor, the

feedback is more tailored toward text classification in low-resource situations.
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Part II

Interactive Feedback for Transductive Transfer Learning
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Chapter 5: Refining Word Embeddings across Languages1

The last chapter focuses on user interaction for cross-lingual topic modeling. This chapter

considers a more difficult problem. We still look at cross-lingual transfer but primarily focus

on low-resource languages. Several languages around the world do not have enough data to

train models with simply supervised learning. Here, we need to make use of innnovations like

cross-lingual word embeddings (Section 2.2.2.2). Using CLWE features, models trained in a

resource-rich language (e.g., English) can predict labels for other languages.

CLWE depend on quality of dictionary entries (Vulić and Korhonen, 2016) and training

data (Søgaard et al., 2018). If CLWE do not transfer enough information for low-resource lan-

guages, how else can we improve these embeddings? One way is to employ a bilingual speaker in

the loop to provide linguistic and cultural knowledge. We develop CLassifying Interactively with

Multilingual Embeddings (CLIME), that efficiently specializes CLWE with human interaction.2 3

CLIME builds upon active learning to obtain word-level feedback, rather than instance-level label-

1Michelle Yuan, Mozhi Zhang, Benjamin Van Durme, Leah Findlater, and Jordan Boyd-Graber. 2020b. Inter-

active refinement of cross-lingual word embeddings. In Proceedings of Empirical Methods in Natural Language

Processing

2https://github.com/forest-snow/clime-ui.

3My contributions to this work involve building the human-in-the-loop framework for retrofitting embeddings,

designing the CLIME interface, and running the user study experiments.
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Figure 5.1: A hypothetical topographic map of an English–French embedding space tailored for
sentiment analysis. Dots are English words, and squares are French words. Positive sentiment
words are grouped together (red), while negative sentiment words are placed together (blue).

ing, that can modify the word embedding space. First, CLIME uses loss gradients in downstream

tasks to find keywords with high salience (Section 5.1.1). Focusing on these keywords allows the

bilingual user to most efficiently refine CLWE by marking their similarity or dissimilarity (Sec-

tion 5.1.2). After collecting annotations, CLIME pulls similar words closer and pushes dissimilar

words apart (Section 5.2). Feedback from bilingual users establishes desired geometry in the

embedding space (Figure 5.1).

In our user study, we compare CLIME with an active learning baseline that asks a user to

label target language documents. Under the same annotation time constraint, CLIME often has

higher accuracy. Furthermore, the two methods are complementary. Combining active learning

with CLIME increases accuracy even more, and the user-adapted model is competitive with a

large, resource-hungry multilingual transformer (Conneau et al., 2020). The results show that

human-AI interaction stimulates effective cross-lingual transfer in low-resource settings.
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5.1 Interactive Neighborhood Reshaping

This section introduces the interface designed to solicit human feedback on neighborhoods

of CLWE and our keyword selection criterion. Suppose that we have two languages with vocab-

ulary V1 and V2. Let E be a pre-trained CLWE matrix, where Ew is the vector representation of

word type w in the joint vocabulary V = V1 ∪ V2. Our goal is to help a bilingual novice (i.e.,

not a machine learning expert) improve the CLWE E for a downstream task through inspection

of neighboring words.

5.1.1 Keyword Selection

With limited annotation time, users cannot vet the entire vocabulary. Instead, we need to

find a small salient subset of keywords K ⊆ V whose embeddings, if vetted, would most improve

a downstream task. For example, if the downstream task is sentiment analysis, our keywords set

should include sentiment words such as “good” and “bad”. Prior work in active learning solicits

keywords using information gain (Settles, 2011), but this cannot be applied to continuous em-

beddings. Li et al. (2016) suggest that the contribution of one dimension of a word embedding

to the loss function can be approximated by the absolute value of its partial derivative, and there-

fore they use partial derivatives to visualize the behavior of neural models. However, rather than

understanding the importance of individual dimensions, we want to compute the salience of an

entire word vector. Therefore, we extend their idea by defining the salience of a word embedding

as the magnitude of the loss function’s gradient. This score summarizes salience of all dimen-

sions from a word embedding. Formally, let x = 〈w1, w2, · · · , wn〉 be a document of n words

with label y; let L be the training loss function of the downstream classifier f . We measure the
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example-level salience of word wi in document x as

Sx(wi) =
∥∥∇Ewi

L(f(x), y)
∥∥
2
. (5.1)

Equation 5.1 measures the local contribution of a token in one document, but we are inter-

ested in the global importance of a word type across many documents. To compute the global

salience score of a word type w, we add example-level salience scores of all token occurrences of

a word type w in a large labeled dataset X and multiply by the inverse document frequency (IDF)

of w:

S(w) = IDF(w,X) ·
∑

x∈X:w∈x

Sx(w). (5.2)

The IDF term is necessary because it discounts stop words with high document frequency (e.g.,

“the” and “of”). These words are often irrelevant to the downstream task and thus have low

example-level salience, but they have high total salience because they appear in many examples.

Based on Equation 5.2, we choose the top-s most salient words as the keyword set K. The

hyperparameter s is the number of keywords displayed to the user, which controls the length of a

CLIME session. We limit s to fifty in experiments.

5.1.2 User Interaction

For each keyword k, we want to collect a positive set Pk with semantically similar words,

and a negative setNk with unrelated words. To specialize embeddings for a classification task, we

ask the user to consider semantic similarity as inducing a similar label. For example, if the task is

English–French sentiment analysis, then “good” should be considered similar to “excellent” and
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Figure 5.2: The CLIME interface displays a keyword on top while its nearest neighbors in the two
languages appear in the two columns below. A user can accept or reject each neighbor, and add
new neighbors by typing them in the “add word” textboxes. They may also click on any word to
read its context in the training set.

“génial” but dissimilar to “bad” and “décevant”. On the interface, the keyword k is displayed on

the top, and its nearest neighbors in the two languages are arranged in two columns (Figure 6.8).

The neighbors are the words w with embeddings Ew closest to Ek in cosine similarity. The num-

ber of displayed nearest neighbors can be adjusted as a hyperparameter, which also controls the

session length. For each nearest neighbor, the user can either: (1) press on the green checkmark

to add a positive neighbor to Pk, (2) press on the red “X” mark to add a negative neighbor toNk,

or (3) leave an uncertain neighbor alone. The “add word” textbox lets the user add words that are

not in the current neighbor list (Figure 5.3a). The added word can then be marked as positive or

negative. Section 5.2 explains how CLIME refines the embeddings with the feedback sets P and

N . The interface also provides a word concordance—a brief overview of the contexts where a
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(a) Adding new words (b) Getting concordance

Figure 5.3: Features on the interface that help users find similar words.

word appears—to disambiguate and clarify words. Users can click on any word to find example

sentences (Figure 5.3b).

5.2 Fitting Word Embeddings to Feedback

After receiving user annotations, CLIME updates the embeddings to reflect their feedback.

The algorithm reshapes the neighborhood so that words near a keyword share similar semantic

attributes. Together, these embeddings form desired task-specific connections between words

across languages. Our update equations are inspired by ATTRACT-REPEL (Mrkšić et al., 2017),

which fine-tunes word embeddings with synonym and antonym constraints. The objective in

ATTRACT-REPEL pulls synonyms closer to and pushes antonyms further away from their nearest

neighbors. This objective is useful for large lexical resources like BabelNet with hundreds of

thousands linguistic constraints, but our pilot experiment suggests that the method is not suitable

for smaller constraint sets. Since CLIME is designed for low-resource languages, we optimize an

objective that reshapes the neighborhood more drastically than ATTRACT-REPEL.
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5.2.1 Feedback Cost

For each keyword k ∈ K, we collect a positive set Pk and a negative setNk (Section 5.1.2).

To refine embeddings E with human feedback, we increase the similarity between k and each

positive word p ∈ Pk, and decrease the similarity between k and each negative word n ∈ Nk.

Formally, we update the embeddings E to minimize the following:

Cf (E) =
∑
k∈K

(∑
n∈Nk

E>k En −
∑
p∈Pk

E>k Ep

)
, (5.3)

where E>k En measures the similarity between the keyword k and a negative word n, and E>k Ep

measures the similarity between the keyword k and a positive word p. Minimizing Cf is equiva-

lent to maximizing similarities of positive pairs while minimizing similarities of negative pairs.

5.2.2 Topology-Preserving Regularization

Prior retrofitting methods for word embeddings emphasize regularization to maintain the

topology—or properties that should be preserved under transformations—of the embedding space (Sec-

tion 2.2.2.2). If the original CLWE brings certain translations together, those translated words

should remain close after updating the embeddings. The topology also encodes important se-

mantic information that should not be discarded. Therefore, we also include the following regu-

larization term:

R(E) =
∑
w∈V

∥∥∥Êw −Ew

∥∥∥2
2
. (5.4)

Minimizing R(E) prevents E from drifting too far away from the original embeddings Ê.

The final cost function combines the feedback cost (Equation 5.3) and the regularizer
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(Equation 5.4):

C(E) = Cf (E) + λR(E), (5.5)

where the hyperparameter λ controls the strength of the regularizer. The updated embeddings

enforce constraints from user feedback while preserving other structures from the original em-

beddings. After tuning in a pilot user study, we set λ to one. We use the Adam optimizer (Kingma

and Ba, 2015) with default hyperparameters.

5.3 Cross-Lingual Classification Experiments

We evaluate CLIME on cross-lingual document-classification (Klementiev et al., 2012),

where we build a text classifier for a low-resource target language using labeled data in a high-

resource source language through CLWE. Our task identifies whether a document describes a

medical emergency, useful for planning disaster relief (Strassel and Tracey, 2016). The source

language is English and the four low-resource target languages are Ilocano, Sinhalese, Tigrinya,

and Uyghur.

Our experiments confirm that a bilingual user can quickly improve the test accuracy of

cross-lingual models through CLIME. Alternatively, we can use active learning to have an anno-

tator label more training documents in the target language (Section 2.3.1). Therefore, we compare

CLIME to an active learning baseline that queries the user for document labels; CLIME often im-

proves accuracy faster. Then, we combine CLIME and active learning to show an even faster

improvement of test accuracy.

Comparing active learning to CLIME may seem unfair at first glance. In theory, document

labeling only requires target language knowledge, while CLIME learns from a bilingual user. In
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Ilocano ... Nagtalinaed dagiti pito a balod ti Bureau of Jail Man-
agement and Penology (BJMP) ditoy ciudad ti Laoag iti
isolation room gapo iti tuko ...

English ... Seven inmates from the Bureau of Jail Management
and Penology (BJMP), Laoag City, have been transferred
to the isolation room due to chicken pox ...

Table 5.1: Excerpt of a positive Ilocano test example (top) and its English translation (bottom)
that describes a medical emergency.

practice, researchers who speak a high-resource language provide instructions to the annotator

and answer their questions, so bilingual knowledge is usually required in document labeling for

low-resource languages. Moreover, CLIME is complementary to active learning, as combining

them gives the highest accuracy across languages.

We also experiment with refining the same set of keywords with multiple rounds of user

interaction. The repeated sessions slightly improve test accuracy on average. Finally, we compare

with XLM-R (Conneau et al., 2020), a state-of-the-art multilingual transformer. Despite using

fewer resources, CLIME has competitive results.

5.3.1 Experiment Setup

Labeled Data We train models on 572 English documents and test on 48 Ilocano documents,

58 Sinhalese documents, 158 Tigrinya documents, and 94 Uyghur documents. The documents

are extracted from LORELEI language packs (Strassel and Tracey, 2016), a multilingual collection

of documents of emergencies with a public health component.4 To simplify the task, we consider

a binary classification problem of detecting whether the documents are associated with medical

needs. Table 5.1 shows an example document. To balance the label distribution, we sample an

4Download from https://www.ldc.upenn.edu
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equal number of negative examples.

Word Embeddings To transfer knowledge between languages, we build CLWE between En-

glish and each target language. We experiment with two methods to pre-train CLWE: (1) train

monolingual embeddings with word2vec (Mikolov et al., 2013c) and align with CCA (Faruqui

et al., 2015; Ammar et al., 2016), (2) train monolingual embeddings with fastText (Bojanowski

et al., 2017) and align with RCSLS (Joulin et al., 2018). The English embeddings are trained

on Wikipedia and the target language embeddings are trained on unlabeled documents from the

LORELEI language packs. For alignment, we use the small English dictionary in each pack. Low-

resource language speakers are hard to find, so we do not try all combinations of languages and

CLWE: we use CCA embeddings for Tigrinya and Uyghur, RCSLS embeddings for Ilocano. Since

Sinhalese speakers are easier to find, we experiment with both CLWE for Sinhalese.

Text Classifier Our classifier is a convolutional neural network (Kim, 2014). Each document

is represented as the concatenation of word embeddings and passed through a convolutional

layer, followed by max-pooling and a final softmax layer. To preserve cross-lingual alignments,

we freeze embeddings during training. This simple model is effective in low-resource cross-

lingual settings (Chen et al., 2018b). We minimize cross-entropy on the training set by running

Adam (Kingma and Ba, 2015) with default hyperparameters for thirty epochs. All experiments

use GeForce GTX 1080 GPU and 2.6 GHz AMD Opteron 4180 processor.

User Study We use Upwork to hire participants who are fluent in both English and the target

language.5 Low-resource language speakers are hard to find, so we have a different number of

5https://upwork.com/
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Figure 5.4: Test accuracy on four target languages and two CLWE methods. The Sinhalese and
Ilocano results are averaged over multiple users, while we only have one user for other languages.
Each subcaption indicates the target language, embedding alignment, number of users, and aver-
age time per user. CLIME has higher accuracy than Active on four of the five embeddings, and
the combined A+C model has the highest.

users for each language. We hire ten Ilocano users and twenty-five Sinhalese users. For additional

case studies, we hire one Tigrinya user and one Uyghur user. Each user annotates the fifty most

salient keywords, which takes less than an hour (Figure 5.4). For each keyword, we show five

nearest neighbors for each language. Each user provides about nine constraints for each keyword.

5.3.2 Comparisons

After receiving feedback, we update the embeddings (Section 5.2). We evaluate the new

embeddings by retraining a classifier. For each set of embeddings, we train ten models with

different random seeds and report average test accuracy.
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We compare a classifier trained on the updated embeddings (CLIME in Figure 5.4) against

two baselines. The first baseline is a classifier trained on original embeddings (Base in Fig-

ure 5.4). If we have access to a bilingual speaker, an alternative to using CLIME is to annotate

more training documents in the target language. Therefore, we also compare CLIME to uncer-

tainty sampling (Lewis and Gale, 1994), an active learning method that asks a user to label doc-

uments (Active in Figure 5.4). We choose a set of fifty documents where model outputs have the

highest entropy from a set of unlabeled target language documents and ask an annotator to label

them as additional training documents. We then retrain a model on both the English training set

and the fifty target language documents, using the original embeddings. For each model, a human

annotator labels fifty documents within forty to fifty minutes. This can either be slower or take

approximately the same time as an average CLIME session (Figure 5.4). Thus, any improvements

in accuracy using CLIME are even more impressive given that Active is no faster than CLIME.

Finally, we explore combining active learning and CLIME (A+C in Figure 5.4). Document-

level and word-level interactions are complementary, so using both may lead to higher accuracy.

To keep the results comparable, we allocate half of the user interaction time to active learning,

and the other half to CLIME. Specifically, we use active learning to expand the training set with

twenty-five target language documents and refine the embeddings by running CLIME on only

twenty-five keywords. Then, we retrain a model using both the augmented training set and the

refined embeddings.
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Comparison Model p t df

CLIME

vs. Base

SI(CCA) < 0.01 7.64 24
SI(RCSLS) < 0.01 3.62 24
IL(RCSLS) < 0.01 5.16 9

CLIME

vs.
Active

SI(CCA) 0.07 2.00 24
SI(RCSLS) < 0.01 -7.09 24
IL(RCSLS) < 0.01 3.96 9

A+C vs.
Active

SI(CCA) < 0.01 4.297 24
SI(RCSLS) < 0.01 3.40 24
IL(RCSLS) < 0.01 13.97 9

Table 5.2: Results of single-sample t-tests between CLIME and Base, CLIME and Active, and
A+C and Active, showing the p-value, the t statistic, and the degree of freedoms df . CLIME

is significantly better than Base, and A+C is significantly better than Active across different
languages and embedding models. The only combination with results that are not significantly
different is CLIME and Active for Sinhalese (CCA).

5.3.3 Results and Analysis

Effectiveness of CLIME Figure 5.4 compares the four methods described in the previous sec-

tion. CLIME is effective in this low-resource setting. On all four target languages, the classifier

trained on embeddings refined by CLIME has higher accuracy than the classifier that trains on

the original embeddings: CLIME reshapes embeddings in a way that helps classification. CLIME

also has higher accuracy than active learning for most users. The combined method has the high-

est accuracy: active learning and CLIME are complementary. Single-sample t-tests confirm that

CLIME is significantly better than Base and A+C is significantly better than Active (Table 5.2).

Keyword Detection We inspect the list of the fifty most salient keywords (Section 5.1.1). Most

keywords have obvious connections to our classification task of detecting medical emergencies,

such as “ambulance”, “hospitals”, and “disease”. However, the list also contains some words that

are unrelated to a medical emergency, including “over” and “given”. These words may be biases
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Figure 5.5: For Uyghur (pink) and Tigrinya (purple), we compare test accuracy between sets of
CLWE that differ in the number of keywords used to refine them. The leftmost point corresponds
to the Base model in Figure 5.4, while the rightmost point corresponds to the CLIME model.
Test accuracy generally improves with more feedback at the beginning but slightly drops after
reaching an optimal number of keywords.

or artifacts from training data (Feng et al., 2018).

Number of Keywords To evaluate how feedback quantity changes accuracy, we vary the num-

ber of keywords and compare test accuracy on Tigrinya and Uyghur datasets (Figure 5.5). For

each keyword s from one to fifty, we update the original embeddings using only the feedback on

the top-s keywords and evaluate each set of embeddings with test accuracy. For both languages,

test accuracy generally increases with more annotation at the beginning of the session. Interest-

ingly, test accuracy plateaus and slightly drops after reaching an optimal number of keywords,

which is around twenty for Tigrinya and about forty for Uyghur. One explanation is that the later

keywords are less salient, which causes the feedback to become less relevant. These redundant

constraints hamper optimization and slightly hurt test accuracy.
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Comparing with Contextual Embeddings Contextualized embeddings based on multilingual

transformers reach state-of-the-art in many tasks, so we compare CLIME with these models. Most

existing models (Lample and Conneau, 2019) do not cover our low-resource languages. The only

exception is XLM-R (Conneau et al., 2020), which covers Uyghur and Sinhalese. To compare

with CLIME, we fine-tune XLM-R for three epochs with AdamW (Loshchilov and Hutter, 2019),

batch size of sixteen, and learning rate of 2e-5. We compute average accuracy over ten runs with

different random seeds.

For Uyghur, XLM-R has lower accuracy than our A+C approach (71.7% vs. 73.2%). This

is impressive given that XLM-R uses much more resources: 270 million parameters, 2.5TB of

multilingual Common Crawl data, and 500 GPUs. In contrast, the A+C model has 120K parame-

ters and is built in less than two hours with a single GPU (including human interaction and model

training).

For Sinhalese, XLM-R has higher accuracy than our A+C approach (69.3% vs. 63.7%).

Common Crawl has much more Sinhalese words than Uyghur words. This aligns with our intu-

ition: CLIME is more useful in low-resource settings, whereas multilingual transformers are more

appropriate for languages with more data. Future work can extend the interactive component of

CLIME to multilingual transformers.

Qualitative Analysis To understand how CLIME updates the embeddings, we visualize changes

in the neighborhoods of keywords with t-SNE (Maaten and Hinton, 2008). All embeddings from

before and after the user updates are projected into the same space for fair distance comparison.

We inspect the user updates to the Sinhalese CCA embeddings (Figure 5.6). We confirm that pos-

itive neighbors are pulled closer and negative neighbors are pushed further away. The user marks
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CLIME−−−→

(a) Neighborhood of “plague”

CLIME−−−→

(b) Neighborhood of “ill”

Figure 5.6: T-SNE visualization of embeddings before (left) and after (right) CLIME updates.
From one Sinhalese user study, we inspect two keywords, “ill” and “plague”, and their five closest
neighbors in English (blue) and Sinhalese (green). The Sinhalese words are labeled with English
translations. Shape denotes the type of feedback: “+” for positive neighbors and “x” for negative
neighbors.

“epidemic” and “outbreak” as similar to the keyword “plague”, and these words are closer after

updates (Figure 5.6a). For the keyword “ill”, the user marks “helpless” as a negative neighbor,

because “helpless” can signal other types of situations and is more ambiguous for detecting a

medical emergency. After the update, “helpless” is pushed away and disappears from the nearest

neighbors of “ill” (Figure 5.6b). However, a few positive neighbors have inadvertently moved

away, such as the Sinhalese translation for “ill”. The update algorithm tries to satisfy constraints
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Figure 5.7: Progress of five Sinhalese users over three CLIME sessions. Largest increase in test
accuracy occurs after first session. The leftmost point is the Base model from Figure 5.4. Average
accuracy for first session is not the same as Figure 5.4 because only a subset of users are asked to
complete three sessions.

for multiple keywords, so soft constraints may be overlooked. This motivates repeated CLIME

sessions where the user can continue fixing errors.

5.3.4 Repeating User Sessions

We investigate the effects of having a user complete multiple CLIME sessions. After the user

finishes a session, we fit the embeddings to their feedback, produce a new vocabulary ranking,

and update the interface for the next session. We experiment on the Sinhalese dataset with CCA

embeddings and ask five users to complete three sessions of fifty keywords. Average test accuracy

increases with more sessions, but the improvement is marginal after the first session (Figure 5.7).

By the end of the three sessions, one user reaches 65.2% accuracy, an improvement from the
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55.2% baseline.

5.4 Conclusion

Cross-lingual learning is challenging in the low-resource setting where no labeled data

exists for the target language. In our experiments, we use an emergency relief dataset in low-

resource languages to simulate an urgent situation for transductive transfer learning. Through

CLIME, we facilitate cross-lingual model transfer with feedback from bilingual user. We compare

CLIME to standard active learning. Our results reveal that annotators can achieve higher accuracy

on the target data with CLIME. Furthermore, CLIME is complementary with active learning.

Obtaining both word-level and instance-level feedback refines models that are significantly better

than retrieving only instance-level feedback. Therefore, future work should focus on the type of

user interaction needed to improve transfer learning in NLP.

So far, the past chapters have applied interactive feedback to text classification. However,

many NLP tasks are more complex. For instance, coreference resolution requires predicting an-

tecedents of individual entity mentions in sentences. To solve this problem, the model needs to

detect text spans that are entity mentions and link them to the correct entity clusters. In the next

chapter, we use active learning to adapt coreference resolution models across domains.
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Chapter 6: Transferring Coreference Resolution across Domains1

Chapter 3 discusses interaction in topic models and Chapter 5 talks about user feedback

for word embeddings. This chapter considers domain shift for a more complex task, corefer-

ence resolution. This task involves discovering spans of text mentions that refer to the same

entity (CR). Neural models (Lee et al., 2018; Joshi et al., 2020) are state-of-the-art (SOTA) on

ONTONOTES 5.0 (Pradhan et al., 2013) but cannot immediately generalize to other datasets. Gen-

eralization is difficult because domains differ in content, writing style, and annotation guidelines.

To overcome these challenges, models need copiously labeled, in-domain data (Bamman et al.,

2020).

Despite expensive labeling costs, adapting CR is crucial for downstream applications like

question answering and information extraction. In Figure 6.1, knowing that “the bonds” refers

to municipal bonds could inform the model about what was gained by Goldman Sachs. Ideally,

we would like to quickly and cheaply adapt the model without repeatedly relying on an excessive

amount of annotations to retrain the model. To reduce labeling cost, we investigate active learning

approaches. For example, a word like “the bonds” refers to municipal bonds in ONTONOTES but

links to “chemical bonds” in another domain (Figure 6.1). If users annotate the antecedents of

1Michelle Yuan, Patrick Xia, Chandler May, Benjamin Van Durme, and Jordan Boyd-Graber. 2022. Adapt-

ing coreference resolution models through active learning. In Proceedings of the Association for Computational

Linguistics
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Source

Target

(1)

(2)

Figure 6.1: CR models are trained on source domain ONTONOTES, which contains data like news
articles. The source document links “the bonds” to “municipal bonds”. In a target domain like
PRECO (Chen et al., 2018a), “the bonds” may no longer have the same meaning. It can refer to
“chemical bonds” (Document 1) or not be considered an entity (Document 2). A solution is to
continue training the source model on more spans from the target domain. Active learning helps
select ambiguous spans, like “the bonds”, for the user to label on this interface (Section 6.3.2).

“the bonds” and other ambiguous entity mentions, then these labels help adapt a model trained

on ONTONOTES to new domains.

6.1 Problem: Adapting Coreference

C2F-COREF Lee et al. (2018) introduce C2F-COREF, a neural model that outperforms prior

rule-based systems. It assigns an antecedent y to mention span x. The set Y(x) of possible

antecedent spans include a dummy antecedent ε and all spans preceding x. If span x has no

antecedent, then x should be assigned to ε. Given entity mention x, the model learns a distribution
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over its candidate antecedents in Y(x),

P (Y = y) =
exp {s(x, y)}∑

y′∈Y(x) exp {s(x, y′)}
. (6.1)

The scores s(x, y) are computed by the model’s pairwise scorer. The model’s pairwise scorer

judges whether span x and span y are coreferent based on their antecedent score sa and individual

mention scores sm,

s(x, y) =


0 y = ε

sm(x) + sm(y) + sa(x, y) y 6= ε

, (6.2)

Suppose gx and gy are the span representations of x and y, respectively. Mention scores and

antecedent scores are then computed with feedforward networks FFNNm and FFNNc,

sm(x) = FFNNm(gx) (6.3)

sa(x, y) = FFNNa(gx, gy, φ(x, y)). (6.4)

The input φ(x, y) includes features like the distance between spans. The unary mention score sm

can be viewed as the likelihood that the span is an entity mention. For computational purposes,

the C2F-COREF model only retains top-k spans with the highest unary mention scores. Lee et al.

(2018) provide more details about the pairwise scorer and span pruning.

Transfer of Coreference Resolution CR models like C2F-COREF are typically trained on ONTONOTES.

Recent work in CR improves upon C2F-COREF and has SOTA results on ONTONOTES (Wu et al.,

2020; Joshi et al., 2020). However, annotation guidelines and the underlying text differ across
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domains. As a result, these CR models cannot immediately transfer to other datasets. For differ-

ent domains, spans could hold different meanings or link to different entities. Xia and Van Durme

(2021) show the benefits of continued training where a model trained on ONTONOTES is further

trained on the target dataset. For several target domains, continued training from ONTONOTES is

stronger than training the model from scratch, especially when the training dataset is small. Their

experiments use an incremental variant of C2F-COREF called ICOREF (Xia et al., 2020).

ICOREF While C2F-COREF requires Θ(n) memory to simultaneously access all spans in the

document and infer a span’s antecedent, ICOREF only needs constant memory to predict a span’s

entity cluster. Despite using less space, ICOREF retains the same accuracy as C2F-COREF. Rather

than assigning x to antecedent y, ICOREF assigns x to cluster c where c is from a set of observed

entity clusters C,

P (C = c) =
exp {s(x, c)}∑
c′∈C exp {s(x, c′)}

. (6.5)

As the algorithm processes spans in the document, each span is either placed in a cluster from C

or added to a new cluster. To learn the distribution over clusters (Equation 6.5), the algorithm first

creates a cluster representation gc that is an aggregate of span representation that is an aggregate

of span representations over spans that currently exist in the cluster. (Equation 6.6). With cluster

and span representations, individual spans and entity clusters are mapped into a shared space.

Then, we can compute s(x, c) using the same pairwise scorer as Lee et al. (2018). In the example

from Figure 6.1, the cluster representation of “municipal bonds” should be close to the span

representation of “the bonds”, so the model would predict “municipal bonds” as the most likely

cluster of “the bonds”.

Suppose that model predicts c∗ as most likely cluster: c∗ = arg maxc∈C s(x, c). Now, the
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algorithm makes one of two decisions:

1. If s(x, c∗) > 0, then x is assigned to c∗ and update gc∗ such that

gc∗ = se(c
∗, x)gc∗ + (1− se(c∗, x))gx, (6.6)

where se is a learned weight.

2. If s(x, c∗) ≤ 0, then a new entity cluster cx = {x} is added to C.

The algorithm repeats for each span in the document. Using the same example from Figure 6.1,

the model would place “the bonds” in the “municipal bonds” cluster and then update the cluster

representation for “municipal bonds”.

Like C2F-COREF, the ICOREF model only retains top-k spans with the highest unary men-

tion score. All of our active learning baselines (Section 6.3), except random, sample spans from

this top-k pool of spans.

Xia and Van Durme (2021) show that continued training is useful for domain adaptation

but assume that labeled data already exist in the target domain. However, model transfer is more

critical when annotations are scarce. Thus, the question becomes: how can we adapt CR models

without requiring a large, labeled dataset? This chapter investigates active learning as a potential

solution. Through active learning, we reduce labeling costs by sampling and annotating a small

subset of ambiguous spans.
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6.2 Method: Active Learning

Neural models achieve high accuracy for ONTONOTES but cannot quickly adapt to new

datasets because of shifts in domain or annotation standards (Poot and van Cranenburgh, 2020).

To transfer to new domains, models need substantial in-domain, labeled data. In low-resource sit-

uations, CR is infeasible for real-time applications. To reduce the labeling burden, active learning

may target spans that most confuse the model. Active learning for domain adaptation (Rai et al.,

2010) typically proceeds as follows: begin with a model trained on source data, sample and label

k spans from documents in the target domain based on a strategy, and train the model on labeled

data.

This labeling setup may appear straightforward to apply to CR, but there are some tricky

details. The first complication is that—unlike text classification—CR is a clustering task. Early

approaches in active learning for CR use pairwise annotations (Miller et al., 2012; Sachan et al.,

2015). Pairs of spans are sampled, and the annotator labels whether each pair is coreferent. The

downside to pairwise annotations is that it requires many labels. To label the antecedent of entity

mention x, x must be compared to every candidate span in the document. For example, if we

want to verify that each highlighted span belongs to the “municipal bonds” cluster, we would

have to provide ten pairwise annotations (Figure 6.1).

Li et al. (2020) propose a new scheme called discrete annotations. Instead of sampling

pairs of spans, the active learning strategy samples individual spans. Then, the annotator only

has to find and label first antecedent of x in the document, which bypasses the multiple pair-

wise comparisons. In Figure 6.1, we would only need four discrete annotations to discover the

“municipal bonds” cluster. Thus, we use discrete annotations to minimize labeling.
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To further improve active learning for CR, we consider the following issues. First, the

CR model has different scores for mention detection and linking, but prior active learning meth-

ods only considers linking. Second, labeling CR requires time to read the document context.

Therefore, we explore important aspects of active learning for adapting CR: model uncertainty

(Section 6.2.1), and the balance between reading and labeling (Section 6.2.2).

6.2.1 Uncertainty Sampling

A well-known active learning strategy is uncertainty sampling. A common measure of un-

certainty is the entropy in the distribution of the model’s predictions for a given example (Lewis

and Gale, 1994). Labeling uncertain examples improves accuracy for tasks like text classifica-

tion (Settles, 2009). For CR, models have multiple components, and computing uncertainty is not

as straightforward. Is uncertainty over where mentions are located more important than linking

spans? Or the other way around? Thus, we investigate different sources of CR model uncertainty.

Clustered Entropy To sample spans for learning CR, Li et al. (2020) propose a strategy called

clustered entropy. This metric scores the uncertainty in the entity cluster assignment of a mention

span x. If x has high clustered entropy, then it should be labeled to help the model learn its

antecedents. Computing clustered entropy requires the probability that x is assigned to an entity

cluster. Li et al. (2020) use C2F-COREF, which only gives probability of x being assigned to

antecedent y. So, they define P (C = c) as the sum of antecedent probabilities P (Y = y),

P (C = c) =
∑

y∈C∩Y(x)

P (Y = y). (6.7)
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Then, they define clustered entropy as,

H(x) = −
∑
c∈C

P (C = c) logP (C = c). (6.8)

The computation of clustered entropy in Equation 6.8 poses two issues. First, summing the prob-

abilities may not accurately represent the model’s probability of linking x to c. There are other

ways to aggregate the probabilities (e.g. taking the maximum). C2F-COREF never computes clus-

ter probabilities to make predictions, so it is not obvious how P (C = c) should be computed for

clustered entropy. Second, Equation 6.8 does not consider mention detection. For ONTONOTES,

this is not an issue because singletons (clusters of size 1) are not annotated and mention detection

score is implicitly included in P (Y = y). For other datasets containing singletons, the model

should disambiguate singleton clusters from non-mention spans.

To resolve these issues, we make the following changes. First, we use ICOREF to obtain

cluster probabilities. ICOREF is a mention clustering model so it already has probabilities over

entity clusters (Equation 6.5). Second, we explore other forms of maximum entropy sampling.

Neural CR models have scorers for mention detection and clustering. Both scores should be

considered to sample spans that confuse the model. Thus, we propose more strategies to target

uncertainty in mention detection.

Generalizing Entropy in Coreference To generalize entropy sampling, we first formalize

mention detection and clustering. Given span x, assume X is the random variable encoding

whether x is an entity mention (1) or not (0). In Section 6.1, we assume that the cluster distri-
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bution P (C) is independent of X: P (C) = P (C |X).2 In other words, Equation 6.5 is actually

computing P (C = c |X = 1). We sample top-k spans with the following strategies.

ment-ent Highest mention detection entropy:

HMENT(x) = H(X) (6.9)

= −
1∑
i=0

P (X = i) logP (X = i).

The probability P (X) is computed from normalized mention scores sm (Equation 6.3). Ment-

ent may sample spans that challenge mention detection (e.g. class-ambiguous words like “park”).

The annotator can clarify whether spans are entity mentions to improve mention detection. The

strategy does not consider whether entity mentions are difficult to cluster.

clust-ent Highest mention clustering entropy:

HCLUST(x) = H(C |X = 1) (6.10)

= −
∑
c∈C

P (C = c |X = 1) log

P (C = c |X = 1).

Clust-ent looks at clustering scores without explicitly addressing mention detection. Unlike

ment-ent, clust-ent solely focuses on how difficult it is to cluster the entity mention. For ex-

ample, “flamboyance” in “The flamingos turn their heads but the flamboyance still drinks the

2A side effect of ONTONOTES models lacking singletons.
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water” actually refers to “the flamingos” and would be hard to cluster. Like in ONTONOTES, all

spans are assumed to be entity mentions. The likelihood P (C = c |X = 1) is given by ICOREF

(Equation 6.5).

cond-ent Highest conditional entropy (conditioned on mention detection):

HCOND(x) = H(C |X)

=
1∑
i=0

P (X = i)H(C |X = i)

= P (X = 1)H(C |X = 1)

= P (X = 1)HCLUST(x).

(6.11)

We reach the last equation because there is no uncertainty in clustering x if x is not an entity

mention and H(C |X = 0) = 0. Cond-ent takes the uncertainty of mention detection into

account. So, we may sample more pronouns because they are obviously mentions but difficult to

cluster.

joint-ent Highest joint entropy:

HJOINT(x) = H(X,C) = H(X) + H(C |X)

= HMENT(x) + HCOND(x). (6.12)

Joint-ent may sample spans that are difficult to detect as entity mentions and too confusing to

cluster. This sampling strategy most closely aligns with the uncertainty of the training objective.

It may also fix any imbalance between mention detection and linking (Wu and Gardner, 2021).
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An example would be long phrases like “the dynamically-typed programming language with

garbage collection and named after a snake” in an article about programming languages. The

phrase’s length makes it challenging to detect as an entity mention and link it to “Python”.

6.2.2 Trade-off between Reading and Labeling

For CR, the annotator reads the document context to label the antecedent of a mention span.

Annotating and reading spans from different documents may slow down labeling, but restricting

sampling to the same document may cause redundant labeling (Miller et al., 2012). To better

understand this trade-off, we explore different configurations with k, the number of annotated

spans, and m, the maximum number of documents being read. Given source model h0 already

fine-tuned on ONTONOTES, we adapt h0 to a target domain through active learning (Algorithm 3):

Scoring To sample k spans from unlabeled data U of the target domain, we score spans with

an active learning strategy S. Assume S scores each span through an acquisition model (Lowell

et al., 2019). For the acquisition model, we use ht−1, the model fine-tuned from the last cycle.

The acquisition score quantifies the span’s importance given S and the acquisition model.

Reading Typically, active learning samples k spans with the highest acquisition scores. To

constrain m, the number of documents read, we find the documents of the m spans with the

highest acquisition scores and only sample spans from those documents. Then, the k sampled

spans will belong to at most m documents. If m is set to “unconstrained”, then we simply sample

the k highest-scoring spans, irrespective of the document boundaries.

Our approach resembles Miller et al. (2012) where they sample spans based on highest un-
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Algorithm 3 Active Learning for Coreference
Require: Source model h0, Unlabeled data U , Active learning strategy S, No. of cycles T , No. of

labeled spans k, Max. no. of read docs m
1: Labeled data L = {}
2: for cycles t = 1, . . . , T do
3: ax ← Score span x ∈ U by S(ht−1, x)
4: Q ← Sort (↓) x ∈ U by scores ax
5: Qm ← Top-m spans in Q
6: D ← {dx |x ∈ Qm} where dx is doc of x
7: Q̃ ← Filter Q s.t. spans belong to d ∈ D
8: Q̃k ← Top-k spans in Q̃
9: Lk ← Label antecedents for Q̃k

10: L ← L ∪ Lk
11: ht ← Continue train h0 on L
12: end for
13: return hT

certainty and continue sampling from the same document until uncertainty falls below a thresh-

old. Then, they sample the most uncertain span from a new document. We modify their method

because the uncertainty threshold will vary for different datasets and models. Instead, we use the

number of documents read to control context switching.

Labeling An oracle (e.g., human annotator or gold data) labels the antecedents of sampled

spans with discrete annotations (Section 6.2).

Continued Training We combine data labeled from current and past cycles. We train the

source model h0 (which is already trained on ONTONOTES) on the labeled target data. We do not

continue training a model from a past active learning cycle because it may be biased from only

training on scarce target data (Ash et al., 2020).
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6.3 Active Learning for CR through Simulations and Humans

We run experiments to understand two important factors of active learning for CR: sources

of model uncertainty (Section 6.2.1) and balancing reading against labeling (Section 6.2.2). First,

we simulate active learning on PRECO to compare sampling strategies based on various forms of

uncertainty (Section 6.3.1). Then, we set up a user study to investigate how humans perform

when labeling spans from fewer or more documents from PRECO (Section 6.3.2). Specifically,

we analyze their annotation time and throughput. Finally, we run large-scale simulations on

PRECO and QBCOREF (Section 6.3.3). We explore different combinations of sampling strategies

and labeling configurations.

Models In all experiments, the source model is the best checkpoint of ICOREF model trained

on ONTONOTES (Xia et al., 2020) with SPANBERT-LARGE-CASED (Joshi et al., 2020) encoder.

For continued training on the target dataset, we optimize with a fixed parameter configuration.

The SPANBERT-LARGE-CASED encoder has 334M parameters and ICOREF has 373M parameters

in total. For model fine-tuning, we train for a maximum of fifty epochs and implement early

stopping with a patience of ten epochs. We set top span pruning to 0.4, dropout to 0.4, gradient

clipping to 10.0, and learning rate to 1e-4 for Adam optimizer. The hyperparameter configuration

is based on results from prior work (Lee et al., 2017; Xia et al., 2020). All experiments in the

paper are ran on NVIDIA Tesla V100 GPU and 2.2 GHz Intel Xeon Silver 4114 CPU processor.

We evaluate models on AVG F1, the averaged F1 scores of MUC (Vilain et al., 1995),

B3 (Bagga and Baldwin, 1998), and CEAFφ4 (Luo, 2005). For all synthetic experiments, we

simulate active learning with gold data substituting as an annotator. However, gold mention
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boundaries are not used when sampling data. The model scores spans that are likely to be entity

mentions for inference, so we limit the active learning candidates to this pool of high-scoring

spans. For each active learning simulation, we repeat five runs with different random seed initial-

izations.

Baselines We compare the proposed sampling strategies (Section 6.2.1) along with li-clust-ent,

which is clustered entropy from Li et al. (2020) (Equation 6.8). Active learning is frustratingly

less effective than random sampling in many settings (Lowell et al., 2019), so we include two ran-

dom baselines in our simulation. Random samples from all spans in the documents. Random-

ment, as well as other strategies, samples only from the pool of likely (high-scoring) spans. Thus,

random-ment should be a stronger baseline than random.

Datasets ONTONOTES 5.0 is the most common dataset for training and evaluating CR (Prad-

han et al., 2013). The dataset contains news articles and telephone conversations. Only non-

singletons are annotated. Our experiments transfer a model trained on ONTONOTES to two target

datasets: PRECO and QBCOREF. PRECO is a large corpus of grade-school reading comprehension

texts (Chen et al., 2018a). Unlike ONTONOTES, PRECO has annotated singletons. There are 37K

training, 500 validation, and 500 test documents. Because the training set is so large, Chen et al.

(2018a) only analyze subsets of 2.5K documents. Likewise, we reduce the training set to a subset

of 2.5K documents, comparable to the size of ONTONOTES.

The QBCOREF dataset (Guha et al., 2015) contains trivia questions from Quizbowl tourna-

ments that are densely packed with entities from academic topics. Like PRECO, singletons are

annotated. Unlike other datasets, the syntax is idiosyncratic and world knowledge is needed to
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Figure 6.2: Test AVG F1 on PRECO for each strategy. On each cycle, fifty spans from one docu-
ment are sampled and labeled. We repeat each simulation five times. Ment-ent, clust-ent, and
joint-ent are most effective while random hurts the model the most.

solve coreference. Examples are pronouns before the first mention of named entities and oblique

references like “this polity” for “the Hanseatic League”. These complicated structures rarely

occur in everyday text but serve as challenging examples for CR. There are 240 training, 80

validation, and 80 test documents.

6.3.1 Simulation: Uncertainty Sampling

To compare different sampling strategies, we first run experiments on PRECO. We sample

fifty spans from one document for each cycle. By the end of a simulation run, 300 spans are

sampled from six documents. For this configuration, uncertainty sampling strategies generally
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Figure 6.3: Cumulative counts of entities, non-entities, pronouns, and singletons sampled for
each strategy over first four cycles of the PRECO simulation. Random mostly samples non-
entities. Li-clust-ent and cond-ent sample many entity mentions but avoid singletons.

reach higher accuracy than the random baselines (Figure 6.2), but cond-ent and li-clust-ent are

worse than random-ment.

Distribution of Sampled Span Types To understand the type of spans being sampled, we count

entity mentions, non-entities, pronouns, and singletons that are sampled by each strategy (Fig-

ure 6.3). Random samples very few entities, while other strategies sample more entity mentions.

Clust-ent and cond-ent sample more entity mentions and pronouns because the sampling ob-
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Figure 6.4: For each sampling strategy, we analyze the model from the last cycle of its PRECO

simulation. We compare the number of errors across common error types in CR. The source
ONTONOTES model severely suffers from missing entities and missing mentions. Ment-ent helps
most with reducing these errors.

jective prioritizes mentions that are difficult to link. Clust-ent, joint-ent, and ment-ent sample

more singleton mentions. These strategies also show higher AVG F1 (Figure 6.2). For transferring

from ONTONOTES to PRECO, annotating singletons is useful because only non-singleton mentions

are labeled in ONTONOTES. We notice ment-ent sampling pronouns, which should obviously be

entity mentions, only in the first cycle. Many pronouns in ONTONOTES are singletons, so the

mention detector has trouble distinguishing them initially in PRECO.

Error Analysis Kummerfeld and Klein (2013) enumerate the ways CR models can go wrong:

missing entity, extra entity, missing mention, extra mention, divided entity, and conflated entity.

Missing entity means a gold entity cluster is missing. Missing mention means a mention span for
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a gold entity cluster is missing. The same definitions apply for extra entity and extra mention.

Divided entity occurs when the model splits a gold entity cluster into multiple ones. Conflated

entity happens when the model merges gold entity clusters. For each strategy, we analyze the

errors of its final model from the simulation’s last cycle (Figure 6.4). We compare against the

source model that is only trained on ONTONOTES.

The source model makes many missing entity and missing mention errors. It does not detect

several entity spans in PRECO, like locations (“Long Island”) or ones spanning multiple words

(“his kind acts of providing everything that I needed”). These spans are detected by uncertainty

sampling strategies and rand-ment. Ment-ent is most effective at reducing “missing” errors. It

detects gold entity clusters like “constant communication” and “the best educated guess about

the storm”. By training on spans that confuse the mention detector, the model adapts to the new

domain by understanding what constitutes as an entity mention.

Surprisingly, li-clust-ent makes at least twice as many extra entity and extra mention errors

than any other strategy. For the sentence, “Living in a large building with only 10 bedrooms”, the

gold data identifies two entities: “a large building with only 10 bedrooms” and “10 bedrooms”. In

both ONTONOTES and PRECO, the guidelines only allow the longest noun phrase to be annotated.

Yet, the li-clust-ent model predicts additional mentions, “a large building” and “only 10 bed-

rooms”. We find that li-clust-ent tends to sample nested spans (Table 6.4). Due to the summed

entropy computation, nested spans share similar values for clustered entropy as they share similar

antecedent-linking probabilities. This causes the extra entity and extra mention errors because the

model predicts there are additional entity mentions within a mention span.

Finally, we see a stark difference between random-ment and random. Out of all the

sampling strategies, random is least effective at preventing missing entity and missing mention
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errors. We are more likely to sample non-entities if we randomly sample from all spans in the

document (Section 6.4.5). By limiting the sampling pool to only spans that are likely to be entity

mentions, we sample more spans that are useful to label for CR. Thus, the mention detector from

neural models should be deployed during active learning.

6.3.2 User Study: Reading and Labeling

We hold a user study to observe the trade-off between reading and labeling. Three annota-

tors, with minimal NLP knowledge, label spans sampled from PRECO. We use ment-ent to sample

spans because the strategy shows highest AVG F1 (Figure 6.2). First, the users read instructions

(Section 6.4.4) and practice labeling for ten minutes. Then, they complete two sessions: Few-

Docs and ManyDocs. In each session, they label as much as possible for at least twenty-five

minutes. In FewDocs, they read fewer documents and label roughly seven spans per document.

In ManyDocs, they read more documents and label about one span per document.

For labeling coreference, we develop a user interface that is open-sourced (Figure 6.8). To

label the antecedent of the highlighted span, the user clicks on a contiguous span of tokens. The

interface suggests overlapping candidates based on the spans that are retained by the CR model.

In the user study, participants label at least twice as much in FewDocs compared to Many-

Docs (Figure 6.5). By labeling more spans in FewDocs, the mean AVG F1 score is also slightly

higher. Our findings show that the number of read documents should be constrained to increase

labeling throughput. Difference in number of labeled spans between FewDocs and ManyDocs

is more pronounced when two annotators volunteer to continue labeling after required duration

(Section 6.4.4).
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Figure 6.5: The number of spans labeled within twenty-five minutes. Each color indicates one
of three users and the linetype designates the session. Black dots mark the first span labeled
in a different document. The mean AVG F1 across users for each session is on the right. By
restricting the number of read documents in FewDocs, users label at least twice as many spans
and the model slightly improves in AVG F1.

6.3.3 Simulation: Uncertainty Sampling and Reading-Labeling Trade-off

We finally run simulations to explore both sources of model uncertainty and the trade-off

between reading and labeling. The earlier experiments have individually looked at each aspect.

Now, we analyze the interaction between both factors to understand which combination works

best for adapting CR to new domains. We run simulations on PRECO and QBCOREF that trade-

off the number of documents read m with the number of annotated spans k (Figure 6.6). We

vary m between one, five, and an unconstrained number of documents. For PRECO, we set k to

twenty and fifty. For QBCOREF, we set k to twenty and forty. These results are also presented in
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Figure 6.6: Test AVG F1 on PRECO and QBCOREF of each strategy throughout simulations. Each
row varies inm, the maximum number of documents read per cycle. Each column varies in k, the
number of annotated spans per cycle. For m of one or five, ment-ent shows highest AVG F1 for
PRECO and other uncertainty sampling strategies are best for QBCOREF. Whenm is unconstrained,
many strategies show unstable training.

numerical form (Section 6.4.3).

PRECO For PRECO, the test AVG F1 of ICOREF trained on the full training dataset is 0.860. When

m is constrained to one or five, AVG F1 can reach around 0.707 from training the model on only

300 spans sampled by ment-ent. As m increases, fewer spans are sampled per document and

all sampling strategies deteriorate. After training on sparsely annotated documents, the model

tends to predict singletons rather than cluster coreferent spans. Like in the user study, we see

benefits when labeling more spans within a document. Interestingly, li-clust-ent performs better
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when document reading is not constrained to one document. The issue with li-clust-ent is that it

samples nested mention spans (Section 6.3.1). Duplicate sampling is less severe if spans can be

sampled across more documents. Another strategy that suffers from duplicate sampling is cond-

ent because it mainly samples pronouns. For some documents, the pronouns all link to the same

entity cluster. As a result, the model trains on a less diverse set of entity mentions and cond-ent

drops in AVG F1 as the simulation continues.

QBCOREF For QBCOREF, the test AVG F1 of ICOREF trained on the full training dataset is 0.795.

When we constrain m to one or five, li-clust-ent, clust-ent, cond-ent, and joint-ent have high

AVG F1. Clustering entity mentions in QBCOREF questions is difficult, so these strategies help

target ambiguous mentions (Table 6.5). Ment-ent is less useful because demonstratives are abun-

dant in QBCOREF and make mention detection easier. Li-clust-ent still samples nested entity

mentions, but annotations for these spans help clarify interwoven entities in Quizbowl questions.

Unlike PRECO, li-clust-ent does not sample duplicate entities because nested entity mentions

belong to different clusters and need to be distinguished.

Overall, the most helpful strategy depends on the domain. For domains like PRECO that

contain long documents with many singletons, ment-ent is useful. For domains like QBCOREF

where resolving coreference is difficult, we need to target linking uncertainty. Regardless of

the dataset, random performs worst. Random-ment has much higher AVG F1, which shows

the importance of the mention detector in active learning. Future work should determine the

appropriate strategy for a given domain and annotation setup.
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Strategy PRECO QBCOREF

random 2 < 1
random-ment 4 < 1
ment-ent 5 < 1
li-clust-ent 12 < 1
clust-ent 12 1
cond-ent 14 1
joint-ent 16 1

Table 6.1: The time (minutes) to sample a batch of fifty spans from five documents from either
PRECO or QBCOREF for a given active learning strategy. On large datasets like PRECO, we see
that li-clust-ent, clust-ent, cond-ent, and joint-ent are slower because the strategy needs to
incrementally cluster each span and then compute clustering entropy.

6.4 Additional Experimental Details

We provide additional details about experiments from Section 6.3. These details include

simulation time, mention detection accuracy, numerical results from simulations, extended results

from the user study, and examples of spans sampled from simulations.

6.4.1 Simulation Time

We compare the time to sample fifty spans between different active learning strategies for

PRECO and QBCOREF (Table 6.1). For PRECO, clust-ent, cond-ent, and joint-ent are slower

because they need to run documents through ICOREF and get span-cluster likelihood. On the

other hand, ment-ent only needs unary scores sm, which is much faster to compute. Thus, for

both datasets, running ment-ent takes about the same time as random-ment.

For QBCOREF, fine-tuning ICOREF on fifty spans takes three minutes and fine-tuning on full

training set takes thirty-four minutes. For PRECO, fine-tuning ICOREF on fifty spans takes nine

minutes and fine-tuning on full training set takes five hours and 22 minutes.
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Figure 6.7: Comparing mention detection accuracy on test set for different active learning strate-
gies across reading/labeling configurations. The plots are formatted in the same way as Fig-
ure 6.6. Generally, mention detection improves most from ment-ent sampling.

6.4.2 Mention Detection Accuracy

For the annotation simulation in Section 6.3, we also record mention detection accuracy. As

ment-ent targets ambiguity in mention detection, it is the most effective strategy for improving

mention detection (Figure 6.7). The strategy is unaffected by labeling setup parameters, like the

number of spans labeled per cycle or the number of documents read per cycle. For strategies like

cond-ent and joint-ent, mention detection accuracy is stagnant or decreases as more spans are

sampled (Figure 6.7a). Due to deteriorating mention detection, the AVG F1 of models also drop.
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Figure 6.8: On the user interface, the sampled span is highlighted and the user must select an
antecedent. If no antecedents exist or the span is not an entity mention, then the user will click
the corresponding buttons.

6.4.3 Numerical Results

The results for AVG F1 and mention detection accuracy are presented as graphs throughout

this chapter. To concretely understand the differences between the methods, we provide results

in numerical form (Tables 6.2,6.3). We show results from the PRECO and QBCOREF simulations

where twenty spans are labeled each cycle and the number of documents read is either one or

an unconstrained amount. The values in the tables show the mean and variance of AVG F1 and

mention detection accuracy over five different runs.

6.4.4 User Study

Instructions to Participants We give the following instructions to user study participants:

You will be shown several sentences from a document. We have highlighted a men-

tion (a word or phrase) of an entity (a person, place, or thing). This entity mention

may be a pronoun (such as “she” or “their”) or something else.

We need your help to find an earlier mention of the same entity, whether in the same
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Figure 6.9: Full annotation times of participants (distinguished by color) during the user study.
Over a longer period of time, the difference in number of labeled spans between the two sessions
is much more pronounced. Within fourty-five minutes, the red user can label a hundred spans in
the FewDocs session but only labels about thirty spans in the ManyDocs session.

sentence or in an earlier sentence. The mention does not have to be the immediately

previous one.

If the span is not an entity mention or does not have an antecedent, please make note

of it on the interface.

User Interface We design a user interface for annotators to label coreference (Figure 6.8). The

user interface takes the sampled spans from active learning as input. Afterward, it will present

the document and highlight the sampled spans in the document. The user the proceeds to go

through the list of “Queries”. For the “Active query”, they need to either: find its antecedent,

mark there is “no previous mention”, or indicate that “query is not an entity”. The interface will
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suggest some overlapping candidates to help narrow down the user’s search. The candidates are

spans that the CR model scores as likely entity mentions. Users may use keyboard shortcuts to

minimize labeling time. The code for the user interface is released along with the code for the

simulations.

Extending Annotation Time User study participants are asked to annotate at least twenty-five

minutes (Section 6.3.2). During the study, two participants continue to label after the minimum

duration. Figure 6.9 shows full results from the user study. Over a longer duration, the differences

between the FewDocs and ManyDocs sessions are clearer.

6.4.5 Examples of Sampled Spans

We provide examples of spans that are sampled from the experiments. For these examples,

we look at the simulation where document reading is constrained to one document and twenty

spans are sampled per cycle. We compare the spans sampled by each strategy for both PRECO

(Table 6.4) and QBCOREF (Table 6.5). Across domains, the strategies behave similarly, but we

notice some differences in ment-ent and joint-ent. In PRECO, those strategies tend to sample

a mix of spans that are and are not entity mentions (Section 6.3.1). In QBCOREF, they sample

more entity mentions. This could be due to more entity mentions present in a Quizbowl question,

which makes it more likely to sample something that should belong to an entity cluster.

For other strategies, we notice some issues. As mentioned in Section 6.3.1, li-clust-ent

tends to sample nested entity mentions, which may become redundant for annotators to label.

In fact, AVG F1 for li-clust-ent tends to be lower if document reading is constrained to one

document. Cond-ent suffers from redundant labeling because pronouns are repeatedly sampled
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and they tend to link to the same entity cluster.

6.5 Conclusion

In this chapter, we use interaction to adapt domains for a more complicated task, coref-

erence resolution. Neural CR models desperately depend on large, labeled data. We use active

learning to transfer a model trained on ONTONOTES, the “de facto” dataset, to new domains. Ac-

tive learning for CR is difficult because the problem does not only concern sampling examples.

We must consider different aspects, like sources of model uncertainty and cost of reading doc-

uments. In both simulations and the user study, CR improves from continued training on spans

sampled from the same document rather than different contexts.

The next chapter will summarize the findings about interactive transfer learning. From

inductive to transductive transfer learning, we have proposed various approaches to transfer dif-

ferent models. We will discuss future directions in areas such as user-centric active learning and

proactive learning.
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Total No. of Labeled Spans m Strategy AVG F1 Mention Accuracy

100 1 clust-ent 0.64 ± 0.02 0.71 ± 0.03
cond-ent 0.57 ± 0.02 0.66 ± 0.02
joint-ent 0.64 ± 0.03 0.76 ± 0.02
ment-ent 0.70 ± 0.01 0.80 ± 0.00
random 0.43 ± 0.09 0.49 ± 0.11
random-ment 0.65 ± 0.04 0.78 ± 0.02
li-clust-ent 0.56 ± 0.02 0.65 ± 0.03

unconstrained clust-ent 0.62 ± 0.03 0.70 ± 0.03
cond-ent 0.43 ± 0.09 0.67 ± 0.04
joint-ent 0.55 ± 0.06 0.71 ± 0.05
ment-ent 0.65 ± 0.03 0.76 ± 0.03
random 0.48 ± 0.07 0.54 ± 0.07
random-ment 0.69 ± 0.01 0.80 ± 0.01
li-clust-ent 0.62 ± 0.01 0.73 ± 0.01

200 1 clust-ent 0.68 ± 0.01 0.77 ± 0.01
cond-ent 0.62 ± 0.02 0.70 ± 0.03
joint-ent 0.68 ± 0.03 0.80 ± 0.02
ment-ent 0.71 ± 0.01 0.82 ± 0.00
random 0.48 ± 0.18 0.55 ± 0.21
random-ment 0.65 ± 0.05 0.77 ± 0.07
li-clust-ent 0.57 ± 0.05 0.67 ± 0.04

unconstrained clust-ent 0.65 ± 0.02 0.73 ± 0.03
cond-ent 0.36 ± 0.08 0.63 ± 0.07
joint-ent 0.40 ± 0.12 0.67 ± 0.12
ment-ent 0.67 ± 0.03 0.81 ± 0.01
random 0.49 ± 0.08 0.61 ± 0.07
random-ment 0.69 ± 0.01 0.81 ± 0.00
li-clust-ent 0.65 ± 0.03 0.75 ± 0.03

300 1 clust-ent 0.68 ± 0.02 0.78 ± 0.01
cond-ent 0.61 ± 0.03 0.70 ± 0.04
joint-ent 0.69 ± 0.02 0.81 ± 0.01
ment-ent 0.69 ± 0.02 0.82 ± 0.00
random 0.50 ± 0.09 0.58 ± 0.10
random-ment 0.61 ± 0.10 0.81 ± 0.01
li-clust-ent 0.63 ± 0.05 0.73 ± 0.05

unconstrained clust-ent 0.51 ± 0.12 0.70 ± 0.04
cond-ent 0.33 ± 0.07 0.57 ± 0.04
joint-ent 0.41 ± 0.05 0.69 ± 0.04
ment-ent 0.54 ± 0.07 0.80 ± 0.02
random 0.40 ± 0.04 0.60 ± 0.13
random-ment 0.65 ± 0.05 0.80 ± 0.04
li-clust-ent 0.67 ± 0.02 0.78 ± 0.01

Table 6.2: Results of PRECO simulation in numerical form, accompanying the graphs in Fig-
ures 6.6a and 6.7a. The table shows AVG F1 and mention detection accuracy of experiments
where twenty spans are sampled and labeled each cycle. Results are shown for m, the maximum
number of documents read, equal to one and also unconstrained.
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Total No. of Labeled Spans m Strategy AVG F1 Mention Accuracy

100 1 clust-ent 0.47 ± 0.06 0.62 ± 0.06
cond-ent 0.47 ± 0.03 0.61 ± 0.03
joint-ent 0.50 ± 0.03 0.65 ± 0.02
ment-ent 0.50 ± 0.01 0.66 ± 0.03
random 0.40 ± 0.07 0.53 ± 0.07
random-ment 0.44 ± 0.06 0.63 ± 0.04
li-clust-ent 0.45 ± 0.02 0.59 ± 0.03

unconstrained clust-ent 0.41 ± 0.05 0.59 ± 0.07
cond-ent 0.39 ± 0.10 0.57 ± 0.05
joint-ent 0.50 ± 0.01 0.66 ± 0.02
ment-ent 0.51 ± 0.02 0.69 ± 0.01
random 0.36 ± 0.08 0.48 ± 0.10
random-ment 0.48 ± 0.02 0.65 ± 0.01
li-clust-ent 0.47 ± 0.01 0.62 ± 0.02

200 1 clust-ent 0.52 ± 0.01 0.67 ± 0.01
cond-ent 0.52 ± 0.02 0.66 ± 0.02
joint-ent 0.53 ± 0.03 0.70 ± 0.03
ment-ent 0.51 ± 0.02 0.71 ± 0.02
random 0.40 ± 0.06 0.53 ± 0.08
random-ment 0.48 ± 0.05 0.68 ± 0.01
li-clust-ent 0.49 ± 0.01 0.64 ± 0.02

unconstrained clust-ent 0.45 ± 0.04 0.64 ± 0.06
cond-ent 0.39 ± 0.06 0.55 ± 0.06
joint-ent 0.48 ± 0.05 0.70 ± 0.03
ment-ent 0.49 ± 0.08 0.68 ± 0.13
random 0.34 ± 0.08 0.50 ± 0.11
random-ment 0.49 ± 0.04 0.70 ± 0.01
li-clust-ent 0.50 ± 0.03 0.68 ± 0.02

300 1 clust-ent 0.54 ± 0.02 0.70 ± 0.02
cond-ent 0.55 ± 0.02 0.70 ± 0.02
joint-ent 0.55 ± 0.02 0.74 ± 0.01
ment-ent 0.53 ± 0.02 0.75 ± 0.02
random 0.42 ± 0.05 0.55 ± 0.06
random-ment 0.49 ± 0.03 0.69 ± 0.03
li-clust-ent 0.53 ± 0.04 0.71 ± 0.02

unconstrained clust-ent 0.46 ± 0.04 0.67 ± 0.06
cond-ent 0.42 ± 0.07 0.58 ± 0.12
joint-ent 0.43 ± 0.11 0.68 ± 0.08
ment-ent 0.50 ± 0.06 0.74 ± 0.04
random 0.34 ± 0.18 0.45 ± 0.23
random-ment 0.47 ± 0.08 0.75 ± 0.02
li-clust-ent 0.52 ± 0.03 0.71 ± 0.01

Table 6.3: Results of QBCOREF simulation in numerical form, accompanying the graphs in Fig-
ures 6.6b and 6.7b. The table shows AVG F1 and mention detection accuracy of experiments
where twenty spans are sampled and labeled each cycle. Results are shown for m, the maximum
number of documents read, equal to one and also unconstrained.
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Strategy Sampled Spans Comments

random Later, I got out of the back door secretly and gave the food to
the old man, whose [name I had discovered]1 was Taff. I had
never seen anything else as lovely as the smile of satisfaction
[on]2 Taff’s face when he ate the food. From then on, my visits
to [the old house had]3 a purpose, and I enjoyed every minute
of the rest of my stay.

Sampled spans are typi-
cally not entity mentions.

random-
ment

When opening the door, his face was full of smiles and he
hugged [his two children and gave [his wife]2 a kiss]1. After-
wards, he walked with me to the car. We passed the tree. I was
so curious that I asked [him]3 about what I had [seen]4 earlier.

Diverse set of span types
is sampled, including
spans that are not entity
mentions and ones that
do link to entities.

li-clust-
ent

Although [he and [his young men]2]1 had taken no part in the
killings, he knew that [the white men]3 would blame [all of
[the Indians]5]4.

Many sampled spans are
nested entity mentions.

ment-
ent

This summer, Republicans have been [meeting]1 “behind
closed doors” on a Medicare proposal scheduled to be released
[later this month, only a few weeks before Congress votes]2 on
it, thereby avoiding independent analysis of the costs, mobi-
lization by opponents and other inconvenient aspects of a long
national debate. Two years ago, the Republicans rang alarms
about the [Clinton]3 plan’s emphasis on [managed care]4

Sampled spans are both
entity mentions and non-
entities. The spans are
difficult for mention de-
tection like “meeting” but
may also be hard for clus-
tering like “Clinton”.

clust-
ent

After that, [Mary]1 buys some school things, too. Here
[mother]2 buys a lot of food, like bread, cakes, meat and fish.
[They]3 get home very late.

Different types of entity
mentions are sampled.

cond-
ent

It is a chance to thank everyone who has contributed to shap-
ing [you]1 during the high school years; it is a chance to ap-
preciate all those who have been instrumental in [your]2 edu-
cation. Take a moment to express gratitude to all those who
have shared the experiences of [your]3 high school years.

More pronouns are sam-
pled because they are
obviously entity mentions
and hard to cluster. How-
ever, repeated sampling of
the same entity occurs.

joint-
ent

[This]1 is an eternal regret handed down from generation to
generation and [you]2 are only one of those who languish for
(...) followers. [Love]3 is telephone, but it is difficult to seize
[the center time for dialing]4, and you will let the opportunity
slip if your call is either too early or too late.

Many entity mentions are
sampled but some are dif-
ficult for mention detector
to detect.

Table 6.4: The example spans from PRECO documents that are sampled with each active learning
strategy.
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Strategy Sampled Spans Comments

random The discovery of a tube behind a [fuse box alarms Linda, and
the image of stock[ings]2 disturbs the main]2 character due to
his guilt over [an encounter with a woman and his son Biff in
[Boston]4]3.

Choice of sampled spans
are very random and
do not seem to improve
learning coreference.

random-
ment

The speaker of one of [this author’s works]1 invites the reader
to [take]2 a little sun, a little honey, as commanded by
[Persephone’s]3 bees.

Diverse set of span types
is sampled, including
spans that are not entity
mentions and ones that
do link to entities.

li-clust-
ent

For 10 points, name [this [Moliere]2 play about [Argan who is
constantly concerned with [his]4 health]3]1.

Many sampled spans are
nested entity mentions.

ment-
ent

He then sees [Ignorance and Want]1 emerge from [a cloak]2.
Earlier, he sees [a door-knocker]3 [transform]4 into [a human
figure, which drags a belt made of chains and locks]5.

Compared to PRECO,
more entity mentions
are sampled but most
sampled spans are still
difficult to detect.

clust-
ent

[[Its]2 protagonist]1 hires Croton to rescue a different charac-
ter after listening to a giant - LRB - * - RRB - Christian named
Urban [discuss]3 a meeting at Ostranium.

Compared to PRECO, a
few sampled spans are not
entity mentions.

cond-
ent

While [this work]1 acknowledges the soundness of the argu-
ments that use the example of the ancients, [[its]3 author]2
refuses to reply to [them]4, adding that we are constructing no
system here [we]5 are a historian, not a critic.

More pronouns are sam-
pled because they are
obviously entity mentions
and hard to cluster.
Unlike PRECO, repeated
sampling occurs less
often.

joint-
ent

This man falls in love with [the maid with [lime colored
panties]2]1 and dates [Luciana]3.

Compared to PRECO,
more entity mentions are
sampled.

Table 6.5: The example spans from QBCOREF documents that are sampled with each active learn-
ing strategy.
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Chapter 7: Conclusion

Transfer learning in NLP is crucial because practical applications require models that can

accommodate the shifts in language. Recent breakthroughs, like the transformer models, have

developed intricate models and clever optimization techniques for successful transfer. The thesis

takes a step further by introducing a human into the loop. Humans have shown to robustly and

quickly generalize cognitive skills. Therefore, we should carefully design AI systems that can

update their internal representations or decisions based on human feedback.

In Section 1.2, we list three objectives of the dissertation. First, we want to explore the

scope of applications of interactive transfer learning. We focus on two categories of transfer

learning: inductive (transfer across tasks) and transductive (transfer across domains). Second,

we aim to improve knowledge transfer for low-resource settings. If data, time, and computing

resources are scarce, we can no longer rely on costly, large models. In emergent situations, it

becomes crucial to quickly update the model through human input. Third, we seek to investigate

how user interaction varies for different levels of model complexity. More complex models

achieve higher accuracy, but feedback from users may still help transfer knowledge.

We address these three objectives through a summary of the main contributions (Sec-

tion 7.1). In the summary, we compare and contrast the findings from each chapter. Finally,

we conclude with a discussion of future research directions (Section 7.2).
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7.1 Summary of Contributions

Scope of Applications The problems in transfer learning are either inductive or transductive,

where the former involves shift in task and the latter is defined by shift in domain. The main

contributions are thus organized by the types of transfer learning. The chapters in Part I discuss

interactive methods for inductive transfer learning where information from one task determines

the feedback needed for another task. The chapters in Part II transition to human-in-the-loop work

on transductive transfer learning. Here, domain expertise from users is crucial for overcoming

missing knowledge gaps between domains or languages.

In Part I, we observe that the general trend for inductive transfer learning involves using

information from one task to design the user feedback loop for another task. In Chapter 3, the user

refines a cross-lingual topic model to classify text across languages. In Chapter 4, the surprisal

values from language modeling indicates the type of text that surprises BERT. The active learning

strategy ALPS then requests labels from users for these examples. The hypothesis here is that we

can improve classification accuracy of language models from fine-tuning on labels of surprising

documents.

In Part II, interactive transductive learning typically requires users to provide some sort of

alignment across domains. The common pattern is to have users align words that are critical for

learning the underlying task. In Chapter 5, the user modifies the nearest neighbors of words in

order to align cross-lingual word embeddings. For our CLIME system, the words of interest are

ones that are most relevant to the classification task. Finally, Chapter 6 involves users labeling

coreference of words in text from the target domain. This type of labeling serves as an alignment

because users may indicate words that are no longer entity mentions or group them with a new
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entity cluster.

For inductive transfer learning, the interaction is less straightforward and requires addi-

tional assumptions about the relationship between tasks. The novelty lies in how information

from the source task can be used for interaction in the target task. For transductive transfer learn-

ing, the overall feedback framework is more obvious: have users align words across domains.

However, this user feedback loop depends on two conditions. First, our algorithm must find

which words need alignment from users. Second, users should be equipped with the necessary

domain knowledge to provide the necessary alignment (e.g. fluent in multiple languages). For

both inductive and transductive transfer learning, user interaction needs to be carefully designed

to be helpful for adapting models.

Low-resource Settings Labeled data is a bottleneck in machine learning. Theoretically, super-

vised learning is only guaranteed to succeed if there is an abundance of labeled data (Section 2.1).

Active learning is an extensively studied approach to resolve some issues with data annotation

by sampling a subset of data to label (Section 2.3.1). Thus, we build upon prior work to develop

active learning approaches for transfer learning. In Chapter 4, our active learning strategy ALPS

relies entirely on pre-training for data sampling. This bypasses popular strategies, like uncer-

tainty sampling, that require a model already trained on labeled data. As a result, we can quickly

adapt BERT to a classification task with a smaller number of annotated examples. ALPS and prior

active learning works focus on text classification. In Chapter 6, we investigate active learning for

coreference resolution. The active learning setup is more complicated because CR is a clustering

task and involves labeling spans rather than documents. In both user studies and experiments,

sampling spans from a constrained set of documents is more efficient for adapting the model to a
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new domain.

In some situations, there might not be enough unlabeled data to begin with. This is true of

datasets for low-resource languages. Chapter 5 is primarily focused with adapting models trained

on a high-resource language to a low-resource one. If there is not enough data, aligning cross-

lingual word embeddings becomes an issue. Thus, the CLIME interface has users mark similarity

and dissimilarity between nearest neighbors as a way to reshape the embedding space. We show

significant increase in accuracy from user interaction for four low-resource languages. Chapter 3

also discusses application to low-resource languages. Through MTAnchor, users can easily create

relevant topics to align the high-resource and low-resource languages.

Beyond data scarcity, we might encounter scenarios where computing power or time is

limited. This could happen during times of natural disasters or political upheaval. Chapters 3

and 5 address these issues. The model in Chapter 3 is relatively small, but the advantage is

that user updates are fast. In mere seconds, the anchoring algorithm changes model parameters

according to user feedback. This type of tool would be useful in emerging situations. The CLIME

interface is also quick as it does not need to retrain the model on labeled data. It involves a

post-processing step that simply shifts the annotated word embeddings around.

Model Complexity For Parts I and II, the chapters in each part are ordered by increasing model

complexity. With larger models, we can solve more complicated problems. For different levels

of model complexity, interaction can be helpful. In low-resource settings, smaller models are

more practical and certainly need input from humans. For problems that require more elaborate

language understanding, larger models are more appropriate but may rely on user feedback for

cheap updates.
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Part I begins with topic models in Chapter 3 and Part II starts with word embeddings in

Chapter 5. In both chapters, the models have relatively low complexity and updates are quick.

Users can update MTAnchor in an online fashion and immediately see a new topic model within

seconds (Chapter 3). For CLIME, the updates are offline but fast because the system only needs

to shift a batch of word embeddings (Chapter 5).

Parts I and II end with chapters that involve large language models. In Chapter 4, we

develop ALPS, an active learning strategy for BERT. In Chapter 6, we use active learning to help

adapt SPANBERT. In these chapters, the models have relatively high complexity and have been to

learn general information about language. Since the internal representations are high-dimensional

and dense, it makes it harder to modify internal representations from a small amount of user

feedback. At the same time, it is unnecessary to update the internal representations because the

model has already undergone extensive pre-training. Therefore, these chapters focus on active

learning to sample data for labeling. While the user interaction for these complex models is

simple, the methods are effective for adapting them to new domains or tasks.

7.2 Future Directions

The discussion in Chapter 7.1 summarizes our contributions with the dissertation objectives

in mind. In this section, we discuss some limitations of the thesis and suggest potential avenues

for future work.

User-Centric Active Learning The active learning strategies in Chapters 4 and 6 have focused

on the model and the data. In general, active learning strategies have either been model-centric

or data-centric. Uncertainty sampling is model-centric because it finds examples that confuse
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the model the most. Diversity sampling is data-centric as it searches for a representative set of

examples. However, these methods neglect user preferences when sampling data. The users

might prefer or be more proficient at labeling certain documents. If we find those documents for

users to label, then users may annotate data more efficiently.

User-centric active learning can help avoid some pitfalls of uncertainty sampling. When

dealing with noisy data, uncertainty sampling may select garbled passages that are difficult for

users to read and interpret. An example of this would be,

“#&!?the univrty of MD %CALL 1-800!!!! on thursday,,, two students encounter a

rare sighting of (((CALL NOW FOR THE BEST DEALS))) a comet shower. . . ”.

There possibly might exist another passage that is much less noisy yet still confuses the model,

“Scientists have discovered new life forms on Jupiter with resilient anatomy and can

speak the Selkup language. . . ”.

We prefer the cleaner passage, especially if users have to perform span-level annotations within

the text.

Lee et al. (2020) introduce a user-centric sampling strategy for active learning. Their strat-

egy measures the difficulty of an instance for a user to annotate and chooses examples that are

not too challenging or easy for the user. In some cases, the user-centric objective may not align

with model-centric uncertainty sampling. They also combine the model-centric and user-centric

strategies into one joint optimization strategy. This joint strategy leads to higher accuracy in the

experiments. However, the paper only simulates an artificial user for one particular language

learning task. Ideally, research in user-centric active learning should experiment with real human

users and generalize across different NLP tasks.
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First, we can consider a simple, user-centric strategy based on readability. If the passage is

less noisy and shorter, then reading and labeling it would require less effort. So, we would sample

easy passages for the users to label. Through simulations and user studies, we can compare this

baseline to uncertainty sampling. Later on, we can develop more complex user-centric strategies

and also a hybrid user-model strategy. Our experiments can first focus on text classification but

then move on to harder tasks, like machine translation. Thus, we can fully understand the scope

of applications for user-centric active learning.

Proactive Learning One crucial flaw of active learning is that it assumes the annotators are

perfect. Realistically, the users are humans who are subject to making mistakes. In Chapter 3.4,

the Mechanical Turk workers have to refine English-Chinese topic models. Their interactive

update improves topic coherence and classification accuracy for English more drastically than

for Chinese. We assume there are many more English speakers on Mechanical Turk (Pavlick

et al., 2014), which might be why the Chinese scores are lower. In this scenario, we would

ideally want bilingual English-Chinese speakers to interact with the topic model.

Proactive learning seeks to generalize active learning by removing these four assumptions

about the user: “infallible (never wrong), indefatigable (always answers), individual (only one

oracle), and insensitive to costs (always free or always charges the same)” (Donmez and Car-

bonell, 2008). The initial approach to proactive learning is to view it as a utility optimization

problem with budget constraints. The goal is to jointly find examples to label and the users who

should label those examples. They simulate the user with logistic regression classifiers trained

on different data subsets.

Despite the strong motivations for proactive learning, there are only a few published works
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on this topic. Nghiem et al. (2021) set up proactive learning strategies in an annotation toolkit.

Their strategy is straightforward: send difficult examples to the expert annotator and easy ex-

amples to the novice user. Future research should develop proactive learning strategies for more

complicated situations, especially ones that involve transfer learning. If we need expertise in a

specific domain or task, we have to find annotators with that set of knowledge. That way, we can

recruit users who will annotate data with higher precision and speed. For example, we recruit

user study participants through Upwork who are fluent in the target, low-resource language in

Chapter 5. To accomplish this, we look through worker’s profiles to determine their language

skills. Other researchers vet annotators before letting them participate in the user study (Briakou

and Carpuat, 2020).

Seeking users to label data or interact with the AI system is non-trivial. We need people

who are equipped with the knowledge needed to adapt the machine learning models. The prob-

lem becomes even more challenging when we have to consider budget constraints. If the most

expert annotator is too expensive, we may need to find another knowledgeable annotator who can

complete the task for a cheaper cost. A proactive learning strategy should resolve this issue by

matching unlabeled data subsets to the appropriate users.

To develop proactive learning strategies, Quizbowl would be an interesting domain to fo-

cus on (Rodriguez et al., 2019). Wallace et al. (2019) have humans write adversarial Quizbowl

questions to evaluate the robustness of QA systems. Quizbowl questions belong to different trivia

categories. We may also want users to label entity links or coreference relationships in Quizbowl

questions. Regardless of the type of interaction, the user should have prior knowledge about the

particular question. Given a set of questions, the proactive learning strategy can recruit people

who specialize in a particular category. Or, the strategy may be more fine-grained and recruit ex-

145



perts on a specific topic. With Quizbowl as a testbed, we can investigate how proactive learning

can improve the adaptation of QA models to new domains.

The research on proactive learning is critical for low-resource settings. By finding the

appropriate annotators, we can obtain high-quality labeled data for reduced costs. Proactive

learning also can help recruit people with the necessary background for esoteric domains like

low-resource languages.

Online, Interactive Updates Active learning is primarily used in an offline setting. First, users

annotate data that is used to train the model. Then, the model is deployed online. This cycle of

labeling, retraining, and deploying is repeated. However, a more attractive solution is to adapt the

AI in an online fashion. The user interacts with the system and the model quickly learns from the

feedback. In the online scenario, the user can rapidly provide feedback without having to wait

for the model to retrain.

The interactive topic model in Chapter 3 follows this online setting. When the users refine

the MTAnchor topic model through modifying anchor words for each topic, the algorithm takes

merely seconds to update the topic-word distributions. While MTAnchor is fast, it may not be

applicable to many NLP tasks. The coreference resolution models in Chapter 6 are much more

complex, so it would be interesting to develop an online, interactive approach to adapt them.

Could users label antecedents of a few spans of text and see immediate changes in the coreference

resolution model? For online algorithms, model complexity is an important factor to consider.

A possible solution is to have users interact with a simple model (e.g. logistic regression)

where online updates are fast and effortless. Then, the user may continuously interact with the

model and provide as much feedback as they want. After a session of interactions, we accumulate
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the user feedback to update the larger model in an offline approach like retraining. With this setup

of two models, the user can rapidly interact with the smaller model while we spend more time

updating the larger model for improved accuracy.

One concern with this approach is that the user feedback may only apply to the smaller

model and not appropriately update the larger model. Lowell et al. (2019) show negative results

when training a model on a dataset that is acquired through active learning with another model.

However, their experiments are limited to active learning for text classification and named entity

recognition. We may observe more significant gains for more complicated tasks like question an-

swering. So, this proposed approach might be useful for interactions beyond active learning and

tasks other than simple classification. The research for online user-AI interaction is worthwhile

to pursue yet remains unexplored.
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