
Singapore Management University
Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open Access) Dissertations and Theses

12-2018

Feature-based transfer learning In natural language
processing
Jianfei YU
Singapore Management University, jfyu.2014@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

Part of the Computer and Systems Architecture Commons, and the Programming Languages and
Compilers Commons

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Dissertations and Theses Collection (Open Access) by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
YU, Jianfei. Feature-based transfer learning In natural language processing. (2018). Dissertations and Theses Collection (Open
Access).
Available at: https://ink.library.smu.edu.sg/etd_coll/159

https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

FEATURE-BASED TRANSFER LEARNING IN
NATURAL LANGUAGE PROCESSING

JIANFEI YU

SINGAPORE MANAGEMENT UNIVERSITY
2018

Feature-Based Transfer Learning In Natural
Language Processing

by
Jianfei YU

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

Jing JIANG (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

Hady Wirawan LAUW

Associate Professor of Information Systems
Singapore Management University

Feida ZHU

Associate Professor of Information Systems
Singapore Management University

Sinno Jialin PAN

Nanyang Assistant Professor of Computer Engineering
Nanyang Technological University

Singapore Management University
2018

Copyright (2018) Jianfei YU

I hereby declare that this PhD dissertation is my original work and it

has been written by me in its entirety.

I have duly acknowledged all the sources of information which have

been used in this dissertation.

This PhD dissertation has also not been submitted for any degree in

any university previously.

Jianfei Yu

5 Dec 2018

Feature-Based Transfer Learning In Natural
Language Processing

Jianfei YU

Abstract

In the past few decades, supervised machine learning approach is one of the most

important methodologies in the Natural Language Processing (NLP) community.

Although various kinds of supervised learning methods have been proposed to ob-

tain the state-of-the-art performance across most NLP tasks, the bottleneck of them

lies in the heavy reliance on the large amount of manually annotated data, which is

not always available in our desired target domain/task. To alleviate the data sparsity

issue in the target domain/task, an attractive solution is to find sufficient labeled data

from a related source domain/task. However, for most NLP applications, due to the

discrepancy between the distributions of the two domains/tasks, directly training

any supervised models only based on labeled data in the source domain/task usu-

ally results in poor performance in the target domain/task. Therefore, it is necessary

to develop effective transfer learning techniques to leverage rich annotations in the

source domain/task to improve the model performance in the target domain/task.

There are generally two settings of transfer learning. We use supervised transfer

learning to refer to the setting when a small amount of labeled target data is available

during training, and when no such data is available we call it unsupervised transfer

learning. In this thesis, we focus on proposing novel transfer learning methods for

different NLP tasks in both settings, with the goal of inducing an invariant latent

feature space across domains or tasks, where the knowledge gained from the source

domain/task can be easily adapted to the target domain/task.

In the unsupervised transfer learning setting, we first propose a simple yet ef-

fective domain adaptation method by deriving shared representations with instance

similarity features, which can be generally applied for different NLP tasks, and em-

pirical evaluation on several NLP tasks shows that our method has indistinguishable

or even better performance than a widely used domain adaptation method. Further-

more, we target at a specific NLP task, i.e., sentiment classification, and propose

a neural domain adaptation framework, which performs joint learning of the actual

sentiment classification task and several manually designed domain-independent

auxiliary tasks to produce shared representations across domains. Extensive exper-

iments on both sentence-level and document-level sentiment classification demon-

strate that our proposed domain adaptation framework can achieve promising re-

sults.

In the supervised transfer learning setting, we first propose a neural domain

adaptation approach for retrieval-based question answering systems by simultane-

ously learning shared feature representations and modelling inter-domain and intra-

domain relationships in a unified model, followed by conducting both intrinsic and

extrinsic evaluation to demonstrate the efficiency and effectiveness of our method.

Moreover, we attempt to improve multi-label emotion classification with the help

of sentiment classification by proposing a dual attention transfer network, where a

shared feature space is employed to capture the general sentiment words, and an-

other task-specific space is employed to capture the specific emotion words. Experi-

mental results show that our method is able to outperform several highly competitive

transfer learning methods.

Although the transfer learning methods proposed in this thesis are originally

designed for natural language processing tasks, most of them can be potentially

applied to classification tasks in the other research communities such as computer

vision and speech processing.

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Methodology . 4

1.2.1 A Hassle-free Unsupervised Domain Adaptation Method

with Instance Similarity Features 5

1.2.2 An Unsupervised Neural Domain Adaptation Method with

Auxiliary Tasks for Sentiment Classification 5

1.2.3 A Supervised Neural Domain Adaptation Method for Retrieval-

based Question Answering Systems 6

1.2.4 A Neural Task Adaptation Method for Improving Multi-

label Emotion Classification via Sentiment Classification . . 7

1.3 Our Contributions . 7

1.4 Organization . 8

2 Literature Review 10

2.1 Unsupervised Transfer Learning 11

2.1.1 Feature-Based Approaches 12

2.1.2 Instance-Based Approaches 16

2.2 Supervised Transfer Learning . 17

2.2.1 Feature-Based Approaches 17

2.2.2 Instance-Based Approaches 19

i

I Unsupervised Transfer Learning 21

3 A Hassle-Free Unsupervised Domain Adaptation Method Using Instance

Similarity Features 22

3.1 Introduction . 22

3.2 Adaptation with Similarity Features 24

3.2.1 The Method . 24

3.2.2 Justification . 25

3.2.3 Exemplar Vectors Selection 29

3.3 Experiments . 29

3.3.1 Tasks and Data Sets . 30

3.3.2 Methods for Comparison 30

3.3.3 Results . 31

3.3.4 Impact of the Number of Exemplar Vectors 33

3.3.5 Stability Comparison between ISF and KISF 34

3.4 Discussion . 35

4 An Unsupervised Neural Domain Adaptation Framework with Auxil-

iary Tasks for Sentiment Classification 36

4.1 Introduction . 37

4.2 Domain Adaptation Framework 39

4.2.1 Notation and Task Formulation 40

4.2.2 Overview of Our Proposed Framework 41

4.3 Auxiliary Tasks for Sentiment Classification 42

4.3.1 Auxiliary Task 1 . 43

4.3.2 Auxiliary Task 2 . 45

4.4 Model . 46

4.4.1 Domain Adaptation for Sentence-Level Sentiment Classifi-

cation . 46

ii

4.4.2 Domain Adaptation for Document-Level Sentiment Classi-

fication . 48

4.4.3 Model Optimization . 52

4.4.4 Differences from SCL . 53

4.5 Experiments . 53

4.5.1 Data Sets and Experiment Settings 53

4.5.2 Baselines and Hyperparameters 55

4.5.3 Results . 58

4.5.4 Case Study . 62

4.6 Discussion . 65

II Supervised Transfer Learning 66

5 A Supervised Neural Domain Adaptation Framework via Modeling Do-

main Relationships for Retrieval-based Question Answering Systems 67

5.1 Introduction . 68

5.2 Model . 72

5.2.1 Problem Formulation and Notation 72

5.2.2 Proposed Domain Adaptation Method 74

5.2.3 Adversarial Loss . 75

5.2.4 Base Model . 76

5.2.5 Inference . 78

5.2.6 Implementation Details . 80

5.3 Online System . 80

5.4 Experiments . 81

5.4.1 Experiment Settings . 81

5.4.2 Comparisons Between Base Models 84

5.4.3 Comparisons Between DA Methods 85

5.4.4 Domain Relationships . 87

iii

5.4.5 Extrinsic Evaluations . 88

5.5 Discussion . 89

6 Improving Multi-label Emotion Classification via Sentiment Classifica-

tion with Dual Attention Transfer Network 91

6.1 Introduction . 91

6.2 Methodology . 94

6.2.1 Base Model for Emotion Classification 94

6.2.2 Transfer Learning Architecture 96

6.3 Experiments . 98

6.3.1 Experiment Settings . 98

6.3.2 Results . 100

6.4 Discussion . 101

7 Conclusion 103

7.1 Summary . 103

7.2 Future Direction . 104

iv

List of Figures

1.1 The Organization of the Topics in this Thesis. 9

3.1 The Impact of the Number of Exemplar Vectors. 34

3.2 The Comparison of the Stability of ISF and KISF on ten runs. 35

4.1 Standard Model without Domain Adaptation (top) vs Proposed Domain

Adaptation Framework (bottom). 40

4.2 Learning Shared Representations for Sentence-level Sentiment Classifica-

tion. 46

4.3 Document-Level Shared Representation. 49

4.4 Sentence-Level Shared Representation. 51

5.1 The Workflow of IR-based Chatbot Systems. 69

5.2 Existing Supervised Domain Adaptation Frameworks. 70

5.3 Our Full Domain Adaptation Model for Paraphrase Identification and Nat-

ural Language Inference. 77

5.4 Learnt Correlation Matrix. A darker color means a larger entry value.

S:Source, T:Target, SC:Source-shared, TC: Target-shared. 87

6.1 Overview of Different Transfer Learning Models. 93

6.2 Dual Attention Transfer Network. 97

6.3 Comparison of attention weights between Base and our DATN-2 model

on a test sentence from SemEval-18. Note that the ground truth emotion

labels for this example are joy, optimism and love. 101

v

List of Tables

3.1 Three errors of different feature representations on a spam filtering task.

K is 200 for ISF- and ISF. We expect a low ε̂t when ε̂s is low and domain

separation error is high. 28

3.2 Comparison of performance on Spam. For each source-target pair of each

task, the performance shown is the average of 5-fold cross validation. We

also report the overall average performance for each task. We tested sta-

tistical significance only for the overall average performance and found

that ISF and KISF were significantly better than both Naive and SCL with

p < 0.05 (indicated by †) based on the Wilcoxon signed-rank test. 31

3.3 Comparison of performance on RE. † indicates that our method KISF was

significantly better than both Naive and SCL with p < 0.05 based on the

Wilcoxon signed-rank test. 32

3.4 Comparison of performance on NER and Sentiment. † indicates that our

method KISF was significantly better than both Naive and SCL with p <

0.05. 33

4.1 Statistics of our Data Sets. 54

vi

4.2 Classification accuracies of our proposed methods with the two auxiliary

tasks on sentence-level sentiment classification. † indicates that our joint

methods are significantly better than CNN, C-Aux, C-SCL and C-mDA

with p < 0.05 based on McNemar’s paired significance test. Note that the

in-domain sentiment classification performance of LT, RT, CR, MV1 and

MV2 are respectively 0.857, 0.847, 0.853, 0.803, 0.840 (0.840 on average)

in the setting where we use each target domain’s unlabeled reviews as

training set, and the development and test sets are the same as our Domain

Adaptation setting. 59

4.3 Classification accuracies of our proposed methods with the first auxiliary

task on document-level sentiment classification. † indicates that our pro-

posed methods are significantly better than HNN, H-WN, H-SCL and H-

mDA. Note that the in-domain sentiment classification performance of D,

B, E and K are respectively 0.845, 0.843, 0.858, 0.883 (0.857 on average)

in the setting of splitting each domain’s labeled reviews into 1400/200/400

as training set, development set and test set. 60

4.4 Classification accuracies of our proposed methods with the second auxil-

iary task on document-level sentiment classification. 61

4.5 Comparison of the most useful trigrams chosen by Joint2 and by CNN on

MV2→LT. Here * denotes a “padding”, which we added at the beginning

and the end of each sentence. The domain-specific sentiment words are in

bold. 63

4.6 Examples drawn from MV2→LT and B→D whose sentiment labels are

incorrectly predicted by the baseline models (CNN and HNN) but cor-

rectly inferred by our domain adaptation models (Joint2 and DSR2). The

sentiment words specific to the target domain are in bold and italic, and

the pivot sentiment words are only in bold. 0 and 1 represent the negative

and positive sentiments. 64

vii

5.1 Statistics of Paraphrase Identification Datasets 81

5.2 Statistics of the MultiNLI Dateset . 82

5.3 A Comparison Between Different Base Models 84

5.4 The Result of Paraphrase Identification Task 85

5.5 The Classification Result of NLI Task 86

5.6 Correlation Matrices on SNLI→Fict. 88

5.7 The Performance of Online Serving. 89

6.1 Example Tweets from SemEval-18 Task 1. 92

6.2 The number of sentences in each dataset. 99

6.3 The results of different transfer learning methods by averaging ten runs

(top) and the comparison between our best model and the state-of-the-art

systems (bottom). DATN-2∗ indicates the ensemble results of ten runs.

Base† and DATN-2† denotes the average results of conducting ten-fold

cross validation on the whole dataset for fair comparison, and here for the

source and target tasks in DATN-2†, we use the same training data. For

E1, Rank1 and Rank2 are the top two systems from the official leadboard;

For E2, Rank1 and Rank2 are from [137, 136]. 100

viii

Chapter 1

Introduction

1.1 Motivation

Recent years have witnessed the explosive growth of digitized textual data, partic-

ularly user-generated contents on the Web, such as customer reviews, microblogs

and forum posts. To automatically analyze and mine the useful knowledge from the

great volume of online textual data, various kinds of natural language processing

(NLP) tasks including sentiment analysis, information extraction (IE), paraphrase

identification (PI) and question answering (QA) have received continuous attention

from both the academia and industry.

For different NLP tasks, supervised machine learning technologies, especially

deep learning approaches, have been extensively studied in the last decade. How-

ever, to obtain a well-trained model for each specific task, these supervised ap-

proaches typically require hundreds of thousands of annotated data points, such

as relation extraction [91], natural language inference [17], machine comprehen-

sion [90] and question answering [16]. But in real scenarios, such large-scale data

sets may be only available in certain well-studied domains/tasks, while for our de-

sired target domain/task, we may have little or even no annotated data.

To train a robust model for our target domain/task, a direct solution is to manu-

ally construct a well-annotated data set by domain/task experts. Nevertheless, such

1

an annotating process is generally time-consuming and costly due to its labor in-

tensive nature. By contrast, a much more attractive solution with minimal human

guidance is to borrow labeled data or useful knowledge from a related resource-rich

source domain/task to help train a robust machine learning model for the target do-

main/task, which is known as transfer learning or domain adaptation. Motivated by

this, my research centers around developing effective transfer learning techniques

to enable knowledge transfer from source to target for different NLP problems, so

that we can reach highly competitive performance in the resource-poor target do-

main/task.

The key challenge of transfer learning is that directly applying the model trained

in a resource-rich source domain/task in our desired resource-poor domain/task may

lead to a significant performance drop. Take the widely used Stanford’s natural lan-

guage inference (SNLI) data set [17] as an example. The original SNLI data set

is collected from Flickr30k image captions [127] with over 570K labeled sentence

pairs, but if we directly apply the model trained on SNLI to make predictions for

sentence pairs in the Fiction domain of their extended data set MNLI [112], the

performance will drop by 41.6 point percentages (80.6% to 47.1% in accuracy by

their CBOW model). The major reason behind this phenomenon is that the vo-

cabularies used in the source and the target domains differ a lot, which causes the

discrepancy between the two domains’ underlying distributions. As a remedy, if we

are able to find a shared feature space across domains where the source knowledge

can be easily transferred to the target, it will largely reduce the distribution gap

between domains and significantly improve the domain adaptation performance.

This is the motivation for me to explore how to effectively induce a shared feature

space between the source and the target domains/tasks (a.k.a feature-based transfer

learning) under two commonly used transfer learning settings: (1) unsupervised

transfer learning: no labeled samples from the target domain are available while

a large amount of labeled samples from the source domain are available; and (2)

supervised transfer learning: a small amount of labeled samples from the target do-

2

main/task and a large amount of labeled samples from the source domain/task are

both available.

In the literature, a myriad of transfer learning approaches have been proposed

for different NLP tasks in the two settings respectively.

Unsupervised Transfer Learning1: Most existing unsupervised domain

adaptation methods either leverage the well-known dimensionality reduction tech-

nique [12, 14, 76, 77] or apply the stacked denoising auto-encoder (SDA) [38, 21,

63, 120, 140] to automatically learn the domain-independent feature representa-

tions. However, these approaches generally suffer from the following two limita-

tions. First, most of them are computationally intensive and cannot easily scale

to large-scale data sets. Take the well-known Structural Correspondence Learning

(SCL) method [12] as an example. Its first step is to identify a set of domain-

independent features and construct thousands of binary classifiers by using remain-

ing features to predict the presence of each domain-independent feature. In order

to induce a shared representation for each instance, it further performs singular

value decomposition (SVD) on the learnt weights to obtain a low dimensional map-

ping matrix. While it has been widely used in many NLP tasks, the training of

thousands of binary classifiers in the first step will inevitably result in high com-

putational costs. Moreover, in practice, it is not easy to perform dimensionality

reduction on a large-scale data set, which limits its applications in real scenarios.

Second, most existing unsupervised domain adaptation approaches are on basis of

traditional discrete features and linear classifiers, and it is less clear how to perform

transfer learning based on the continuous word embeddings and advanced neural

network models. Although a number of studies have successfully applied various

kinds of neural network models to different NLP tasks such as sentiment classi-

fication [95, 50, 103], information extraction [95, 56, 130, 67], natural language

inference [17, 70, 51] and question answering [102, 125] to achieve promising per-

formance, most of them only focus on the standard in-domain settings while failing

1For this setting, transfer learning is the same as domain adaptation in this dissertation.

3

to pay attention to the challenging domain adaptation settings. Therefore, it would

be interesting to propose effective unsupervised domain adaptation approaches on

top of these neural network (NN) models. Motivated by these two limitations, we

aim to (1) propose a novel unsupervised domain adaptation method, which incurs

relatively low computational costs and is also suitable for large-scale data sets; (2)

and propose novel NN-based approaches that can generally derive robust feature

representations against domain shift for different NLP tasks.

Supervised Transfer Learning: Since this setting assumes to have labeled

data in both the source and the target domains/tasks, most existing supervised trans-

fer learning methods essentially adopt different multi-task learning strategies to im-

prove the model performance in the target domain/task. One line of work employs

fine-tuning strategy, where they first use the source labeled data to pre-train the

model parameters, followed by fine-tuning the parameters based on the target la-

beled data. Another line of work leverages the labeled data from source and target

to perform joint learning, where the goal is to automatically learn the shared feature

representations. Although these approaches have been shown to bring significant

improvements to the target domain/task, simple multi-task learning strategies with-

out any explicit constraints cannot guarantee that their shared feature space is really

dominated by the shared features across domains/tasks as we expect. Inspired by

such an intuition, we aim to explicitly incorporate several constraints into existing

multi-task learning frameworks, so that the shared feature space and the domain/-

task specific feature space are respectively dominated by the shared features and the

domain/task specific features.

1.2 Methodology

In the motivation section, we have pointed out that existing transfer learning so-

lutions still suffer from several major limitations. Therefore, in this section, we

will give a brief introduction of our proposed approaches for addressing these lim-

4

itations respectively. Note that the first two approaches belong to unsupervised

transfer learning, whereas the latter two approaches belong to supervised transfer

learning.

1.2.1 A Hassle-free Unsupervised Domain Adaptation Method

with Instance Similarity Features

To solve the first challenge that existing solutions to unsupervised domain adapta-

tion are either computationally expensive or unscalable in large-scale applications,

we propose a simple yet effective unsupervised domain adaptation method.

Specifically, our method first picks up a subset of unlabeled instances from the

target domain and then normalizes them to form a set of exemplar vectors. For

each instance in both the source and the target domains, these exemplar vectors are

further utilized to produce a new feature vector, where the value of each dimension

is computed by the instance’s similarity with each exemplar vector. With the new

feature vector, we finally concatenate them together with its original feature vector

to represent each source or target instance, followed by performing the main task

on this new feature space. Essentially, instead of relying on time-consuming dimen-

sionality reduction or SDA to derive the shared feature space, our method creates

a new feature space simply based on similarities between instances and exemplar

vectors. This allows our method to enjoy faster computation and robust scalability.

1.2.2 An Unsupervised Neural Domain Adaptation Method with

Auxiliary Tasks for Sentiment Classification

As mentioned in the motivation section, most existing unsupervised domain adapta-

tion methods are based on traditional linear classifiers, and how to effectively extend

them to neural network-based models is still unclear to us. On the other hand, since

the neural network architectures designed for different NLP tasks usually differ a

lot, it is next to impossible to propose a general neural domain adaptation method

5

for all NLP tasks. Therefore, we first target at sentiment classification, a classic

but important task in NLP, and propose an unsupervised neural domain adaptation

framework for this task.

In particular, we first devise two alternative auxiliary tasks inspired by SCL

method [10]: one is to predict the occurrence of both positive and negative domain-

independent words; the other is to predict the sum of sentiment scores of domain-

independent words. With the two carefully designed auxiliary tasks, we further

propose a general domain adaptation framework, and then leverage two existing

neural network architectures to jointly learn the auxiliary task and our main senti-

ment classification task under the framework in a multi-task learning fashion. Since

the auxiliary tasks are general across domains, we expect the hidden representations

corresponding to the auxiliary task to be robust in both domains, and hence improve

the cross-domain performance.

1.2.3 A Supervised Neural Domain Adaptation Method for

Retrieval-based Question Answering Systems

To encourage the shared (or domain-specific) feature space to capture more shared

(or domain-specific) features across domains, we propose a new transfer learning

framework by modelling the intra-domain and the inter-domain relationships, and

apply it to another specific task, Retrieval-based Question Answering.

Specifically, we propose a new supervised transfer learning method by explic-

itly modeling the domain relationships via a covariance matrix, which imposes a

regularization term on the weights of the output layer to uncover both the inter-

domain and intra-domain relationships. Furthermore, to make the shared represen-

tation more invariant across domains, we follow some recent work on adversarial

networks [36, 64] and introduce an adversarial loss on the shared feature space in

our method. To optimize the whole framework, we employ an alternating optimiza-

tion method, which allows us to jointly learn the parameters in the neural networks

6

and the domain relationships in an end-to-end fashion.

1.2.4 A Neural Task Adaptation Method for Improving Multi-

label Emotion Classification via Sentiment Classification

Finally, motivated by the same intuition as above, we propose another novel super-

vised transfer learning architecture to guarantee the difference between the shared

feature space and the task-specific feature space, and apply it to improve the perfor-

mance of the resource-poor multi-label emotion classification task with the help of

the resource-rich sentiment classification task.

In particular, we first propose a simple shared-private model, where we em-

ploy a shared LSTM layer to extract shared sentiment features for both sentiment

and emotion classification tasks, and a target-specific LSTM layer to extract spe-

cific emotion features that are only sensitive to our emotion classification task. To

enforce the orthogonality of the two feature spaces, we further introduce a dual at-

tention mechanism, which feeds the attention weights in one feature space as extra

inputs to compute those in the other feature space, and explicitly minimizes the

similarity between the two sets of attention weights.

1.3 Our Contributions

In this dissertation, we study feature-based transfer learning and its applications in

different natural language processing tasks, aiming to improve the model perfor-

mance in the resource-scarce domain/task with the help of rich annotations in some

related domains/tasks. The main contributions of this dissertation can be summa-

rized as follows:

Firstly, we propose a simple yet effective unsupervised domain adaptation

method [128], which reduces high computational costs and can easily scale to

large-scale applications. We theoretically show that our method is able to assign

7

appropriate weights to target-specific features, which co-occur with useful domain-

independent features. Our extensive evaluations on four NLP tasks show that our

method can generally outperform several baselines including the widely used SCL.

Secondly, we develop an unsupervised neural network-based domain adapta-

tion framework together with two novel auxiliary tasks for sentiment classification,

and respectively apply them to sentence-level sentiment classification [129] and

document-level sentiment classification [131] based on two state-of-the-art neural

network models. We conduct a series of experiments to examine the effectiveness

of our proposed framework.

Thirdly, we propose a supervised neural domain adaptation method for retrieval-

based question answering systems, which can explicitly capture the inter-domain

and intra-domain relationships. Both intrinsic and extrinsic evaluation demonstrate

that our approach method can efficiently and effectively improve the model perfor-

mance in the resource-poor target domain [133].

Finally, we design a dual attention transfer learning network, which is expected

to capture the shared features and the target-specific features in two different feature

spaces. Experiments on both English and Chinese data sets show that the proposed

architecture is able to bring significant improvements to the resource-poor emotion

classification task [132].

1.4 Organization

As illustrated by Figure 1.1, the remaining part in this dissertation is organized

as follows. We first conduct a comprehensive review of related work about transfer

learning in Chapter 2. In Chapter 3, we present our unsupervised domain adaptation

algorithm based on instance similarity features. Next, Chapter 4 introduces our

neural unsupervised domain adaptation framework followed by two specific neural

architectures for both sentence-level and document-level sentiment classification.

Furthermore, we detail our supervised transfer learning framework by explicitly

8

Deep Learning
Methods

Traditional
Methods

Deep Learning
Methods

Traditional
Methods

Transfer Learning (TL)

Unsupervised TL Supervised TL

A Neural DA
Framework with
Auxiliary Tasks

 Section 4

A General DA Method
with instance

similarity features
Section 3

ACL’15
Spam Filtering, NER,
Relation Extraction

EMNLP’16 & IJCNLP’17
 Sentiment

Classification

WSDM’18
Paraphrase Identification/

Natural Language Inference

A Neural DA Framework
for Learning Domain

Relationships
Section 5

Improving Emotion
Classification with

Sentiment Classification
Section 6

EMNLP’18
Multi-Label Emotion

Classification

Figure 1.1: The Organization of the Topics in this Thesis.

modelling domain relationships in Chapter 5. Moreover, Chapter 6 describes our

dual attention-based supervised transfer learning network. Finally, we conclude

this dissertation and discuss our future work in Chapter 7.

9

Chapter 2

Literature Review

In this chapter, we will give a comprehensive literature review over existing studies

related to this dissertation.

Before reviewing related work, let us first introduce the necessary notation.

Without losing generality, we assume a binary classification problem where each

input is represented as a feature vector x from an input vector space X and the

output is a label y ∈ {0, 1}. Our goal is to learn an optimal mapping function

f ∗ to map the input variable X to the output variable Y . This assumption is gen-

eral because many NLP tasks such as text categorization, named entity recognition

(NER), relation extraction (RE), natural language inference (NLI) and answer se-

lection (AS) can be cast into classification problems and our discussion below can

be easily extended to multi-class classification settings.

Next, we will introduce existing transfer learning methods based on two com-

mon transfer learning settings: unsupervised transfer learning and supervised trans-

fer learning, where the key difference is that the latter setting assumes to have a

small number of labeled target data but the former one assumes that no labeled

target data are available.

10

2.1 Unsupervised Transfer Learning

Unsupervised Transfer Learning, also referred to as unsupervised domain adap-

tation in this dissertation, assumes that we only have enough labeled data from

a source domain but may also have a large amount of unlabeled data from both

the source and the target domains [12]. To facilitate our discussion, let us use

Ds = {(xs
i, y

s
i)}Ni=1 and Ds,u = {xs,u

j }N
s,u

j=1 to represent both the labeled and the

unlabeled instances from a source domain, where Xs is defined to be the subspace

of X spanned by all source domain input vectors. We further use Dt,u = {xt,u
j }N

t,u

j=1

to denote the unlabeled instances from a target domain, and Xt to denote the sub-

space of all target domain input vectors. Besides, we also use Dt = {(xt
i, y

t
i)}N

t

i=1

to denote the target instances in the test set, and assume that the output label ys and

yt are from the same label set, i.e., the target task is the same as the source task.

The goal of unsupervised domain adaptation is to utilize Ds, Ds,u and Dt,u to train a

robust classifier, which can perform well on Dt.

To achieve this goal, let us first try to understand why a well-trained classifier

on Ds cannot perform well on Dt. As analyzed in [47], the essential reason behind

the performance drop in this domain adaptation setting is that the joint distribution

of source domain Ps(X, Y) is different from that of target domain Pt(X, Y), i.e.,

Ps(X, Y) 6= Pt(X, Y). Since no labeled target instance is available in this setting,

it is very challenging to directly estimate Pt(X, Y). Following [47], we can slightly

simplify the problem by decomposingP(X, Y) intoP(X)P(Y |X), and explain the

difference between Ps(X, Y) and Pt(X, Y) from two perspectives:

Feature Mismatch: In this case, we assume Ps(X) = Pt(X) so that the dif-

ference comes from Ps(Y |X) 6= Pt(Y |X), which is essentially caused by the dif-

ference between two domains’ input subspaces, i.e., Xs 6= Xt. Hence, in this thesis,

we call it as feature mismatch.

Instance Mismatch: In this case, we assume Ps(Y |X) = Pt(Y |X) while the

marginal distribution of two domains are different from each other, i.e., Ps(X) 6=

11

Pt(X). The reason for Ps(X) 6= Pt(X) is intuitive since some representative in-

stances in the source domain may be not so important in the target domain, and vice

verse. Therefore, we call it as instance mismatch hereafter.

These two kinds of assumptions naturally lead us to two kinds of solutions to

domain adaptation problems: feature-based adaptation and instance-based adap-

tation. In fact, most existing domain adaptation studies belong to these two

branches [78, 65], and thus we will review previous works from the two perspec-

tives respectively. Note that there is another line of work called self-labelling, which

focuses on labelling the unlabeled target instances Dt,u by using the initial model

trained on the labeled source instances Ds, and then iteratively adding the instances

with high confidence into the training set via self-training [3, 26]. Since these stud-

ies are quite similar to semi-supervised learning and out of the scope of this thesis,

we will not review them here.

2.1.1 Feature-Based Approaches

Feature-based domain adaptation assumes that the core reason leading to the domain

difference is Xs 6= Xt. Therefore, the key solution to such a problem is to project

Xs and Xt into a shared feature space Xc, so that all instances in the source and the

target domains can be represented in the same feature space Xc.

To solve this problem, one possible solution is to make use of Ds,u and Dt,u to

learn a transformation function φ(x) in an unsupervised learning manner. After the

transformation, each source input vector xs and target input vector xt can be further

represented by φ(xs) and φ(xt), which are in the same space Xc.

In the last decade, a large amount of domain adaptation approaches have been

proposed to learn the transformation function. Most of them are based on tradi-

tional discrete one-hot representations and linear classifiers, while more recent ex-

plorations are based on continuous word vectors and non-linear deep learning clas-

sifiers. Accordingly, we classify them into two groups in the following: traditional

12

methods and deep learning methods.

Traditional Methods

For traditional feature-based domain adaptation methods, most of them can be gen-

erally categorized into the following three clusters.

One line of work focuses on leveraging the co-occurrences between domain-

specific and domain-independent features followed by dimensionality reduction to

learn φ(x). Among them, the most representative work is the Structural Correspon-

dence Learning (SCL) method [12]. SCL first chooses a set of pivot features based

on either term frequency or feature selection methods like mutual information, de-

noted by D. Then, it constructs |D| binary classifiers to predict the presence of

each pivot feature based on all the non-pivot features, denoted by V − D, where

V refers to the whole feature set. Next, the learnt weights of all the classifiers are

arranged into a matrix W ∈ R|D|×|V−D|, and the top K left singular vectors are se-

lected via Singular Value Decomposition (SVD) to form a dimension-reduced ma-

trix θ ∈ RK×|V−D|. Finally, each source and target instance is multiplied with θ to

obtain a new K-dimensional feature vector. That is, the transformation function is

φ(x) = θx, where x ∈ R|V−D| means that each instance is only represented by non-

pivot features. Later, on the basis of the learning framework of SCL, Pan et al. [76]

proposed to construct a bipartite graph by connecting the pivot and non-pivot fea-

tures through their co-occurrence statistics, followed by using spectral clustering to

learn the dimension-reduced matrix θ as in SCL. Almost at the same time, Pan et al.

proposed another dimensionality reduction-based approach named transfer compo-

nent analysis (TCA) to achieve the same goal [77]. Since these works only focused

on inducing a shared feature space without bearing the target task in mind, the learnt

feature space Xc may not be sensitive and critical for the target task. Based on such

an intuition, a more recent study [14] proposed to induce a task-sensitive embedding

space across domains by encoding the label of target tasks into the learning phase.

In addition, denoising auto-encoders have been extensively applied to learn

13

φ(x), since the representations learned through multi-layer neural networks are ro-

bust against noise during domain adaptation. The initial application of this idea

is to directly employ stacked denoising auto-encoders (SDA) by reconstructing the

original features from data that are corrupted with noise [38], and taking one of

the hidden layer out as φ(x) for each instance x. Later, to reduce the computa-

tional cost and scale to high-dimensional features, Chen et al. [21] proposed to

analytically marginalize over the noise during SDA training, and only reconstruct

the domain-independent features. Based on the two works mentioned above, Yang

et al. [120] further showed that their proposed structured dropout noise strategy

can dramatically improve the efficiency without sacrificing the accuracy. Recently,

Zhou et al. [138] explored the possibility of transferring between both domains by

constraining the distribution consistency with a linear reconstruction.

Apart from these two lines of research, there is another line of work which aims

to directly derive target domain-specific features to address the feature mismatch

problem, but most of them are designed for sentiment analysis, which limits their

generality. In particular, Bollegala et al. [15] first generated a sentiment-sensitive

thesaurus including words with similar sentiment polarities from both the source

and the target domains, and then appended related target specific features to the

original feature space based on the thesaurus. Li et al. [58] proposed a bootstrapping

approach by exploiting the relationship between topic and sentiment words across

domains to extract lexicons in the target domain.

However, the first line of work is generally based on various dimensionality

reduction techniques, and therefore unscalable in large-scale data sets; the second

line of work requires high computational cost due to the training of multi-layer auto-

encoders; and the third line of work is only limited to the specific cross-domain sen-

timent classification task. Different from all existing approaches reviewed above,

we propose a simple domain adaptation method based on instance similarity fea-

tures in Chapter 3, which is fast, scalable and general for any NLP tasks.

14

Deep Learning Methods

Although different deep learning methods have been well applied in standard in-

domain setting, the research on developing deep learning-based domain adaptation

methods is relatively scarce.

One line of work is on top of the recent popular word embedding methods (e.g.,

the skip-gram method in [66]), which aims to learn a cross-domain representation

for each feature based on predicting its neighboring features. In particular, Bol-

legala et al. [13] and Yang et el. [121] first selected a set of pivot features as in

SCL, and then proposed to use pivots to predict their co-occurring non-pivots, with

a constraint that the learnt feature embeddings for the same pivot feature in both

domains are close to each other. Different from this line of work which targets at

learning general word or feature representations, we proposed to derive general sen-

tence embeddings via a multi-layer neural network as in Chapter 4. But their learnt

word embeddings can be used to initialize our neural network architecture.

In addition, another line of work [36, 62] aims to utilize the recent hot adversar-

ial neural network to learn a shared sentence embedding for each sentence in both

domains, which is closest to our work in Chapter 4. Specifically, they incorporate

a domain classifier on top of the last hidden layer, and introduce an adversarial loss

to make the domain classifier can not distinguish between the source and the tar-

get domains on the last hidden layer. Since the domain classifier is not necessarily

related to the main sentiment classification task, it may result in the learnt shared

representations are task insensitive. Nevertheless, our proposed methods in Chap-

ter 4 for learning shared representations are different from them. In particular, we

manually designed two auxiliary tasks, which are closely related to the main task

and ensure that the induced embeddings are task-sensitive.

15

2.1.2 Instance-Based Approaches

Instance-based domain adaptation assumes that Ps(X) 6= Pt(X) is the intrinsic

reason under the discrepancy between two domains’ joint distributions. Therefore,

the key challenge for addressing this problem is how to transform the marginal

distribution of source domain Ps(X) so as to approximate the marginal distribution

of target domain Pt(X), which is also known as the covariate shift problem [93].

To tackle this challenge, one possible solution is to mine from the source la-

beled data to find the instances that are similar to the marginal distribution of the

target domain, which is usually called as Instance Selection and has been applied

in different NLP tasks. Specifically, Axelrod et al. [4] proposed to select target-

domain-similar instances from the source domain for machine translation by rank-

ing source sentences with respect to target sentences based on simple cross-entropy.

Later, Xia et al. [114] utilized Positive and unlabeled learning (a.k.a, PU Learning)

for cross-domain sentiment classification, which essentially assigns an in-target-

domain probability to each source instance via PU Learning, and only uses instances

with high in-target-domain probability for model training.

Instead of Instance Selection, a more elegant way to solve the covariate shift

problem is usually referred to as Instance Weighting, i.e., assigning a new weight to

each source instance so as to approximate the target domain distribution Pt(X). Let

us use P̂t(X) = w(X)Ps(X) to denote the approximated target distribution. The

key challenge of this line of work is how to estimate the instance weight or instance

importance w(X) = Pt(X)
Ps(X)

, which is also known as density ration estimation (DRE)

problem. In machine learning community, the DRE problem has been well studied.

Shimodaira et at. [93] and Huang et at. [45] respectively proposed to use kernel den-

sity estimation and kernel mean matching to directly produce the importance weight

w(xs
i) for each source instance xs

i. Later, due to the two methods’ limited scala-

bility in cross validation framework, Sugiyama et al. [97] and Kanamori et al. [48]

further proposed to respectively minimize the Kullback-Leibler (KL) divergence

16

and least square distance between the approximated distribution P̂t(X) and the real

target distribution Pt(X) by estimating w(X) with a linear function in a Gaussian

kernel space. However, all these instance weighting methods are limited to low-

dimensional feature space, which is hard to be applied into many NLP tasks with

high-dimensional feature space. To extend these instance weighting approaches to

text classification, Xia et al. [116] first used a feature selection method to choose

an effective subset of original features for domain adaptation, and then proposed to

minimize the statistical distance between P̂t(X) and Pt(X) following the instance

weighting framework in [97].

2.2 Supervised Transfer Learning

Different from unsupervised transfer learning, supervised transfer learning assumes

that we not only have sufficient labeled data from a source domain/task but also have

a little labeled data from a target domain/task [78]. To be consistent with previous

notations, we use Ds = {(xs
i, y

s
i)}Ni=1 and Dt,l = {(xt,l

j , y
t,l
j)}N t,l

j=1 to represent them

respectively. Due to the availability of the target data, in this setting, the output

labels ys and yt,l are unnecessarily from the same label set, i.e., the source task and

the target task can be different. Besides, we may also have some unlabeled data

from both domains, which are still denoted by Ds,u and Dt,u.

Similar to unsupervised transfer learning, we will review previous work accord-

ing to feature-based and instance-based approaches under this setting.

2.2.1 Feature-Based Approaches

Recall that the core idea behind feature-based transfer learning methods is to find

a latent shared feature space Xc, where the model trained on Ds can be well trans-

ferred to the target domain/task.

17

Traditional Methods

To achieve this goal, Daumé III et al. [28] first proposed an easy domain adaptation

(EA) method by simply duplicating the original feature spaceXs∪Xt by three times

to form the new feature space Xc, followed by training a single model on such an

augmented feature space based on both Ds and Dt,l. Later, they extended EA to a

semi-supervised version by incorporating the unlabeled target data Dt,u, which is

used as a regularizer to make the model trained on Ds and the model trained on Dt,l

become closer. More recently, Xiao et al. [117] designed a kernel matching method

to learn the shared feature space Xc by simultaneously learning a classifier on Ds

and mapping all the target instances Dt,l ∪Dt,u to a subset of Ds.

Deep Learning Methods

With the recent advances of deep learning, different neural network (NN)-based

supervised transfer learning frameworks have been proposed for image process-

ing [126] and speech recognition [107] as well as NLP applications [70, 122, 64].

Since we have both labeled source instances Ds and labeled target instances Dt,l, a

simple but widely used framework is referred to as fine-tuning, which first uses the

parameters of the well-trained models on Ds to initialize the model parameters of

the target domain/task, and then fine tune the parameters based on Dt,l [126, 70].

Another line of work can be referred to as multi-task feature learning, which bears

the same intuition behind the traditional feature-based methods as mentioned above.

Among this line of work, one typical framework [70, 122] is to simply use a shared

NN to learn a shared feature space Xc but with two different output layers respec-

tively corresponding to Ds and Dt,l, which is usually referred to as fully-shared

framework. More recently, another representative framework [64] is proposed to

employ a shared NN and two domain/task specific NNs to respectively derive a

shared feature space Xc and two domain/task specific feature space, which is re-

ferred to as specific-shared framework for short.

18

Comparing traditional and deep learning methods for supervised transfer learn-

ing, we are more interested in the NN-based specific-shared framework since it

has been shown to achieve the state-of-the-art performance on several NLP tasks

like cross-domain text classification. In particular, motivated by the observation

that the specific-shared framework fails to consider the domain relationship, we

focus on proposing a novel model by jointly learning the shared feature representa-

tions and domain relationships in a unified framework. Moreover, inspired by the

recent success of applying adversarial networks into unsupervised domain adapta-

tion [36, 101] and multi-task learning [64], we also aim to incorporate the adver-

sarial training into our model in order to learn a more robust shared feature space

across domains/tasks.

2.2.2 Instance-Based Approaches

Since the research on instance-based supervised transfer learning is relatively lim-

ited, especially for NLP tasks, we will briefly go through some representative work

in this subsection.

As a classic work for Instance Selection, Jiang et al. [47] proposed an intuitive

approach to select a subset of Ds that are similar to instances in the target domain,

where they first use the model trained on Dt,l to predict all instances in Ds, and

then filter out the top K wrongly predicted instances. By doing so, the remaining

instances in Ds would have a higher similarity to target instances, and therefore

are expected to be useful for predicting the label of the test set Dt. On the other

hand, for Instance Weighting, Dai et al. [27] extended the well-known Adaboost

method to domain adaptation problems by assigning relatively larger weights to

those mistakenly predicted target instances in Dt,l and relatively smaller weights

to Ds in each iteration. Because the instance weighting strategy proposed in [27]

did not bear the density ratio problem in mind, Bickel et al. [9] further devised

a generative model to estimate the parameters in both the density ratio and final

19

discriminative classifier by leveraging a joint MAP hypothesis.

However, all the instance-based transfer learning methods reviewed in Sec-

tion 2.1.2 and Section 2.2.2 are still based on traditional methods with discrete

features and linear classifiers. It will be interesting to extend some representative

methods to deep learning methods by verifying their effectiveness, and we would

like to leave it to our future work.

20

Part I

Unsupervised Transfer Learning

21

Chapter 3

A Hassle-Free Unsupervised Domain

Adaptation Method Using Instance

Similarity Features

In this chapter, we present a simple yet effective unsupervised domain adaptation

method that can be generally applied for different NLP tasks. Our method uses

unlabeled target domain instances to induce a set of instance similarity features.

These features are then combined with the original features to represent labeled

source domain instances. Using four NLP tasks, we show that our method gener-

ally outperforms a few baselines, including SCL, an existing unsupervised domain

adaptation method widely used in NLP. More importantly, our method is very easy

to implement and incurs much less computational cost than SCL.

3.1 Introduction

Domain adaptation aims to use labeled data from a source domain to help build a

system for a target domain, possibly with a small amount of labeled data from the

target domain. The problem arises when the target domain has a different data distri-

bution from the source domain, which is often the case. In NLP, domain adaptation

22

has been well studied in recent years. Existing work has proposed both techniques

designed for specific NLP tasks [20, 29, 119, 85, 44, 73, 74] and general approaches

applicable to different tasks [12, 28, 47, 33, 104]. With the recent trend of applying

deep learning in NLP, deep learning-based domain adaptation methods [38, 21, 120]

have also been adopted for NLP tasks [121].

As introduced in Chapter 2, there are generally two settings of unsupervised

transfer learning (or domain adaptation). Supervised domain adaptation refers to

the setting when a small amount of labeled target data is available, and unsuper-

vised domain adaptation refers to the setting when no such data is available during

training. In both settings, unlabeled target domain data can be used.

Although many domain adaptation methods have been proposed, for practition-

ers who wish to avoid implementing or tuning sophisticated or computationally

expensive methods due to either lack of enough machine learning background or

limited resources, simple approaches are often more attractive. A notable exam-

ple is the frustratingly easy domain adaptation method proposed by [28], which

simply augments the feature space by duplicating features in a clever way. How-

ever, this method is only suitable for supervised domain adaptation. A later semi-

supervised version of this easy adaptation method uses unlabeled data from the

target domain [30], but it still requires some labeled data from the target domain. In

this chapter, we propose a general unsupervised domain adaptation method that is

almost equally hassle-free but does not use any labeled target data.

Our method uses a set of unlabeled target instances to induce a new feature

space, which is then combined with the original feature space. We explain analyti-

cally why the new feature space may help domain adaptation. Using a few different

NLP tasks, we then empirically show that our method can indeed learn a better clas-

sifier for the target domain than a few baselines. In particular, our method performs

consistently better than or competitively with Structural Correspondence Learning

(SCL) [12], a well-known unsupervised domain adaptation method in NLP. Further-

more, compared with SCL and other advanced methods such as the marginalized

23

structured dropout method [120] and a recent feature embedding method [121], our

method is much easier to implement.

In summary, our main contribution is a simple, effective and theoretically justi-

fiable unsupervised domain adaptation method for NLP problems.

3.2 Adaptation with Similarity Features

Before presenting our method, we first recall the necessary notation as introduced in

Chapter 2. To facilitate our discussion, we consider a binary classification problem,

where each input is represented as a feature vector x and y ∈ {0, 1} is the true label

of x. Besides, we have a set of labeled instances from a source domain, denoted

by Ds = {(xs
i, y

s
i)}Ni=1. We also have a set of unlabeled instances from a target

domain, denoted by Dt = {xt
j}Mj=1. We assume a general setting of learning a

linear classifier, which is essentially a weight vector w such that x is labeled as 1 if

w>x ≥ 0.1

A naive method is to simply learn a classifier fromDs. The goal of unsupervised

domain adaptation is to make use of both Ds and Dt to learn a good w for the target

domain. It has to be assumed that the source and the target domains are similar

enough such that adaptation is possible.

3.2.1 The Method

Our method works as follows. We first randomly select a subset of target instances

from Dt and normalize them. We refer to the resulting vectors as exemplar vectors,

denoted by E = {e(k)}Kk=1. Next, we transform each source instance x into a new

feature vector by computing its similarity with each e(k), as defined below:

g(x) = [s(x, e(1)), . . . , s(x, e(K))]>, (3.1)

1A bias feature that is always set to be 1 can be added to allow a non-zero threshold.

24

where > indicates transpose and s(x,x′) is a similarity function between x and x′.

In our work we use dot product as s.2 Once each labeled source domain instance is

transformed into aK-dimensional vector by Equation 3.1, we can append this vector

to the original feature vector of the source instance and use the combined feature

vectors of all labeled source instances to train a classifier. To apply this classifier

to the target domain, each target instance also needs to add this K-dimensional

induced feature vector.

It is worth noting that the exemplar vectors are randomly chosen from the avail-

able target instances and no special trick is needed. Overall, the method is fairly

easy to implement, and yet as we will see in Section 4.5, it performs surprisingly

well. We also want to point out that our instance similarity features bear strong sim-

ilarity to what was proposed by [98], but their work addresses a completely different

problem and we developed our method independently of their work.

3.2.2 Justification

In this section, we provide some intuitive justification for our method without any

theoretical proof.

Learning in the Target Subspace

Blitzer et al. [11] pointed out that the hope of unsupervised domain adaptation is

to “couple” the learning of weights for target-specific features with that of common

features. We show our induced feature representation is exactly doing this.

First, we review the claim by [11]. We note that although the input vector space

X is typically high-dimensional for NLP tasks, the actual space where input vec-

tors lie can have a lower dimension because of the strong feature dependence we

observe with NLP tasks. For example, binary features defined from the same fea-

2We find that normalizing the exemplar vectors results in better performance empirically. On the
other hand, if we normalize both the exemplar vectors and each instance x, i.e. if we use cosine
similarity as s, the performance is similar to not normalizing x.

25

ture template such as the previous word are mutually exclusive. Furthermore, the

actual low-dimensional spaces for the source and the target domains are usually

different because of domain-specific features and distributional difference between

the domains. Recall that in Chapter 2, we define subspace Xs to be the (lowest di-

mensional) subspace of X spanned by all source domain input vectors. Similarly, a

subspaceXt can be defined. DefineXs,t = Xs
⋂
Xt, the shared subspace between the

two domains. Define Xs,⊥ to be the subspace that is orthogonal to Xs,t but together

with Xs,t spans Xs, that is, Xs,⊥ + Xs,t = Xs. Similarly we can define X⊥,t. Essen-

tially Xs,t, Xs,⊥ and X⊥,t are the shared subspace and the domain-specific subspaces,

and they are mutually orthogonal.

We can project any input vector x into the three subspaces defined above as

follows:

x = xs,t + xs,⊥ + x⊥,t.

Similarly, any linear classifier w can be decomposed into ws,t, ws,⊥ and w⊥,t, and

w>x = w>s,txs,t + w>s,⊥xs,⊥ + w>⊥,tx⊥,t.

For a naive method that simply learns w from Ds, the learned component w⊥,t will

be 0, because the component x⊥,t of any source instance is 0, and therefore the

training error would not be reduced by any non-zero w⊥,t. Moreover, any non-zero

ws,⊥ learned from Ds would not be useful for the target domain because for all

target instances we have xs,⊥ = 0. So for a w learned from Ds, only its component

ws,t is useful for domain transfer.

Blitzer et al. [11] argues that with unlabeled target instances, we can hope to

“couple” the learning of w⊥,t with that of ws,t. We show that if we use only our

induced feature representation without appending it to the original feature vector,

we can achieve this. We first define a matrix ME whose column vectors are the

exemplar vectors from E . Then g(x) can be rewritten as M>
E x. Let w′ denote a

26

linear classifier learned from the transformed labeled data. w′ makes prediction

based on w′>M>
E x, which is the same as (MEw

′)>x. This shows that the learned

classifier w′ for the induced features is equivalent to a linear classifier w = MEw
′

for the original features.

It is not hard to see thatMEw′ is essentially
∑

k w
′
ke

(k), i.e. a linear combination

of vectors in E . Because e(k) comes from Xt, we can write e(k) = e
(k)
s,t + e

(k)
⊥,t.

Therefore we have

w =
∑
k

w′ke
(k)
s,t︸ ︷︷ ︸

ws,t

+
∑
k

w′ke
(k)
⊥,t︸ ︷︷ ︸

w⊥,t

.

There are two things to note from the formula above. (1) The learned classifier w

does not have any component in the subspace Xs,⊥, which is good because such a

component would not be useful for the target domain. (2) The learned w⊥,t will

unlikely be zero because its learning is “coupled” with the learning of ws,t through

w′. In effect, we pick up target-specific features that correlate with useful common

features.

In practice, however, we need to append the induced features to the original fea-

tures to achieve good adaptation results. One may find this counter-intuitive because

this results in an expanded instead of restricted hypothesis space. Our explanation is

that because of the typical L2 regularizer used during training, there is an incentive

to shift the weight mass to the additional induced features. The need to combine

the induced features with original features was also reported in previous domain

adaptation work such as SCL [12] and marginalized denoising autoencoders [21].

Reduction of Domain Divergence

Another theory on domain adaptation developed by [8] essentially states that we

should use a hypothesis space that can achieve low error on the source domain while

at the same time making it hard to separate source and target instances. If we use

only our induced features, then Xs,⊥ is excluded from the hypothesis space. This is

27

Features ε̂s domain separation error ε̂t

Original 0.000 0.011 0.283
ISF- 0.120 0.129 0.315
ISF 0.006 0.062 0.254

Table 3.1: Three errors of different feature representations on a spam filtering task. K is
200 for ISF- and ISF. We expect a low ε̂t when ε̂s is low and domain separation error is high.

likely to make it harder to distinguish source and target instances. To verify this,

in Table 3.1 we show the following errors based on three feature representations:

(1) The training error on the source domain (ε̂s). (2) The classification error when

we train a classifier to separate source and target instances. (3) The error on the

target domain using the classifier trained from the source domain (ε̂t). ISF- means

only our induced instance similarity features are used while ISF uses combined

feature vectors. The results show that ISF achieves relatively low ε̂s and increases

the domain separation error. These two factors lead to a reduction in ε̂t.

Difference from EA++

The easy domain adaptation method EA proposed by [28] has later been extended to

a semi-supervised version EA++ [30], where unlabeled data from the target domain

is also used. Theoretical justifications for both EA and EA++ are given by [54].

Here we briefly discuss how our method is different from EA++ in terms of using

unlabeled data. In both EA and EA++, since labeled target data is available, the

algorithms still learn two classifiers, one for each domain. In our algorithm, we

only learn a single classifier using labeled data from the source domain. In EA++,

unlabeled target data is used to construct a regularizer that brings the two classifiers

of the two domains closer. Specifically, the regularizer defines a penalty if the source

classifier and the target classifier make different predictions on an unlabeled target

instance. However, with this regularizer, EA++ does not strictly restrict either the

source classifier or the target classifier to lie in the target subspace Xt. In contrast,

as we have pointed out above, when only the induced features are used, our method

leverages the unlabeled target instances to force the learned classifier to lie in Xt.

28

3.2.3 Exemplar Vectors Selection

Until now, all the exemplar vectors in our method are randomly chosen from the

target instances, and one important assumption we make for these exemplar vectors

is that they contain some target-specific features. However, this assumption cannot

be guaranteed to be satisfied by simply choosing random instances from the target

domain. For example, in the extreme case, if all the chosen instances did not con-

tain any target-specific features but only common features, i.e., x⊥,t = 0, then our

method is not able to learn an appropriate weight vector for target-specific features.

Therefore, we argue that random selection of exemplar vectors may lead to two po-

tential limitations: (1) it is possible to choose some “poor” exemplar vectors that

may only contain common features; and (2) the result of our method might be rel-

atively unstable, since it is highly dependent on the proportion of “poor” exemplar

vectors.

To solve these two limitations, we further propose to apply a clustering approach

to cluster all the target instances into K clusters, and then treat the K cluster cen-

troids as our exemplar vectors. Specifically, we first employ the well-known K-

Means clustering algorithm [49] to perform clustering on the available target in-

stances, where Euclidean distance is used to measure the instance similarity. Next,

the resulting K cluster centroids are utilized to form our exemplar vectors:

E = {c(k)}Kk=1,

where c(k) refers to the centroid of the k-th cluster. Finally, we still use Eqn. (3.1)

to derive the K-dimensional vector for each source and target instance.

3.3 Experiments

In this section we use a few NLP tasks to demonstrate the effectiveness of our

method.

29

3.3.1 Tasks and Data Sets

We consider the following NLP tasks.

Personalized Spam Filtering (Spam): The data set comes from ECML/PKDD

2006 discovery challenge. The goal is to adapt a spam filter trained on a common

pool of 4000 labeled emails (i.e., u∗) to three individual users’ personal inboxes,

each containing 2500 emails (i.e., u00, u01 and u02). We use bag-of-word features

for this task, and we report classification accuracy.

Relation Extraction (RE): We use the ACE2005 data where the annotated docu-

ments are from several different sources such as broadcast news and conversational

telephone speech. We report the F1 scores of identifying the 7 major relation types.

We use standard features including entity types, entity head words, contextual words

and Part of Speech Tags of head words and contextual words. Note that in this the-

sis, for simplicity, we remove syntactic features derived from both constituency and

dependency parse trees, which have been used in our original paper.

Gene Name Recognition (NER): The data set comes from BioCreAtIvE Task

1B [40]. It contains three sets of Medline abstracts with labeled gene names. Each

set corresponds to a single species (fly, mouse or yeast). We consider domain adap-

tation from one species to another. We use standard NER features including words,

POS tags, prefixes/suffixes and contextual features. We report F1 scores for this

task.

Sentiment Classification (Sentiment): We employ the benchmark data set, which

contains four different domains of Amazon product review, i.e., Book (B), DVD (D),

Electronics (E) and Kitchen (K), released by [10] for experiments. We use unigrams

and bigrams with a frequency of at least 5 as features for this task.

3.3.2 Methods for Comparison

Naive uses the original features.

SCL is our implementation of Structural Correspondence Learning [12]. After tun-

30

Method Spam

u00 u01 u02 Average

Naive 0.680 0.715 0.843 0.746
SCL 0.731 0.753 0.837 0.774
ISF 0.749 0.764 0.892 0.802†

KISF 0.759 0.789 0.903 0.817†

Table 3.2: Comparison of performance on Spam. For each source-target pair of each task,
the performance shown is the average of 5-fold cross validation. We also report the overall
average performance for each task. We tested statistical significance only for the overall
average performance and found that ISF and KISF were significantly better than both Naive
and SCL with p < 0.05 (indicated by †) based on the Wilcoxon signed-rank test.

ing the hyperparameters, we set the number of induced features to 25. For pivot

features, we follow the setting used by [12] and select the features with a term fre-

quency more than 50 in both domains.

ISF is our method using instance similarity features by randomly selecting target

instances as our exemplar vectors. We first transform each training instance to a

K-dimensional vector according to Eqn. (3.1) and then append the vector to the

original vector.

KISF is a modified version of ISF, where we choose the centroids of K clusters

from the K-Means algorithm as the exemplar vectors, as described in Section 3.2.3.

For all the three NLP tasks and the methods above that we compare, we train

linear classifiers with LibLinear3 and use its default hyperparameters4.

3.3.3 Results

In Table 3.2, Table 3.3 and Table 3.4, we show the comparison between our two

methods and the baseline approaches on the four tasks respectively. For both ISF

and KISF, the parameter K is set to 100 for Spam, 300 for Relation, 1000 for NER

and 500 for Sentiment after tuning. As we can see from the table, SCL can improve

3http://www.csie.ntu.edu.tw/cjlin/liblinear/
4Note that in our original paper, we employ maximum entropy classification algorithm with

L2 regularization to train a classifier, and use the L-BFGS optimization algorithm to optimize our
objective function. Therefore, the results reported in this thesis is slightly different from those in our
original paper.

31

Method Relation

bc→bn bc→cts bc→nw bc→un bc→wl bn→bc bn→cts bn→nw

Naive 0.412 0.324 0.431 0.344 0.389 0.520 0.425 0.480
SCL 0.430 0.328 0.446 0.348 0.391 0.526 0.402 0.481
ISF 0.432 0.336 0.448 0.370 0.404 0.531 0.427 0.485
KISF 0.447 0.333 0.451 0.380 0.408 0.547 0.429 0.490

bn→un bn→wl cts→bc cts→bn cts→nw cts→un cts→wl nw→bc

Naive 0.443 0.453 0.322 0.307 0.265 0.379 0.327 0.468
SCL 0.454 0.460 0.366 0.316 0.291 0.380 0.333 0.470
ISF 0.453 0.460 0.361 0.327 0.291 0.403 0.347 0.481
KISF 0.459 0.465 0.387 0.336 0.294 0.410 0.353 0.491

nw→bn nw→cts nw→un nw→wl un→bc un→bn un→cts un→nw

Naive 0.406 0.305 0.341 0.427 0.311 0.315 0.374 0.303
SCL 0.420 0.334 0.369 0.431 0.346 0.349 0.388 0.314
ISF 0.421 0.320 0.358 0.437 0.349 0.347 0.382 0.328
KISF 0.430 0.319 0.369 0.437 0.374 0.361 0.380 0.339

un→wl wl→bc wl→bn wl→cts wl→nw wl→un Average

Naive 0.317 0.296 0.253 0.213 0.324 0.211 0.356
SCL 0.304 0.335 0.303 0.227 0.353 0.224 0.371
ISF 0.341 0.328 0.282 0.221 0.347 0.236 0.375
KISF 0.356 0.340 0.299 0.239 0.362 0.246 0.384†

Table 3.3: Comparison of performance on RE. † indicates that our method KISF was
significantly better than both Naive and SCL with p < 0.05 based on the Wilcoxon signed-
rank test.

the performance in most settings for all three tasks, which confirms the general

effectiveness of this method. For our method ISF, we can see that on average it out-

performs Naive on all the tasks, and SCL on the first three tasks. This shows that our

method is competitive despite its simplicity. Moreover, we can further observe that

by using the cluster centroids as exemplar vectors, it can bring significant improve-

ments over our ISF method in all the four tasks. When we zoom into the different

source-target domain pairs of the four tasks, we can see that KISF can significantly

outperform Naive in almost all the cases, and SCL for most of the cases. Besides, it

is also worth pointing out that SCL incurs much more computational cost than ISF

and KISF.

32

Method NER

f→m f→y m→f m→y y→f y→m Average

Naive 0.336 0.406 0.131 0.536 0.063 0.347 0.303
SCL 0.334 0.426 0.135 0.537 0.063 0.346 0.307
ISF 0.347 0.424 0.141 0.549 0.064 0.351 0.313
KISF 0.351 0.427 0.147 0.554 0.065 0.349 0.316†

Method Sentiment

B→D B→E B→K D→B D→E D→K E→B

Naive 0.776 0.710 0.728 0.751 0.715 0.729 0.692
SCL 0.794 0.723 0.750 0.771 0.727 0.756 0.704
ISF 0.785 0.736 0.742 0.745 0.728 0.742 0.700
KISF 0.786 0.737 0.743 0.758 0.734 0.742 0.707

E→D E→K K→B K→D K→E Average

Naive 0.687 0.817 0.685 0.698 0.801 0.732
SCL 0.727 0.822 0.730 0.736 0.812 0.754
ISF 0.700 0.823 0.703 0.709 0.811 0.744
KISF 0.703 0.825 0.705 0.709 0.815 0.747

Table 3.4: Comparison of performance on NER and Sentiment. † indicates that our
method KISF was significantly better than both Naive and SCL with p < 0.05.

3.3.4 Impact of the Number of Exemplar Vectors

In this subsection, we discuss the impact of the number of exemplar vectors, i.e.,

the sensitivity of K in our proposed methods ISF and KISF. For simplicity, we only

conduct experiments on one subtask of each task, (i.e., u∗ → u00 for Spam, bc→

bn for Relation, f → y for NER and B→ E for Sentiment). All the results of the

four subtasks are illustrated in Figure 3.1.

It is easy to see that when the value of K is relatively small, the performance of

both ISF and KISF will generally increase as K increases. But when K increases

to a certain value, the performance of both methods tends to be stable, and the

performance gain by increasing K becomes smaller and smaller. Take Relation in

Figure 3.1 for example, we can easily observe that when K reaches 300, the room

for further improvements is limited, and therefore the performance becomes stable.

Similar trends can be observed from the other tasks Figure 3.1. Generally, we can

observe from Figure 3.1 that setting K to 800 to 1000 is able to result in stable

33

Figure 3.1: The Impact of the Number of Exemplar Vectors.

and highly competitive performance across all the four tasks. But since a lower

dimensionality can lead to faster running time, we set K to 100 for Spam, 300 for

Relation, 1000 for NER and 500 for Sentiment in this paper.

3.3.5 Stability Comparison between ISF and KISF

To verify our analysis in Section 3.2.3, we compare the stability of ISF and KISF

in this subsection. Here we follow the above setting by choosing the same subtask

of each task for experiments, and run each method with the same setting on a fixed

fold of the source-target pair for ten times.

In Figure 3.2, we rank the ten results of each method and show them in an

increasing order. It is easy to observe that the gap between the maximum and the

minimum value of ISF is much larger than that of KISF, which is in line with our

expectation that ISF is relatively unstable. Moreover, we can find that the variance

of the ISF method is clearly much higher than that of the KISF method, and this

indicates that KISF is more stable than ISF and can generally achieve much better

domain adaptation performance.

34

Figure 3.2: The Comparison of the Stability of ISF and KISF on ten runs.

3.4 Discussion

In this chapter, we presented a hassle-free unsupervised domain adaptation method.

The method is simple to implement, fast to run and yet effective for a few NLP

tasks, generally outperforming SCL, a widely-used unsupervised domain adaptation

method. We believe the proposed method can benefit a large number of practitioners

who prefer simple methods than sophisticated domain adaptation methods.

35

Chapter 4

An Unsupervised Neural Domain

Adaptation Framework with

Auxiliary Tasks for Sentiment

Classification

In this chapter, we study cross-domain sentiment classification with neural network

architectures. We borrow the idea from Structural Correspondence Learning and

carefully design two alternative auxiliary tasks to help induce shared sentence em-

beddings and document embeddings that supposedly works well across domains for

sentiment classification. We further propose a novel domain adaptation framework

by incorporating the two auxiliary tasks into two state-of-the-art neural models.

Experiment results demonstrate that our proposed framework outperforms several

competitive methods on five benchmark data sets of sentence-level sentiment clas-

sification and four data sets of document-level sentiment classification.

36

4.1 Introduction

With the growing need of correctly identifying the sentiments expressed in subjec-

tive texts such as product reviews, sentiment classification has received continuous

attention in the NLP community for over a decade [81, 79, 43, 23, 71, 115]. One

of the big challenges of sentiment classification is how to adapt a sentiment classi-

fier trained on one domain to a different new domain. The reason that this is a big

challenge is that sentiments are often expressed with domain-specific words and ex-

pressions. For example, in the Book domain, expressions such as an insider’s look

and a must read are usually positive, but they may not be useful for the Kitchen do-

main. Similarly, words such as sharp and clean, which are positive in the Kitchen

domain, can rarely be seen in the Book domain. Due to the high cost of obtaining

labeled data, it would be very attractive if we can adapt a model trained on a source

domain to a target domain.

A number of different models have been proposed to address this domain adap-

tation problem [10, 76, 15, 86, 114, 14]. Among them, an appealing method is the

Structural Correspondence Learning (SCL) method [10], which uses pivot feature

prediction tasks to induce a projected feature space that works well for both the

source and the target domains. The intuition is that these pivot prediction tasks are

highly correlated with the original task. In [10], for sentiment classification, the

authors first chose pivot words which have high mutual information with the senti-

ment labels and then set up the pivot prediction tasks to be the predictions of each

of these pivot words using the other words.

However, the original SCL method is based on traditional discrete feature repre-

sentations and linear classifiers. In recent years, with the advances of deep learning

in NLP, various kinds of multi-layer neural network models, including convolutional

neural networks (CNNs) [50, 57, 134], recursive neural networks (ReNNs) [95, 32]

and recurrent neural networks (RNNs) [99, 123], have been proposed for sentiment

classification and achieved good performance. In these models, dense, real-valued

37

feature vectors and non-linear classification functions are used. By using real-

valued word embeddings pre-trained from a large corpus, these models can take

advantage of the embedding space that presumably better captures the syntactic and

semantic similarities between words. And by using non-linear functions through

multi-layer neural networks, these models represent a more expressive hypothesis

space. Therefore, it would be interesting to explore how these neural network mod-

els could be extended for cross-domain sentiment classification.

There have been some recent studies on neural network-based domain adapta-

tion [38, 21, 120, 138]. Most of these methods center around employing denoising

auto-encoders to induce a hidden representation that presumably works well across

domains. However, the auto-encoder-based methods are fully unsupervised and

does not consider the end task we need to solve, i.e., the sentiment classification

task. In contrast, the idea behind SCL is to use carefully-chosen auxiliary tasks

that correlate with the end task to induce a hidden representation. Another line of

work on neural network-based domain adaptation aims to learn a low dimensional

representation for each feature in both domains based on predicting its neighboring

features [121, 13]. Different from these methods, we aim to directly learn sentence

and document embeddings that work well across domains.

In this chapter, we aim to extend the main idea behind SCL to neural network-

based models and propose a general domain adaptation framework, where the actual

sentiment classification task and our manually designed auxiliary tasks are trained

jointly with multi-task learning. Specifically, we first borrow the idea of using pivot

prediction tasks from SCL and introduce two kinds of auxiliary tasks. Instead of

learning thousands of pivot predictors, our two auxiliary tasks are only based on

two binary prediction tasks and one multi-class prediction task, respectively. In ad-

dition, different from SCL, which performs singular value decomposition (SVD) on

the learned weights of pivot predictors through linear transformations, our domain

adaptation framework builds upon two well-known neural network models to di-

rectly learn a non-linear transformation that maps an input to a dense embedding

38

vector. Moreover, unlike SCL and the auto-encoder-based methods, in which the

hidden feature representation and the final classifier are learned sequentially, we

propose to jointly learn the hidden feature representation together with the senti-

ment classification model itself.

The main contributions of this chapter can be summarized as follows:

• We develop a neural network-based domain adaptation framework for senti-

ment classification.

• We further propose two kinds of domain-independent auxiliary tasks and em-

ploy two existing neural network models to help us induce robust sentence

and document embeddings across domains based on our framework.

• We conduct experiments on a number of different source and target domains

for both sentence-level and document-level sentiment classification. The ex-

perimental results show that our proposed methods can significantly outper-

form a number of baselines and are able to achieve comparable or even better

results compared with a strong baseline proposed by us.

The rest of this chapter is organized as follows. In Section 4.2, we present an

overview of our domain adaptation framework. The two proposed auxiliary tasks

are detailed in Section 4.3, and the sentence-level and document-level sentiment

adaptation models are given in Section 4.4. In Section 4.5, we report extensive

evaluations of our proposed models.

4.2 Domain Adaptation Framework

In this section, we first formally formulate the task and introduce the necessary

notation. Next, we present the overview of our domain adaptation framework.

39

31

…

…

NN

NN
auxiliary

tasks

actual task

… NN actual task

Source Domain

Source/Target
Domain

Source Domain

Word Embedding Hidden Layer

Shared
Lookup
Table h’

h

h

Figure 4.1: Standard Model without Domain Adaptation (top) vs Proposed Domain Adap-
tation Framework (bottom).

4.2.1 Notation and Task Formulation

Our task is sentiment classification at both the sentence level and the document

level. We assume that each input is a piece of text consisting of a sequence of words.

To be consistent with the notation introduced in Chpater 2, let x = (x1, x2, . . .)

denote an input sentence or document where each xi ∈ {1, 2, . . . , |V|} is a word in

the vocabulary and |V| is the vocabulary size. Let the sentiment label of x be y ∈

{+,−}, where + and − denote the positive sentiment and the negative sentiment,

respectively.

We consider a cross-domain setting, in which we assume that we have a set of

labeled training samples from a source domain, denoted by Ds = {(xsi , ysi)}N
s

i=1.

In addition, we have a set of unlabeled samples from a target domain, denoted by

Dt,u = {xt,u
i }N

t,u

i=1 . Our goal is to train a good sentiment classifier using Ds and Dt,u

so that the classifier can generally work well in the target domain. To evaluate the

trained classifier, we test its performance on a set of labeled samples from the target

domain, denoted by Dt,l = {(xt,l
i , y

t,l
i)}N t,l

i=1.

40

4.2.2 Overview of Our Proposed Framework

The core of our domain adaptation framework is to use several domain-independent

auxiliary tasks to help induce a cross-domain hidden representation that is useful for

both the source and the target domains. The idea of learning cross-domain hidden

representations by leveraging auxiliary tasks for domain adaptation is not new [12,

10]. These previous studies essentially follow the multi-task learning framework

proposed by [2]. The rationale behind them is that if there are some auxiliary tasks

related to the actual prediction task and the labels of the auxiliary tasks can be easily

obtained for both the source and the target domains, the induced low-dimensional

feature space is a good representation for domain adaptation. Our work follows this

line of work and aims to extend the main idea to neural network-based models.

A baseline solution without considering any domain difference is to simply train

a classifier using Ds, and we can consider any kind of multi-layer neural networks

such as a CNN or an RNN to perform the classification task. We assume that a

multi-layer neural network is used to transform each input x into an embedding

vector h. Let us use fΘ to denote the transformation function parameterized by

Θ, that is, h = fΘ(x). Next, we assume that a linear classifier such as a softmax

classifier is learned to map h to a sentiment label y.

We introduce several auxiliary tasks which presumably are highly correlated

with the sentiment classification task itself. Labels for these auxiliary tasks can be

automatically derived from unlabeled data in both the source and the target domains.

With the help of the auxiliary tasks, we can learn a non-linear transformation func-

tion fΘ′ from the unlabeled data and use it to derive an embedding vector h′ from the

input x, which supposedly works better across domains. Finally we use the source

domain’s training data to learn a linear classifier on the representation h⊕h′, where

⊕ is the operator that concatenates two vectors.

Figure 4.1 illustrates the overview of our framework. We can see that in the stan-

dard model, the hidden layer h is learned only through back propagation from the

41

actual sentiment label y. Since the sentiment labels are only available in the source

domain, the learned sentence embeddings and document embeddings may not be

sensitive to the target domain. But in our framework, we use the auxiliary hidden

layer h′ for predicting not only the actual sentiment labels but also the labels of a

carefully designed auxiliary task. Since the auxiliary task is domain-independent,

the hidden layer h′ (i.e., sentence embeddings and document embeddings) learned

by our method are expected to work well in both domains.

Under this framework, we have the following remaining challenges: (1) design-

ing a good auxiliary task, which is closely related to sentiment classification, and

(2) integrating the auxiliary task and the actual sentiment classification task together

in a suitable neural network followed by optimizing them together. In the following

sections, we will first introduce the two auxiliary tasks we propose and then present

our specific neural network models for sentiment classification.

It is worth noting that although we only focus on sentence-level and document-

level sentiment classification in this chapter, our framework is general and poten-

tially it can also be used for word-level predictions (i.e., sequence labeling tasks as

in [31]), where the key is to design a word-level auxiliary task.

4.3 Auxiliary Tasks for Sentiment Classification

In this section, we introduce our two kinds of auxiliary tasks in detail.

Inspired by SCL [10], we also try to leverage the domain-independent senti-

ment words (which are referred to as pivots) to set up some auxiliary prediction

tasks. The key assumption behind is that if any domain-specific expression occurs

frequently with positive pivots like good and wonderful, this expression is highly

likely to be positive in that domain; similarly, for any domain-specific expression

which often co-occurs with negative pivots like bad and terrible, it tends to express

a negative sentiment in that domain. For example, in the review “The laptop is good

and goes really fast,” if we know that the sentiment polarity of the pivot word good

42

is positive, the sentiment polarity of the domain-specific word fast has a strong pos-

sibility to be positive. Based on this assumption, we can first hide all the pivots and

design some auxiliary prediction tasks based on these pivots. Then, if we only use

the remaining domain-specific words to predict these domain-independent auxiliary

tasks, it should be helpful for identifying some important domain-specific sentiment

expressions like goes really fast in the above example.

The next question is how we should construct the auxiliary tasks based on pivots.

In SCL, they proposed to set up thousands of binary classification tasks to predict

the occurrence of each pivot. However, if we directly apply their auxiliary tasks into

neural network models, it may have two main limitations:

• Thousands of pivot predictors will largely increase the computational cost of

optimizing neural network models;

• Since most pivots may only occur in a small amount of samples but not in

the other samples of the whole corpus, the training samples for most pivot

predictors will be highly imbalanced1.

Hence, to reduce the computational cost and eliminate the imbalanced sample distri-

bution problem, we consider two alternative solutions: (1) We still use the auxiliary

task in SCL but reduce the number of pivots. (2) Instead of predicting the occur-

rence of each pivot, we propose a new auxiliary task.

4.3.1 Auxiliary Task 1

Since the two limitations mentioned above is essentially caused by the large amount

of pivot words, an intuitive way to address the limitations is to first reduce the

number of pivots by grouping them into several clusters. Then for each input and

1 This will be problematic for neural network models. The reason is as follows. The natural
choice for optimizing neural network models is to use the stochastic gradient descent method with
shuffled mini-batches. But in highly imbalanced data sets, most mini-batches only contain negative
samples (i.e., the samples without pivots). These batches will mislead the learning process of the
whole model.

43

each pivot cluster, we predict if the input contains at least one word from that pivot

cluster. Considering that our end task is polarity classification, we choose to group

the pivots into two lists: a positive pivot word list and a negative pivot word list.

Specifically, we first tokenize the samples in Ds and Dt,u and perform part-of-

speech tagging using the NLTK toolkit2. Next, we extract only adjectives, adverbs

and verbs with a frequency threshold Ks in Ds and Kt in Dt,u. We also remove

negation words such as not and stop words using a stop word list to obtain a list of

pivot candidates C. Then, for each word in C, we measure its mutual information

(MI) with the positive and the negative classes based on Ds as follows:

r(wi, y) = log
p̃(wi, y)

p̃(wi)p̃(y)
,

where wi denotes the ith word in V , y ∈ {+,−} is a sentiment label, and p̃(wi, y)

is the empirical probability of observing wi and y together. We can then rank the

candidate words in decreasing order of r(w,+) and r(w,−). Finally, we select the

top 25% from each ranked list as the final lists of pivots for the positive and the

negative sentiments. Some manual inspection shows that most of these words are

indeed domain-independent sentiment words.

Given these two pivot word lists, we now formally define our first auxiliary task.

For each input x, we replace all the occurrences of these pivots with a special token

UNK. Let g(·) be a function that denotes this procedure, that is, g(x) is the resulting

review with UNK tokens. We then introduce two binary labels for g(x). The first

label u indicates whether the original input x contains at least one positive pivot

word, and the second label v indicates whether x contains at least one negative

pivot word. Figure 4.4 shows an example input x, its modified version g(x) and

the labels u and v for x. We further use Da1 = {(g(xi), ui, vi)}N
a

i=1 to denote a set

of training samples for the auxiliary task, where Da1 refers to the samples in Ds and

Dt,u.
2http://www.nltk.org/

44

4.3.2 Auxiliary Task 2

Unlike the first auxiliary task, which still follows SCL to predict the occurrence of

pivots, we propose an alternative auxiliary task by predicting whether the sum of all

the pivots’ sentiment scores is larger than, equal to or less than 0 for each piece of

input text3.

Since this auxiliary task relies on the sentiment scores of pivots, we propose

to use MI to automatically derive a pseudo sentiment score for each pivot. More

specifically, the same as in Section 4.3.1, we can first extract the pivot candidates

C and rank them in decreasing order based on each word’s MI with the positive

and the negative classes. Then, we only keep those words with positive MI, i.e.,

r(wi, y) > 0, and obtain two lists R+ and R−. Moreover, for each word w ∈ R+,

we use its MI score as its sentiment score, while for each word w ∈ R−, we reverse

its MI score as its sentiment score. Finally, we merge the two word lists to form

the pseudo sentiment lexicon, and rescale the sentiment scores into [−S, S]. Since

we assume that pivots should be sentiment sensitive, we further set a threshold τ to

only keep those words with high absolute sentiment scores.

Given the sentiment scores of pivots, let us formally define our second auxiliary

task, which only differs from our first auxiliary task in the auxiliary label. Therefore,

we introduce an auxiliary label y′ for g(x), which indicates whether the sum of the

sentiment scores of the pivot words in the original input x is larger than, equal to

or less than 0. We further use Da
2 = {(g(xi), y

′
i)}N

a

i=1 to denote our modified inputs

with the auxiliary labels derived from both Ds and Dt,u.

In summary, there are two commonalities shared among our two auxiliary tasks:

(1) The label of them can be automatically derived. (2) Since pivots are sentiment

sensitive, both of them are closely related to the original sentiment classification

task. But they differ from each other in how to model the correlations between non-

pivot words and pivot words; the first task uses non-pivots to predict the occurrence

3For any sentiment lexicon, we can rescale its original sentiment scores to [−S, S], where S can
be any integer, and −S and S respectively refer to the most negative and the most positive scores.

45

sentiment

Sentence

Embedding

Word

Embedding

31

The laptop is good and goes really fast The laptop is UNK and goes really fast

Shared

Lookup

Table

Original Sentence New Sentence without Pivots

CNN CNN

auxiliary task-1

or

’
auxiliary task-2

Figure 4.2: Learning Shared Representations for Sentence-level Sentiment Classification.

of pivots, and the second task uses non-pivots to predict the overall sentiment scores

of pivots.

4.4 Model

In this section, we present our domain adaptation models for sentence-level and

document-level sentiment classification, respectively.

4.4.1 Domain Adaptation for Sentence-Level Sentiment Classi-

fication

In this subsection, we focus on sentence-level sentiment classification. We choose to

adopt a one-layer CNN [50] to transform an input sentence to a sentence embedding

vector because it is simpler than RNN or ReNN and has been shown to work well

for sentence-level sentiment classification [50]. Figure 4.4 gives the outline of our

model to learn shared sentence embeddings with one of our two auxiliary tasks.

Specifically, each word xi (including the token UNK) in an input x and its modi-

fied version g(x) is represented by an l-dimensional dense embedding vector, which

is retrieved from a lookup table X ∈ Rl×|V|.

With the two auxiliary tasks, we first learn a CNN model to produce sentence

46

embeddings that work well for the auxiliary tasks. To be consistent with our pre-

vious notations, we still use Θ′ to denote the parameters of our CNN model that

produces the sentence embedding h′ = CNNΘ′(g(x)), where CNN4 stands for the

corresponding transformation function f .

Next, if we choose the first auxiliary task, we can employ two softmax classifiers

to predict the two auxiliary labels u and v, respectively:

p(u | h′) = softmax(W′
uh
′ + b′u),

p(v | h′) = softmax(W′
vh
′ + b′v),

where W′
u ∈ R2×m and W′

v ∈ R2×m are weight matrices, and b′u ∈ R2 and

b′v ∈ R2 are bias vectors.

Similarly, if we choose the second auxiliary task, a softmax classifier can be

learned to map h′ to its auxiliary label y′:

p(y′ | h′) = softmax(W′h′ + b′),

where W′ ∈ R3×m is a weight matrix, and b′ ∈ R3 is a bias vector.

Besides, we also apply another CNN to obtain the standard hidden layer h =

CNNΘ(x).

Finally, we concatenate the standard hidden vector h and the auxiliary hidden

vector h′ to predict the actual sentiment label y:

p(y | h,h′) = softmax
(
W(h⊕ h′) + b

)
.

4To simplify the discussion, we will not give the details of CNN here. Interested readers can refer
to [50].

47

4.4.2 Domain Adaptation for Document-Level Sentiment Clas-

sification

In this subsection, we focus on document-level sentiment classification, where we

first introduce our base model, followed by presenting our proposed two domain

adaptation architectures.

Base Model

Instead of using the simple CNN model as before, here we employ a state-of-the-art

hierarchical neural network (HNN) model proposed in [103], which first encodes

each sentence in the document into a sentence embedding through a CNN, followed

by composing all sentence embeddings to a document embedding with a gated RNN

(GRNN). The reason for using HNN is that the hierarchical model has been shown

to capture semantic relations between sentences and significantly outperform sim-

pler, non-hierarchical models including CNN and RNN in several benchmark data

sets [103, 123].

Recall that an input document d is represented by a sequence of sentences, each

containing a sequence of words, and wi,j ∈ V is the j th word of the ith sentence in

d. We use xi,j ∈ Rl to denote an l-dimensional dense embedding vector for word

wi,j , which is retrieved from a lookup table X ∈ Rl×|V| for all words. We first apply

a one-layer CNN [50] to obtain an embedding vector zi ∈ Rp for the ith sentence:

zi = CNNΘ1(xi), where Θ1 denotes all the parameters in this CNN.

After obtaining the sentence embeddings for all the n sentences in d, we

then apply an LSTM to sequentially combine all sentences together: hi =

LSTMΘ2(hi−1, zi), where hi ∈ Rq is the ith hidden state, and Θ2 denotes all the

parameters in the LSTM5. Note that [103] used bi-directional gated RNN to chain

the sentences into a document embedding, but we did not observe any significant

gain over LSTM based on our preliminary experiments.

5To simplify the discussion, we will not give the details of CNN and LSTM here. Interested
Readers can refer to [50] and [41].

48

s1 sn-1 sn

CNNCNN CNN

...

...

g(sn) g(sn-1) g(s1)

CNN CNN CNN

...

...

sentiment
auxiliary task-2

y

y’

Figure 4.3: Document-Level Shared Representation.

Finally, a softmax classifier is learned to map the document representation hn to

a label y:

p(y | hn) = softmax(Whn + b).

where W ∈ R2×q is a weight matrix and b ∈ R2 is a bias vector.

In the following sections, we will present two NN architectures built on top of

HNN that leverage our two auxiliary tasks for domain adaptation of document-level

sentiment classification. The first architecture uses document-level auxiliary tasks

to help induce a document-level hidden representation, while the second architec-

ture uses sentence-level auxiliary tasks to help induce a sentence-level hidden repre-

sentation. Before introducing our model, we further assume that an input document

x contains n sentences (s1, s2, . . . , sn), and its modified version g(x) is referred as(
g(s1), g(s2), . . . , g(sn)

)
.

Document-Level Shared Representation (DSR)

Figure 4.3 gives the outline of the first architecture, which essentially tries to directly

learn an auxiliary hidden layer for each input document.

For the ith sentence in d′, we first use a CNN to obtain its auxiliary embedding

vector z′i = CNNΘ′
1
(x′i). These sentence embeddings are further combined together

with an LSTM parameterized by Θ′2, and the final hidden state h′n is fed to softmax

49

classifiers to either predict the first auxiliary task:

p(u | h′n) = softmax(W′
uh
′
n + b′u),

p(v | h′n) = softmax(W′
vh
′
n + b′v).

or the second auxiliary task:

p(y′ | h′n) = softmax(W′h′n + b′).

Besides, we also apply another CNN and LSTM to obtain the standard document

representation hn, and concatenate it with the auxiliary hidden vector h′n to predict

the sentiment label y:

p(y | hn,h′n) = softmax
(
W(hn ⊕ h′n) + b

)
.

Sentence-Level Shared Representation (SSR)

Unlike the first architecture, our second proposal focuses on learning an auxiliary

hidden layer for each sentence in a given document. As illustrated in Figure 4.4,

instead of using overall auxiliary labels for the whole document, we will have aux-

iliary labels for each sentence in the document.

To facilitate the discussion, for the ith modified sentence g(si), let us introduce

two auxiliary labels u′i and v′i for the first auxiliary task and an auxiliary label y′i

for the second auxiliary task. We further use u′ ∈ Rn, v′ ∈ Rn and y′ ∈ Rn

to denote the three auxiliary labels for all the n sentences in g(x). Let Da,s
1 =

{(g(xi),u
′
i,v
′
i)}N

a

i=1 denote input documents with the sentence-level auxiliary labels

derived from the first auxiliary task, and Da,s
2 = {(g(xi),y

′
i)}N

a

i=1 from the second

auxiliary task.

Given the two sentence-level auxiliary tasks, we use two CNNs to obtain sen-

tence embeddings zi = CNNΘ1(si) and z′i = CNNΘ′
1
(g(si)), respectively, for si

and g(si).

50

s1 g(s1) sn-1 g(sn-1) sn g(sn)

...

CNNCNN CNN

...
CNN CNN CNN

y
y1’ yn-1’ yn’

sentiment

Figure 4.4: Sentence-Level Shared Representation.

Next, the auxiliary hidden layer z′i will be used for predicting either the two

auxiliary labels u′i and v′i:

p(u′i | z′i) = softmax(W′
uz
′
i + b′),

p(v′i | z′i) = softmax(W′
vz
′
i + b′).

or the auxiliary label y′i:

p(y′i | z′i) = softmax(W′z′i + b′).

Besides, we also concatenate zi and z′i together as a combined sentence em-

bedding for the i-th sentence. Then, all the n combined sentence embeddings are

further combined together via an LSTM:

hi = LSTMΘ2

(
hi−1, (zi ⊕ z′i)

)
.

Finally, we feed the last hidden representation hn to a softmax classifier to pre-

dict the label of our main task:

p(y | hn) = softmax(Whn + b).

Comparing our two models with the standard HNN model in [103], we can

see that there are two hidden layers in the standard model, namely, the lower-level

sentence embeddings and the higher-level document embeddings, but they are only

51

trained onDs; in our two models, we leverage bothDs andDt,u to train the auxiliary

tasks to respectively induce shared cross-domain document embeddings or sentence

embeddings, and concatenate them together with the original document embeddings

or sentence embeddings for predicting our main task. Hence, the hidden layers in

the standard model are only sensitive to the source domain, while the hidden layers

in our models are robust in both domains.

4.4.3 Model Optimization

Since our model consists of the actual sentiment classification task and our proposed

auxiliary tasks, we propose to jointly optimize them in a single loss function. For

simplicity, here we just use the second auxiliary task to show our objective function,

and the objective function of using the first auxiliary task is very similar. In this

way, the learning of the parameters corresponding to our auxiliary task depends not

only on Da but also on Ds, i.e., the sentiment-labeled training data from the source

domain.

Specifically, using cross-entropy loss, we can learn Θ, Θ′, W, b, W′ and b′ in

Section 4.4.1 by minimizing the following function through backpropagation:

J(Θ,Θ′,W,b,W′,b′)

= −
(∑

(x,y)∈Ds

log p(y | h,h′) +
∑

(g(x),y′)∈Da

log p(y′ | h′)
)
. (4.1)

Similar to Eqn. (4.1), we can minimize the following loss functions to learn Θ1,

Θ′1, Θ2, Θ′2, W, W′, b and b′ for the first architecture in Section 4.4.2:

J(Θ1,Θ
′
1,Θ2,Θ

′
2,W,W′,b,b′)

= −
(∑

(x,y)∈Ds

log p(y | hn,h′n) +
∑

(g(x),y′)∈Da

log p(y′ | h′n)
)
.

52

and learn Θ1, Θ′1, Θ2, W, W′, b and b′ for the second architecture in Section 4.4.2:

J(Θ1,Θ
′
1,Θ2,W,W′,b,b′)

= −
(∑

(x,y)∈Ds

log p(y | hn) +
∑

(g(x),y′)∈Da,s

n∑
i=1

log p(y′i | z′i)
)
.

4.4.4 Differences from SCL

Although our domain adaptation methods are inspired by SCL, there are a number

of major differences: (1) Our methods are based on neural network models with

continuous, dense feature representations and non-linear transformation functions.

SCL is based on discrete, sparse feature vectors and linear transformations. (2)

Although our pivot word selection is similar to that of SCL, in the end we only use

either two binary classification tasks or one multi-class classification task, while

SCL uses much more pivot prediction tasks. (3) We leverage neural network models

to directly produce the hidden representation, while SCL relies on SVD to learn the

projection function. (4) Our methods perform joint learning of the auxiliary tasks

and the end task, i.e., sentiment classification, while SCL performs the learning in a

sequential manner.

4.5 Experiments

4.5.1 Data Sets and Experiment Settings

Data Sets: To evaluate our proposed methods, we conduct experiments on both

sentence-level and document-level sentiment classification.

For sentence-level sentiment classification, we use five benchmark data sets

about product reviews from four domains. Movie16 and Movie27 are movie reviews

collected by [80] and [95], respectively. Camera8 is a set of reviews of digital prod-

6https://www.cs.cornell.edu/people/pabo/movie-review-data/
7http://nlp.stanford.edu/sentiment/
8http://www.cs.uic.edu/˜liub/FBS/sentiment-analysis.html

53

https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://nlp.stanford.edu/sentiment/
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

Task Data Set # UnLab # Lab # Pos # Neg Avg Length Words

Movie1 (MV1) 7662 3000 1500 1500 19 18765
Movie2 (MV2) 6613 3000 1500 1500 20 16186

Sentence- Camera (CR) 2770 1000 600 400 19 5340
level Laptop (LT) 1549 1000 500 500 16 3610

Restaurant (RT) 2075 1000 600 400 15 4541

Book (B) 6000 2000 1000 1000 180 41109
Document- DVD (D) 6000 2000 1000 1000 188 44072
level Electronics (E) 6000 2000 1000 1000 118 22444

Kitchen (K) 6000 2000 1000 1000 100 18472

Table 4.1: Statistics of our Data Sets.

ucts such as MP3 players and cameras labeled by [43]. Laptop and Restaurant9 are

laptop and restaurant reviews taken from SemEval 2014 Task 4 and SemEval 2015

Task 12. Since we do not have any unlabeled reviews for all domains and the num-

ber of labeled reviews in each domain is different, to better control the experiment

setting, we choose a subset of the original labeled reviews as training data. Specifi-

cally, from each of Movie1 and Movie2, we choose 1500 positive and 1500 negative

reviews as labeled reviews. From each of the other three domains, we choose around

500 positive and 500 negative reviews as labeled reviews10. For all the remaining

reviews in each domain, we ignore the labels and treat them as unlabeled reviews.

For document-level sentiment classification, we employ a benchmark data set

released by [10]. This data set consists of Amazon product reviews from four differ-

ent domains: Book, DVD, Electronics and Kitchen. Each domain has 1000 positive

and 1000 negative reviews as well as 17547 unlabeled reviews on average. Since the

number of unlabeled reviews in each domain is different, we choose 6000 unlabeled

reviews for each domain.

The statistics of each data set are summarized in Table 4.1.

Experiment Settings: For sentence-level sentiment classification, we consider

18 pairs of data sets where the two data sets come from different domains.11 For

9Note that the original data set is for aspect-level sentiment analysis. We remove sentences with
opposite polarities towards different aspects, and use the consistent polarity as the sentence-level
sentiment of each remaining sentence.

10Since the data distributions of Camera and Restaurant are imbalanced, we choose 600 positive
and 400 negative samples for them, which are similar to their original data distributions.

11Because Movie1 and Movie2 come from the same domain, we do not take this pair.

54

neural network-based methods, we choose 100 positive and 100 negative reviews

from the target domain as the development set for parameter tuning, and the rest of

the data from the target domain as the test data.

Following previous studies [76, 138], we consider 12 pairs of source-target do-

main pairs for document-level sentiment classification. For each pair, all the 2000

labeled reviews from the source domain are treated as training data. We choose 200

positive and 200 negative reviews from the target domain as development data, and

the remainder (i.e., 800 + 800 reviews) from the target domain as test data. Note

that this is different from our experiments in Chapter 3, since we use all the reviews

from the target domain as test data.

For domain adaptation methods, we also use the unlabeled reviews from the

target domain during the training stage12.

4.5.2 Baselines and Hyperparameters

We consider the following baselines based on bag-of-words (BoW) representations

for both sentence-level and document-level sentiment classification:

• Naive is a non-domain-adaptive baseline.

• SCL is our implementation of the Structural Correspondence Learning

method, which uses all the non-pivot features to predict the occurrence of

each pivot feature and employs SVD on the learned weight vectors to obtain

a dense cross-domain representation.

• mDA is our implementation of one of the state-of-the-art methods, marginal-

ized denoising auto-encoders [21], which learns a shared hidden representa-

tion by reconstructing pivot features.

Since we employ different neural network models for sentence-level and

12In our previous conference version [129], we simply treat the test data from the target domain as
the unlabeled data, but in this dissertation, we split the data from the target domain into unlabel/test
data.

55

document-level sentiment classification, we will now introduce the neural network-

based systems for comparison. First, for sentence-level sentiment classification:

• CNN is a non-domain-adaptive baseline based on CNN.

• C-Aux is a simple combination of our first auxiliary tasks with CNN, which

treats the derived two labels of the first auxiliary task as two features and then

appends them to the hidden representation learned from CNN, followed by a

softmax classifier.

• C-SCL is a naive combination of SCL with CNN, which appends the induced

representation from SCL to the hidden representation learned from CNN,

followed by a softmax classifier.

• C-mDA is similar to SCL-NN but uses the hidden representation derived

from mDA, which is a strong baseline proposed by us.

• Joint1 and Joint2 are respectively our proposed domain adaptation methods

with the first and the second auxiliary tasks, as introduced in Section 4.4.1.

• WJoint2 is a slight modification of Joint2. Since the sentiment scores of piv-

ots in our second auxiliary task are derived fromDs, they might be inaccurate

and specific to the source domain. Hence, in WJoint2, we use an external

sentiment lexicon called SentiWordNet [5] to derive the label of our second

auxiliary task.

Next, for document-level sentiment classification,

• HNN is a non-domain-adaptive baseline based on the hierarchical NN pro-

posed by [103].

• H-WN is a simple combination of HNN with our second auxiliary task, which

represents each label derived from our second auxiliary task using SentiWord-

Net as a three-dimensional one-hot vector and appends it to the document

embedding hn in HNN, followed by a softmax classifier.

56

• H-SCL and H-mDA are naive combinations of SCL and mDA with HNN,

which are similar to C-SCL and C-mDA.

• DSR1 and DSR2 are our proposed methods of learning document-level

shared representations with the two auxiliary tasks respectively, as introduced

in Section 4.4.2.

• SSR1 and SSR2 are our proposed methods of inducing shared representations

at sentence level with the two auxiliary tasks, respectively, as introduced in

Section 4.4.2.

• WDSR2 and WSSR2 are modified versions of DSR2 and SSR2, where we

use SentiWordNet to derive the label of the second auxiliary task.

For Naive, we train linear classifiers with LibLinear13 by using unigrams and

bigrams with a frequency of at least 5 as features and use its default hyperpa-

rameters. For SCL and mDA, we follow [10] and use mutual information to se-

lect pivot features, and the number of top ranked pivots we choose is tuned from

{500,1000,1500,2000} on the development set. In SCL, we tune the number of

induced features K in {25,50,100}, and also use normalization and rescaling. In

mDA, we employ the dropout noise strategy in [120] without any parameter.

For neural network-based models, we set the dimension size of word embed-

dings l to 300 and initialize the lookup table X with word embeddings pre-trained

from word2vec14. All the word embeddings are updated during our learning pro-

cess. Also, for our methods, we share the word embeddings of the actual task and

our auxiliary task, and never update the word embedding of the special token UNK

by setting it as a zero vector. For CNN, we set the window size to 3, and set the

non-linear activation function in CNN as ReLU. Also, the size of the hidden repre-

sentations h is set to 100. Moreover, for HNN, we also set the window size to 3 and

the non-linear activation function in CNN as ReLU, and set the sizes of sentence
13http://www.csie.ntu.edu.tw/cjlin/liblinear/
14https://code.google.com/p/word2vec/

57

embeddings z and document embeddings hn as 150. In our proposed methods, we

keep the sizes of h, z and hn unchanged; but for h′, z′ and h′n, we tuned their

sizes in the range of [100, 300], and found that using different hidden sizes did not

change results significantly. Hence, we set the size of h′ as 100, and set the sizes

of z′ and h′n as 150. For all the CNN-based models, the mini-batch size is 50, the

dropout rate α equals 0.5, and the hyperparameter for the l2 norms is set to be 3.

All the HNN-based models are trained using AdaGrad with a learning rate of 0.05

and a minibatch size of 5. Also, the dropout rate α equals 0.5, and all the model

parameters are regularized with a L2 regularization strength of 10−4.

Besides, for our two auxiliary tasks, we set the word frequency thresholds Ks

and Kt as 3 for sentence-level sentiment classification, and set Ks as 10 and Kt

as 30 for document-level sentiment classification. Also, for the second auxiliary

task, we set the scale of sentiment lexicon as 2, i.e., S = 2, and the threshold τ for

choosing words with high sentiment scores as 0.9.

4.5.3 Results

In Table 4.2, Table 4.3 and Table 4.4, we report the results of all the methods for

sentence-level and document-level sentiment classification, respectively.

First, it is easy to see from Table 4.2 that the performance of Naive is very lim-

ited. SCL and mDA can further improve the average accuracy respectively by 2.3

and 5 percentage points, which verifies the usefulness of these two domain adapta-

tion methods. Similar trends can be observed in Table 4.3, where SCL and mDA

can also outperform Naive by 2.7% and 3.7% on average. However, we can easily

see that the performance of these domain adaptation methods based on discrete, bag-

of-words representations is even much lower than the non-domain-adaptive method

on continuous representations (CNN and HNN). But we can further see that the

cross-domain performance of CNN is still 11.4 percentage points lower than its in-

domain performance on average, and similarly, the average performance of HNN

58

Task Compared Methods Our Methods

src tgt Naive SCL mDA CNN C-Aux C-SCL C-mDA Joint1 Joint2 WJoint2

MV1 LT 0.638 0.633 0.633 0.750 0.747 0.744 0.756 0.773† 0.767† 0.775†
MV2 LT 0.679 0.683 0.690 0.772 0.781 0.774 0.798 0.808† 0.801 0.806†
RT LT 0.668 0.705 0.740 0.788 0.797 0.796 0.805 0.809† 0.807 0.803
CR LT 0.713 0.735 0.768 0.813 0.818 0.820 0.815 0.825† 0.834† 0.831†
MV1 RT 0.634 0.646 0.660 0.741 0.758 0.750 0.779 0.760 0.774 0.779
MV2 RT 0.679 0.700 0.696 0.793 0.797 0.793 0.799 0.808† 0.817† 0.809†
LT RT 0.661 0.700 0.744 0.778 0.781 0.806 0.805 0.801 0.787 0.818†
CR RT 0.694 0.719 0.741 0.795 0.802 0.801 0.813 0.813 0.805 0.814
MV1 CR 0.568 0.588 0.549 0.700 0.708 0.723 0.708 0.734† 0.731† 0.756†
MV2 CR 0.666 0.663 0.671 0.736 0.740 0.748 0.758 0.765† 0.767† 0.755
LT CR 0.689 0.704 0.711 0.805 0.797 0.793 0.780 0.791 0.817† 0.804
RT CR 0.674 0.683 0.700 0.798 0.771 0.766 0.773 0.780 0.775 0.791
LT MV1 0.575 0.585 0.614 0.680 0.676 0.692 0.695 0.698 0.692 0.695
RT MV1 0.591 0.611 0.642 0.712 0.707 0.705 0.711 0.713 0.711 0.710
CR MV1 0.567 0.581 0.597 0.688 0.692 0.693 0.691 0.698† 0.699† 0.699†
LT MV2 0.594 0.612 0.635 0.723 0.738 0.727 0.750 0.756† 0.747 0.736
RT MV2 0.615 0.629 0.661 0.767 0.767 0.752 0.770 0.770 0.763 0.762
CR MV2 0.605 0.613 0.643 0.733 0.748 0.744 0.752 0.753 0.744 0.746

Average 0.640 0.655 0.672 0.754 0.757 0.757 0.764 0.770 0.769 0.772

Table 4.2: Classification accuracies of our proposed methods with the two auxiliary tasks
on sentence-level sentiment classification. † indicates that our joint methods are signifi-
cantly better than CNN, C-Aux, C-SCL and C-mDA with p < 0.05 based on McNemar’s
paired significance test. Note that the in-domain sentiment classification performance of
LT, RT, CR, MV1 and MV2 are respectively 0.857, 0.847, 0.853, 0.803, 0.840 (0.840 on
average) in the setting where we use each target domain’s unlabeled reviews as training set,
and the development and test sets are the same as our Domain Adaptation setting.

in cross-domain setting also drops by 7.8 percentage points compared with its per-

formance in in-domain setting. This indicates that it will be more challenging and

useful to develop domain adaptation methods based on embedding vectors and neu-

ral network models.

Moreover, we can find that the performance of simply appending BoW-based

features from our auxiliary tasks to CNN and HNN (i.e., C-Aux and H-WN) is

quite close to that of CNN and HNN on most data set pairs, which shows that

this kind of simple combination is not ideal for domain adaptation. In addition,

although SCL can significantly outperform Naive on almost all the data set pairs,

the performance of C-SCL and H-SCL is not satisfactory, which can only improve

CNN and HNN by 0.4 and 0.5 percentage point on average, respectively. But for

C-mDA and H-mDA, although the shared hidden representations are also derived

59

Task Compared Methods Our Methods with
Auxiliary Task 1

src tgt Naive SCL mDA HNN H-WN H-SCL H-mDA DSR1 SSR1

E D 0.680 0.700 0.727 0.805 0.806 0.820 0.811 0.798 0.814
B D 0.773 0.771 0.806 0.814 0.832 0.813 0.829 0.823 0.832
K D 0.698 0.721 0.741 0.791 0.796 0.799 0.796 0.788 0.803†
E B 0.693 0.704 0.728 0.786 0.790 0.780 0.789 0.789 0.781
D B 0.751 0.780 0.802 0.805 0.810 0.796 0.818 0.809 0.826†
K B 0.690 0.740 0.725 0.766 0.773 0.772 0.774 0.781† 0.773
B E 0.701 0.746 0.753 0.755 0.751 0.751 0.786 0.758 0.758
D E 0.706 0.743 0.746 0.772 0.768 0.771 0.786 0.774 0.782
K E 0.799 0.818 0.830 0.836 0.837 0.847 0.839 0.837 0.843
E K 0.828 0.829 0.833 0.852 0.848 0.865 0.859 0.864 0.862
B K 0.724 0.763 0.754 0.780 0.788 0.785 0.798 0.784 0.791
D K 0.716 0.758 0.742 0.778 0.774 0.786 0.773 0.793† 0.809†

Average 0.729 0.756 0.766 0.795 0.798 0.799 0.805 0.800 0.806

Table 4.3: Classification accuracies of our proposed methods with the first auxiliary task
on document-level sentiment classification. † indicates that our proposed methods are sig-
nificantly better than HNN, H-WN, H-SCL and H-mDA. Note that the in-domain sen-
timent classification performance of D, B, E and K are respectively 0.845, 0.843, 0.858,
0.883 (0.857 on average) in the setting of splitting each domain’s labeled reviews into
1400/200/400 as training set, development set and test set.

from traditional BoW representations, they can outperform CNN and HNN in most

cases. This implies that the derived shared representations by mDA can generalize

better across domains, and are generally useful for domain adaptation.

Furthermore, we can observe the following by comparing our proposed models

with the compared systems: (1) For sentence-level sentiment classification, we can

see from Table 4.2 that our proposed joint learning methods with the first auxiliary

task (i.e., Joint1) and the second auxiliary task (i.e., Joint2 and WJoint2) outper-

form C-SCL on almost all the data set pairs. And in comparison with C-mDA,

Joint1, Joint2 and WJoint2 can also outperform it on most data set pairs. (2) For

document-level sentiment classification, it can be observed from both Table 4.3 and

Table 4.4 that all of our proposed methods except DSR1 can significantly outper-

form HNN in almost all the data set pairs, and perform better than H-WN and

H-SCL in most cases, which shows that the idea of learning a hidden representa-

tion using our proposed auxiliary tasks is generally effective. Even compared with

H-mDA, a strong baseline proposed by us, SSR1 and DSR2 can achieve compara-

60

Task Compared Methods Our Methods with Auxiliary Task 2

src tgt Naive SCL mDA HNN H-WN H-SCL H-mDA DSR2 SSR2 WDSR2 WSSR2

E D 0.680 0.700 0.727 0.805 0.806 0.820 0.811 0.810 0.823 0.821 0.816
B D 0.773 0.771 0.806 0.814 0.832 0.813 0.829 0.832 0.822 0.840 0.837
K D 0.698 0.721 0.741 0.791 0.796 0.799 0.796 0.798 0.808 0.805 0.801
E B 0.693 0.704 0.728 0.786 0.790 0.780 0.789 0.790 0.792 0.790 0.794
D B 0.751 0.780 0.802 0.805 0.810 0.796 0.818 0.835 0.822 0.825 0.822
K B 0.690 0.740 0.725 0.766 0.773 0.772 0.774 0.774 0.784 0.781 0.776
B E 0.701 0.746 0.753 0.755 0.751 0.751 0.786 0.760 0.773 0.771 0.786
D E 0.706 0.743 0.746 0.772 0.768 0.771 0.786 0.787 0.790 0.810 0.799
K E 0.799 0.818 0.830 0.836 0.837 0.847 0.839 0.837 0.843 0.830 0.835
E K 0.828 0.829 0.833 0.852 0.848 0.865 0.859 0.859 0.874 0.867 0.858
B K 0.724 0.763 0.754 0.780 0.788 0.785 0.798 0.785 0.783 0.796 0.794
D K 0.716 0.758 0.742 0.778 0.774 0.786 0.773 0.809 0.806 0.800 0.803

Average 0.729 0.756 0.766 0.795 0.798 0.799 0.805 0.806 0.809 0.813 0.811

Table 4.4: Classification accuracies of our proposed methods with the second auxiliary
task on document-level sentiment classification.

ble results while SSR2, WDSR2 and WSSR2 can still achieve significantly better

performance in most cases. We conjecture that the gains of our proposed methods

may come from the sharing between two word embedding lookup tables and joint

learning of our auxiliary task and the actual task.

Finally, combining Table 4.3 and Table 4.4, we can have the following obser-

vations by comparing our proposed two auxiliary tasks: (1) For sentence-level sen-

timent classification, the two auxiliary tasks Joint1 and Joint2 can achieve similar

performance on average, which shows that both of them are useful in this setting.

(2) For the DSR model in the document-level sentiment classification, using of the

first auxiliary task DSR1 fails to bring improvement in most cases, while the sec-

ond auxiliary task DSR2 can outperform most baseline methods. The reason for this

is as follows. In document-level sentiment classification, a document may contain

mixed opinions towards different aspects of the topic, and the sentiment polarities

towards different aspects may differ. Hence, it is highly possible for a document

to contain both positive and negative domain-independent sentiment words. In this

case, the first auxiliary task would not be of much use because most documents

would have the same auxiliary labels15. But our second auxiliary task does not have

15We found that in our data set, for almost all the 12 source/target pairs, over 90% of the reviews
contained both positive and negative pivot words.

61

such an issue, which indicates that our second auxiliary task is more effective for the

DSR model. (3) For the SSR model in the document-level sentiment classification,

although the performance the second auxiliary task SSR2 slightly better than SSR1

on average, both of them can work well and generally outperform most baselines

methods. (4) For the second auxiliary task, as we can see from Table 4.2 and Ta-

ble 4.4, with the help of the external sentiment lexicon SentiWordNet, WJoint2 can

further boost the performance of Joint2, and WDSR2 and WSSR2 can also perform

better than DSR2 and SSR2 on average. The reason for this observation is intuitive:

the MI-based sentiment scores, derived from Ds, are inaccurate and specific to the

source domain, while the sentiment scores in SentiWordNet are more accurate and

general across domains. Moreover, we can also see that the gap between SSR2 and

WSSR2 is much smaller than the gap between DSR2 and WDSR2. This suggests

that our DSR2 method is more sensitive to the quality of sentiment lexicons, and

with a high quality sentiment lexicon, it can perform best on average.

4.5.4 Case Study

To obtain a better understanding of our method, we first use Joint2 to conduct a

case study on sentence-level sentiment classification, where the source is MV2 and

the target is LT.

For each sentiment polarity, we try to extract the most useful trigrams for the

final predictions. Recall that our CNN models use a window size of 3, which cor-

responds to trigrams. By tracing the final prediction scores back through the neural

network, we are able to locate the trigrams which have contributed the most through

max-pooling. In Table 4.5, we present the most useful trigrams of each polarity ex-

tracted by CNN and by the two components of our joint method. Joint2-original

refers to the CNN corresponding to CNNΘ while Joint2-auxiliary refers to the CNN

corresponding to CNNΘ′ , which is related to the auxiliary tasks.

In Table 4.5, we can easily observe that for CNN, the most important trigrams

62

Method Negative Sentiment Positive Sentiment

problem * *, useless * *, disappointing * *, * * great, best ! *, * * good,
CNN * * worse, has a bad, drive went bad, * * love, am very good, is great ,

slow * *, a nightmare *, speaker did not, is perfect *, am very happy,
lot of trouble * * awesome, is beautiful !
problem * *, useless * *, disappointing * *, is great , * * good, * * best,

Joint2- crashed * *, went bad and, a nightmare *, I love the, is awesome *, is easy to,
original horrible * *, cheap * *, it ’s not, works beautifully *, easy * *,

is irreplaceable * of my favorite, a very long,
useless * *, disappointing * *, crashed * *, easy to use, UNK it !, I ’ve had,

Joint2- problem * *, not work *, * returned it, no problem *, a very long,
auxiliary is irreplaceable *, shut down *, hot * *, is solid *, is very responsive,

a long time, cheap * * very fast and, superior product !

Table 4.5: Comparison of the most useful trigrams chosen by Joint2 and by CNN on
MV2→LT. Here * denotes a “padding”, which we added at the beginning and the end of
each sentence. The domain-specific sentiment words are in bold.

are domain-independent, which contain some general sentiment words like good,

great and disappointing. For our joint model, since Joint2-auxiliary is jointly learnt

with the sentiment classification task, it is easy to see that most of its extracted

trigrams are target-specific sentiment expressions like crashed, easy to use and a

very long. Also, for Joint2-original, since we share the word embeddings of two

components and do not remove any pivot, it is intuitive to see that the extracted

trigrams contain both domain-independent and domain-specific sentiment words.

These observations agree with our motivations behind the model.

Finally, to explore how our proposed models help to improve the performance of

the standard models like CNN and HNN in the test data set, we also conduct further

analysis on MV2→LT and B→D to get a deeper insight of our joint models Joint2

and DSR2. Specifically, we sample several samples from the test data set, i.e., Lap-

top and DVD. As shown in Table 4.6, for MV2→LT, we can easily see that although

CNN correctly predicts the sentiments of the top two test sentences, it gives wrong

predictions on another three test sentences containing long since it tends to express

a negative sentiment in the source Movie domain. Similarly, for B→D, HNN gives

the correct prediction on the first document but wrong predictions on another two

63

MV2→LT Review CNN Joint2

Good keyboard, long battery life, largest hard drive. - -

I don’t use my laptop in a way though that needs a long
Unlabel Data battery life so it’s perfect for me. - -

Toshiba is a great brand, even though I haven’t had it
for a long time, I am very happy with it! - -

Lightweight, long battery life, excellent transition from PC; 1 1

Test Data The battery is really long. 0 1

It is light and the battery last a very long time. 0 1

Very long life battery (up to 10-11 hours depending on ...) 0 1

B→D Review HNN DSR2

Very good film with a great cast. Reese and wahlberg are
wonderful in Very much worth watching / owning. - -

A great movie! What an all star cast! This movie is
Unlabel Data worth watching over and over again. - -

I found this dvd to be engaging ... Fantastic. Loads of
deleted scenes that are very worth watching. - -

Definitely a great movie, rules It is a movie definitely
worth watching Strongly recommended with 1 1

If your not already hooked on the story of these Its not
Test Data your typical medical drama and certainly worth watching. 0 1

...... The plot is not very intriguing...... So no wonder you
can not compete with him. Anyway, this film is certainly

worth watching as a family entertainment! 0 1

Table 4.6: Examples drawn from MV2→LT and B→D whose sentiment labels are in-
correctly predicted by the baseline models (CNN and HNN) but correctly inferred by our
domain adaptation models (Joint2 and DSR2). The sentiment words specific to the target
domain are in bold and italic, and the pivot sentiment words are only in bold. 0 and 1
represent the negative and positive sentiments.

documents containing worth watching, since worth watching only occurs once in

the source BOOK domain. However, our joint model Joint2 and DSR2 make cor-

rect predictions for all these test samples. The reason is as follows. In Table 4.6,

we can observe that in the unlabeled data from the Laptop domain and the DVD

domain, long and worth watching often co-occur with some general positive sen-

timent words like good, great, wonderful and fantastic. Based on these unlabeled

64

sentences, our joint models Joint2 and DSR2 can implicitly learn that long and

worth watching are highly correlated with the positive sentiment via our auxiliary

task, and ultimately make correct predictions for all the test samples. This further

indicates that our joint models can identify more domain-specific sentiment words

in comparison with the standard model without domain adaptation, and therefore

improve the performance.

4.6 Discussion

In this chapter, we presented a general NN-based domain adaptation framework

for sentiment classification. Under the framework, we first devised two new aux-

iliary tasks based on domain-independent sentiment words. Then, we employed

two existing neural network architectures to respectively induce shared sentence

embeddings for sentence-level sentiment classification and shared document/sen-

tence embeddings for document-level sentiment classification. Experiment results

on several benchmark data sets show that most of our proposed models can outper-

form several highly competitive domain adaptation methods, and with the help of

an external sentiment lexicon, our best model can even achieve the state-of-the-art

result.

65

Part II

Supervised Transfer Learning

66

Chapter 5

A Supervised Neural Domain

Adaptation Framework via Modeling

Domain Relationships for

Retrieval-based Question Answering

Systems

In this chapter, we study supervised domain adaptation for the retrieval-based ques-

tion answering systems, which can be simplified as the well-studied paraphrase

identification (PI) or natural language inference (NLI) tasks. We aim to propose

a general framework for PI and NLI, which can effectively and efficiently adapt the

shared knowledge learned from a resource-rich source domain to a resource-poor

target domain. Specifically, since most existing supervised domain adaptation meth-

ods only focus on learning a shared feature space across domains while ignoring

the relationship between the source and target domains, we propose to simultane-

ously learn shared representations and domain relationships in a unified framework.

Furthermore, we propose an efficient and effective hybrid model by combining a

sentence encoding-based method and a sentence interaction-based method as our

67

base model. Extensive experiments on both paraphrase identification and natural

language inference demonstrate that our base model is efficient and has promis-

ing performance compared to the competing models, and our supervised domain

adaptation method can help to significantly boost the performance. Further analysis

shows that the inter-domain and intra-domain relationship captured by our model

are insightful. Last but not least, we deploy our full domain adaptation model for PI

into our online chatbot system, which can bring in significant improvements over

our existing system. Finally, we launch our new system on the chatbot platform

Eva1 in our E-commerce site AliExpress2.

5.1 Introduction

Question Answering (QA) systems have been widely developed and used in many

domains. Examples of industry applications include Alibaba’s AliME [87, 59], Mi-

crosoft’s SuperAgent [25], Apple’s Siri and Google’s Google Assistant. Generally

speaking, there are two kinds of commonly-used techniques behind most QA sys-

tems: Information Retrieval (IR)-based models [118] and generation-based mod-

els [105]. In this work, we focus on building up an IR-based QA system for auto-

matically answering frequently asked questions (FAQs) in the E-commerce industry.

Figure 5.1 illustrates the workflow of IR-based chatbot systems, where a key

component is the Question Rerank module which reranks candidate questions in a

question-answering knowledge base (KB) to find the best matching question given

a question from a user. This task can be reduced to a paraphrase identification or a

natural language inference problem. Take the query question and knowledge base

shown in Figure 5.1 for example. If we can detect that question C1 in the KB is a

paraphrase of the query question, then we can take its answer as the answer for the

query. In some cases, if we allow the matching question to be more general than the

1https://gcx.aliexpress.com/ae/evaenglish/portal.htm?pageId=
195440

2http://www.aliexpress.com/

68

https://gcx.aliexpress.com/ae/evaenglish/portal.htm?pageId=195440
https://gcx.aliexpress.com/ae/evaenglish/portal.htm?pageId=195440
http://www.aliexpress.com/

Question Processing
1. Coreference Resolution
2. Tokenization

Index and Recall
Lucene Indexing to
recall top K questions.

Candidate QA PairsID

Q: How do I redeem coupons after I get coins?
A: After you get coins, you can exchange for coupons on our app.

How to exchange coins for coupon?

C1

C2

… …

Q: How to exchange the app coins?
A: You can exchange coins in many different ways:
 1. Go to Store Promotion, and exchange for products.
 2. Exchange for coupons on our app.

Query Question Answer
After you ge t co ins , you can
exchange for coupons on our app.

Knowledge Base
(Question-Answer Pairs)

Question Rerank
Similarity computation.

Answer Processing
Return the answer of the
top one question

Figure 5.1: The Workflow of IR-based Chatbot Systems.

query question (i.e., entailed by the query question), we can also take the answer

for question C2 in the KB as the query question’s answer.

In the literature, paraphrase identification (PI) and natural language inference

(NLI) have been extensively studied in the last decade [94, 17, 125, 18, 22]. How-

ever, when applying existing solutions to PI and NLI in chatbot systems in the E-

commerce industry, there are at least two major challenges we face: (1) Lack of rich

training data: All these solutions rely on a large amount of labeled data. However, it

is generally time-consuming and costly to manually annotate sufficient labeled data

for each domain. For example, different product categories might need different

training data. (2) Hard to reach a high QPS3. Most of the existing methods focus

on improving the effectiveness or accuracy without paying much attention to effi-

ciency. For real industry applications, when real-time responses are expected and

a large number of customers are being served simultaneously, we need an efficient

method to support a high QPS.

In this chapter, we try to address the two challenges above. Specifically, we first

make an empirical comparison of both the effectiveness and efficiency of several

3Queries Per Second

69

YTYS
YTYS

Domain Correlation

Source NN Shared NN Target NNShared NN

Source Domain Target Domain

S1 S2 T1 T2

Source Domain Target Domain

Source NN Shared NN Target NN

wS wSC wTC wT

Source Domain Target Domain

a. Fully-Shared Model b. Specific-Shared Model c. Our Model

Source Label Target Label Source Label Target Label

YTYS

Source Label Target Label

S1 S2 T1 T2 S1 S2 T1 T2

d

Domain

wd

wS wSC wTC wT
wS wT

Ω ∈ 𝑅4×4

𝐶(Ω,𝐖)

Figure 5.2: Existing Supervised Domain Adaptation Frameworks.

representative methods for modeling sentence pairs and propose an effective and

efficient hybrid model as our base model. This ensures that we can achieve a high

QPS. On top of the base model, we further design a new Supervised Domain Adap-

tation (SDA) framework, which is able to efficiently improve the performance on a

resource-poor target domain by leveraging knowledge from a resource-rich source

domain.

A Hybrid Base Model. Observing that LSTM-based methods [17, 22] are much

more time-consuming than CNN-based methods [125, 69], we focus on CNN-based

methods in this study. Meanwhile, there are typically two types of CNN-based

methods for the task, namely sentence encoding (SE)-based methods [124, 70] and

sentence interaction (SI)-based methods [42, 82]. We argue that these two types

of methods may highly complement each other, and thus we propose a hybrid

CNN model by combining an SE-based method [125] and an SI-based method [82].

Specifically, we modify the SE-based method using two element-wise comparison

functions inspired by [69, 108] to match the two sentence embeddings, and then

concatenate them together with sentence embeddings from the SI-based method.

Domain Adaptation Framework. Domain adaptation (DA) aims to apply

knowledge gained in a source domain to help a target domain [78]. The key is-

sue is how to transfer the shared knowledge from the source domain to the target

domain while exclude the specific knowledge in the source domain based on the

domain relationship. Most recent studies for DA in NLP perform multi-task feature

70

learning by exploiting different NN models to capture a shared feature space across

domains. As illustrated in Figure 5.2a and Figure 5.2b, one line of work employs a

fully-shared framework to learn a shared representation followed by using two dif-

ferent fully connected layers for each domain [70, 122], while another line of work

uses a specific-shared framework to learn not only a shared representation for both

domains but also a domain-specific representation for each domain [64].

However, the first line of work simply assumes that two domains share the same

feature space but ignore the domain-specific feature space. Although the latter one

is capable of capturing both the shared and the domain-specific representations, it

does not consider any relationships between the weights of the final output layer.

Generally speaking, the weights on the output layer should capture both the inter-

domain and the intra-domain relationships: (1) For the shared feature space across

domains, since it is expected to be domain-independent, the weights correspond-

ing to this feature space in the two domains should be positively related to each

other; (2) For the shared and the domain-specific feature spaces in each domain,

since they are expected to respectively capture domain-independent and domain-

dependent features, their corresponding weights should be irrelevant to each other.

Motivated by such an intuition, in this chapter, we propose a new domain adaptation

method by explicitly modeling the domain relationships via a covariance matrix,

which imposes a regularization term on the weights of the output layer to uncover

both the inter-domain and the intra-domain relationships. Besides, to make the

shared representation more invariant across domains, we follow some recent work

on adversarial networks [36, 64] and introduce an adversarial loss on the shared

feature space in our method. Figure 5.2c gives an outline of our full model.

To evaluate our proposed method, we conduct both intrinsic evaluation and ex-

trinsic evaluation.

Intrinsic Evaluation. We conduct extensive experiments on both a benchmark

dataset and our own dataset. (1) The hybrid CNN model is shown to be not only effi-

cient but also effective, in comparison with several representative methods; (2) Our

71

proposed domain adaptation method can bring significant improvements over the

base model without domain adaptation, and outperform existing SDA frameworks

including the widely used fully-shared model and the recently proposed specific-

shared model; (3) Further analysis on our learned correlation matrix shows that our

method is able to capture the inter-domain and intra-domain relationships.

Extrinsic Evaluation. We deploy our proposed hybrid CNN-based domain

adaptation model into our online chatbot system, which is deployed on a real E-

commerce site AliExpress. Both the offline and the online evaluations show that our

new system can significantly outperform the existing online chatbot system. Finally,

we launch our new system on Eva4, a chatbot platform in AliExpress.

5.2 Model

In this section, we present our general model for paraphrase identification and nat-

ural language inference, which will be used for question reranking in our chatbot-

based QA system.

5.2.1 Problem Formulation and Notation

Our model is designed to address the following general problem. Given a pair of

sentences, we would like to identify their semantic relation. For paraphrase identifi-

cation (PI), the semantic relation indicates whether or not the two sentences express

the same meaning [124]; for natural language inference (NLI), it indicates whether

a hypothesis sentence can be inferred from a premise sentence [17].

Formally, assume there are two sentences X1 = (x1
1,x

1
2, . . . ,x

1
m) and X2 =

(x2
1,x

2
2, . . . ,x

2
n), where xji denotes an l-dimensional dense embedding vector re-

trieved from a lookup table E ∈ Rl×|V| for all the words in the vocabulary V . Our

task is to predict the semantic label y which indicates the relation between X1 and

4Eva can be accessed via the following link: https://gcx.aliexpress.com/ae/
evaenglish/portal.htm?pageId=195440

72

https://gcx.aliexpress.com/ae/evaenglish/portal.htm?pageId=195440
https://gcx.aliexpress.com/ae/evaenglish/portal.htm?pageId=195440

X2. For PI, we assume the label y to be either paraphrase or not paraphrase; for

NLI, we assume y to be either neutral, entailment or contradiction.

We consider a domain adaptation setting, where we have a set of labeled sen-

tence pairs from a source domain and a target domain, respectively, denoted by Ds

and Dt. Note that |Ds| is assumed to be much larger than |Dt|. We seek to use both

Ds and Dt to train a good model so that it can work well in the target domain.

To solve such a problem, a widely used supervised domain adaptation (SDA)

method (as illustrated in Figure 5.2a) is to use the same NN model to transform

every pair of input sentences in both domains into a hidden representation zc ∈

Rq, where q is the size of the hidden representations. To facilitate our discussion,

let us assume zc = fΘc
(X1,X2), where fΘc

denotes the transformation function

parameterized by Θc. Next, for the source and the target domains, we assume that

two fully connected layers are separately learned to map zc to label y.

p(y | zc) =

softmax(Wsczc + bs) if y is source label,

softmax(Wtczc + bt) if y is target label,

where Wsc ∈ R|Y |×q and Wtc ∈ R|Y |×q are weight matrices and bs ∈ R|Y | and

bt ∈ R|Y | are bias vectors.

Besides, another SDA approach was recently proposed to use a domain-shared

NN model and two domain-specific NN models to obtain a shared embedding zc

and two domain-specific embeddings zs = fΘs
(X1,X2) and zt = fΘt

(X1,X2).

Therefore, the output layers are defined as:

p(y | zc, zs) =

softmax(Wsczc + Wszs + bs) if y is source label,

softmax(Wtczc + Wtzt + bt) if y is target label.

The main limitation of the fully-shared framework is that it ignores source-

specific or target-specific features. While for the specific-shared framework, it

73

fails to consider any inherent correlations between the weights on the output lay-

ers. Therefore, we will introduce our proposed method that explicitly incorporates

such correlations into the specific-shared framework in the next session.

5.2.2 Proposed Domain Adaptation Method

Our goal is to model the inter-domain relationship between Wsc and Wtc, and the

intra-domain relationship between Ws and Wsc as well as Wt and Wtc. Hence,

we first reshape each weight matrix into a vector wd ∈ Rq|Y |, followed by concate-

nating all the four reshaped vectors to form a new matrix W ∈ Rq|Y |×4, where each

column corresponds to one weight matrix of the output layer.

Next, to capture the domain relationships mentioned above, we introduce a co-

variance matrix Ω ∈ R4×4. Note that each element Ωi,j indicates the correlation

between Wi and Wj, where i and j are one of s, sc, t and tc. Inspired by a gen-

eral multi-task relationship learning framework as introduced in [135], we consider

confining the output layer’s weights with Ω by using tr(WΩ−1WT), where tr(·)

is the trace of a square matrix. This means that if Ωi,j is a large positive/negative

value, Wi and Wj will be positively/negatively related to each other; otherwise if

Ωi,j is close to zero, Wi and Wj will be irrelevant to each other. Note that to the

best of our knowledge, we are the first to apply the multi-task relationship learning

framework into NN-based domain adaptation methods.

In order to simultaneously learn our model parameters and the domain relation-

ships in a unified framework, we formulate our loss function as follows:

L =
∑
k∈s,t

− 1

nk

nk∑
i=1

log p
(
yi | Xi

1,X
i
2

)
+
λ1

2
tr(WΩ−1WT)

+
λ2

2
||W||2F +

λ3

2
||Θc||2F +

λ4

2
||Θs||2F +

λ5

2
||Θt||2F

s.t. Ω ≥ 0, tr(Ω) = 1. (5.1)

where λ1, λ2, λ3, λ4 and λ5 are regularization parameters, Ω is required to be pos-

74

itive semi-definite, and tr(Ω) is required to be 1 without losing generality. In the

above formulation, the first term refers to the cross-entropy loss for both domains,

and the second term serves as a domain-relationship regularizer to constrain the

weights on the output layer. The remaining terms are standard L2-regularization

terms.

5.2.3 Adversarial Loss

Our above domain adaptation method is based on the specific-shared framework,

which is assumed to well capture the shared and domain-specific feature spaces.

However, as suggested by [64], the shared representation learned in this framework

may still contain noisy domain-specific features. Therefore, to eliminate the noisy

features, here we also consider incorporating an adversarial loss on the shared fea-

ture space so that the trained model can not distinguish between the source and

target domains on it [36].

First, we assume that the shared layer zc is mapped to a binary domain label d,

which indicates whether zc comes from the source or the target domain:

p(d | zc) = softmax(Wdzc + bd).

Since the goal of adversarial training is to encourage the shared feature space in-

discriminate across two domains, we define the adversarial loss as minimizing the

negative entropy of the predicted domain distribution, which is different from max-

imizing the negative cross-entropy as in [36, 64]:

` =
∑
k∈s,t

(1

nk

nk∑
i=1

1∑
j=0

p(dij | Xi
1,X

i
2) log p(dij | Xi

1,X
i
2)
)
. (5.2)

75

Finally, we obtain a combined objective function as follows:

min
Ω,W,Wd,Θc,

Θs,Θt,bs,bt,bd

L+ λ0`

s.t. Ω ≥ 0, tr(Ω) = 1,

where λ0 is a hyper-parameter for tuning the importance of the adversarial loss. As

suggested by [135], it is not easy to optimize such a semi-definite programming

problem. We will present an alternating training approach in Section 5.2.5 for solv-

ing it efficiently.

5.2.4 Base Model

Although the proposed domain adaptation method is general and any neural net-

works for modeling a pair of sentences can be applied to it, we further target at

proposing an efficient and effective base model for encoding a pair of sentences.

On one hand, although various attention-based LSTM architectures have been

proposed to achieve a superior performance on both PI and NLI [92, 83, 108, 22],

these models are very time-consuming due to the computation of memory cells and

attention weights in each time step, which may not satisfy the industry demand, es-

pecially when QPS is high. On the other hand, CNN-based models are proven to be

efficient, hence are the focus of our study. Most existing CNN-based models can be

categorized into two groups: sentence encoding (SE)-based methods and sentence

interaction (SI)-based methods. The former aims to first learn good representations

for each sentence, followed by using a comparison function to transform them into

a single representation [124, 70], while the latter tries to directly model the inter-

action between two sentences at the beginning and then makes abstractions on top

of the interaction output [42, 82]. Observing that the two lines of methods focus

on different perspectives to model sentence pairs, we expect that a combination of

them can capture both good sentence representations and rich interaction structures.

76

... ...

... ...

...

...

... ...

...

...

...

......

More 2D Convolution & Pooling
concat, & -

concat

...

T1 T2

Source NN Shared NN Target NN

wS wSC wTC wT

Source Domain Target Domain

YTYS

Source Label Target Label

S1 S2 T1 T2

d

Domain

wd

Cross-Domain Correlation

Figure 5.3: Our Full Domain Adaptation Model for Paraphrase Identification and Natural
Language Inference.

Hence, we propose a hybrid CNN (hCNN) model, which are based on some

minor modifications of two existing models: a SE-based BCNN model [125] and a

SI-based Pyramid model [82]. Figure 5.3 depicts our full domain adaptation frame-

work, which contains one shared hCNN and two domain-specific hCNNs. Below

we briefly go through the architecture of hCNN. Note that in our implementation

and the model description below, we pad the two input sentences to the same length

m.

Modified BCNN: Following the original BCNN [125], we first use two sepa-

rate 1-D convolutional (conv) and 1-D max-pooling layers to encode the two input

sentences into two sentence embeddings:

h1 = CNN(X1); h2 = CNN(X2).

Furthermore, as suggested by [69, 108] that element-wise comparison can work

well on the problem, we use two comparison functions to match the two sentence

embeddings, and then concatenate them together with the sentence embeddings as

the sentence pair representation:

Hb = h1 ⊕ h2 ⊕ (h1 − h2)⊕ (h1 · h2),

where − and · refer to element-wise subtraction and element-wise multiplication,

77

and ⊕ refers to concatenation. Note that this setting is different from the original

BCNN, which yields better performance in our empirical experiments.

Pyramid: As shown in the rightmost part of Figure 5.3, we first produce an

interaction matrix M ∈ Rm×m, where Mi,j denotes the similarity score between

the ith word in X1 and the j th word in X2. Following [82], we use dot-product to

compute the similarity score.

Next, by viewing the interaction matrix as an image, we stack two 2-D convolu-

tional layers and two 2-D max-pooling layers on it to obtain the hidden representa-

tion Hp.

Finally, we concatenate the two hidden representations as the final representa-

tion for each input sentence pair:

z = Hb ⊕Hp.

5.2.5 Inference

In our combined objective function, we have nine parameters Ω, W, Wd, bs, bt,

bd, Θc, Θs and Θt, and it is not easy to optimize them at the same time. Hence,

we employ an alternating stochastic method, i.e., first optimizing the other eight

parameters by fixing Ω, and then alternatively optimizing Ω by fixing the others in

each iteration. The details are given as below:

Updating W, Wd, bs, bt, bd, Θc, Θs and Θt. While fixing Ω, the optimization

problem becomes:

min
W,Wd,Θc,Θs,

Θt,bs,bt,bd

∑
k∈s,t

(1

nk

nk∑
i=1

(
− log p(yi | Xi

1,X
i
2)

+ λ0

1∑
j=0

p(dij | Xi
1,X

i
2) log p(dij | Xi

1,X
i
2)
))

+
λ1

2
tr(WΩ−1WT)

+
λ2

2
||W||2F +

λ3

2
||Θc||2F +

λ4

2
||Θs||2F +

λ5

2
||Θt||2F

78

Algorithm 1 Training Procedure for our Full Model
1: Input: source training data Ds, target training data Dt (|Ds| � |Dt|).
2: Output: Ω, W, Wd, bs, bt, bd, Θc, Θs, Θt.
3: Initialization:
4: Initialize W, Wd, bs, bt, bd, Θc, Θs, Θt with random values
5: Initialize Ω = 1

4
I4, where I is an identity matrix

6: epoch = 0
7: while epoch ≤ MaxEpoch do
8: cs, ct = 0, 0
9: while cs ≤ src batches do

10: read the csth mini-batch from the source domain
11: Update Θc, Θs, W, Wd, bs and bd

12: cs += 1
13: if ct == tgt batches then
14: ct = 0

15: Update Ω = (WT W)
1
2

tr
(

(WT W)
1
2

)
16: end if
17: read the ctth mini-batch from the target domain
18: Update Θc, Θt, W, Wd, bt and bd

19: ct += 1
20: end while
21: epoch = epoch + 1
22: end while

Since it is a smooth function, we can easily compute its partial derivatives with

respect to the eight parameters.

Updating Ω. After fixing the eight parameters, the optimization problem is as

follows:

min
Ω

tr(WΩ−1WT)

s.t. Ω ≥ 0, tr(Ω) = 1.

As proved by [135], the above optimization problem has an analytical solution Ω =

(WT W)
1
2

tr
(

(WT W)
1
2

) .

Finally, we present the whole procedure for training our full model as in Algo-

rithm 1. Note that we only update Ω when we scan all the target training instances

once.

79

5.2.6 Implementation Details

In our implementation, we set the dimensionality of word embeddings l to 300, and

initialize the lookup table E with the pre-trained vectors from GloVe [84]. Based on

our preliminary exploration, for BCNN, the window size and the activation function

are set to be 4 and ReLU; for the two convolution layers of Pyramid, the number

of feature maps is set to be 8 and 16, the strides are set to be 1 and 3, and the kernel

sizes are set to be 6× 6 and 4× 4; for the two max-pooling layers of Pyramid, the

strides are set to be 4 and 2, and the pooling sizes are set to be 4 × 4 and 2 × 2.

Besides, for λ0 and λ1, we set them as 0.05 and 0.0008; while for λ2, λ3, λ4 and

λ5, we set them as 0.0004. AdaGrad [34] is used to train our model with an initial

learning rate of 0.08.

5.3 Online System

As introduced in Section 5.1, our online chatbot system is based on traditional in-

formation retrieval techniques, where the goal is to obtain the nearest question in the

knowledge base for a given customer question [46]. Figure 5.1 depicts the whole

system architecture.

Specifically, we first build an indexing for all the questions in our knowledge

base (KB) using Apache Lucene 5. Next, given a query question, we employ TF-IDF

ranking algorithm [113] in Lucene to compute its similarities to all the questions in

the KB, and call back the top-K candidate questions. We then use a reranking

algorithm to compute the similarities between the query and the K candidates, and

obtain the most similar candidate. Finally we return the answer of the selected

candidate to answer the query question. Note that in this chapter, we only consider

formulating our question rerank module as a PI task, but one can also model it as an

NLI task.

Our existing reranking method is based on this ensemble method for the An-

5https://lucene.apache.org/core/

80

https://lucene.apache.org/core/

Train Dev Test

Q-Q Pairs 29,884/8,624 7,622/1,968 7,569/2,133

AliExpress
#Query-Q 3202/2414 781/578 777/584
#Candi-Q 9.33 9.76 9.74
#words per Query-Q 11.71 11.73 12.04
#words per Candi-Q 8.37 8.37 8.54

Quora Q-Q Pairs 404,290/149,265 N.A. N.A.

Table 5.1: Statistics of Paraphrase Identification Datasets

swer Selection task [106]. But instead of using the output of the time-consuming

LSTM model, we feed another three features, namely, Word Mover’s Distance [55],

keywords features [106] and the cosine distance of sentence embeddings [111] to a

gradient boosted regression tree (GBDT).

To combine our model with the existing ranking method, we treat the probability

of being paraphrases predicted by our model as an additional feature, and feed all

features to GBDT for reranking.

5.4 Experiments

In this section, we describe a qualitative evaluation of our proposed methods from

the following perspectives: (1) From Section 5.4.1 to Section 5.4.4, we perform an

intrinsic evaluation by utilizing a benchmark dataset and our own dataset to show

the efficiency and effectiveness of our proposed base model and domain adaptation

framework; (2) In Section 5.4.5, we deploy our full model into our chatbot sys-

tem, and conduct an extrinsic evaluation to show that our full model can bring in

significant improvements to our existing online chatbots.

5.4.1 Experiment Settings

Datasets: In this section, we evaluate our methods on both Paraphrase Identification

(PI) and Natural Language Inference (NLI).

81

SNLI Fiction Travel Slate Telephone Government

Train 550,125 77,348 77,350 77,306 83,348 77,350

Dev 10,000 2,000 2,000 2,000 2,000 2,000

Test 10,000 2,000 2,000 2,000 2,000 2,000

Table 5.2: Statistics of the MultiNLI Dateset

For PI, we used a recently released large-scale dateset6 by Quora as the source

domain, and our E-commerce dataset as the target domain. Based on our historical

data, we constructed a question answering KB, which consists of around 15,000

commonly asked QA pairs. To create labeled question pairs, we first collected all

the query questions from the chat log of conversations between clients and our staff

from May 22 to May 28, 2017. For each query question, we then used Lucene

indexing to retrieve several of its similar questions, and obtained 45,075 question

pairs. Finally, we asked a business analyst to annotate all the question pairs.

For NLI, we employed a large-scale multi-genre corpus [112], which contains

an image captioning domain (SNLI) and another five distinct genres/domains about

written and spoken English (MultiNLI)7. Since the number of sentence pairs in

SNLI is much larger than that in the other five domains, we took SNLI as the source

domain, and the others as the target domains.

Table 5.1 and Table 5.2 summarize the statistics of our datasets. Note that in Ta-

ble 5.1, the number before and after the slash for Q-Q pairs denote respectively the

total number of question pairs and the number of positive question pairs (i.e., para-

phrases), while the two numbers for #Query-Q respectively denote the total number

of query questions and the number of questions with paraphrasing candidates. Be-

sides, for #Candi-Q, we refer to the average number of candidate questions for each

query.

Compared Methods: For base models, we compared our hCNN model with the

following models:
6https://www.kaggle.com/c/quora-question-pairs
7For the MultiNLI dataset, we use Version 0.9 in this chapter. Note that since the label of the

original test set is unavailable, we treat its development set as our test set, and randomly choose 2000
sentence pairs from its training set as our development set.

82

• BCNN is the left component of our hCNN model, which incorporates

element-wise comparisons on top of the base model proposed in [125].

• Pyramid is the right component of our hCNN model based on sentence inter-

actions as in [82].

• ABCNN is the attention-based CNN model by [125].

• BiLSTM is similar to BCNN, but uses LSTM instead of CNN to encode each

sentence as in [17].

• ESIM is one of the state-of-the-art attention-based LSTM models on SNLI

proposed by [22].

• hCNN is our hybrid CNN model as introduced in Section 5.2.4.

For evaluating the proposed domain adaptation framework, we employed the

following compared systems:

• Tgt-Only is the baseline trained in the target domain.

• Src-Only is another baseline trained in the source domain.

• Mixed is to simply combine the labeled data in the two domains to train the

hCNN model.

• Fine-Tune is a widely used SDA method, where we first train a model on

the source data, and then use the learned parameters to initialize the model

parameters for training another model on the target data.

• FS and SS are the fully-shared and specific-shared frameworks as detailed in

Section 5.2.2.

• DRSS is our proposed model of learning domain relationships based on SS

as in Section 5.2.2.

83

E-Commerce SNLI

AUC ACC Test Time(ms) ACC Test Time(ms)

BCNN 81.0 77.5 2.8 81.0 3.3
Pyramid 77.8 77.0 3.8 77.7 5.3
ABCNN 81.0 78.2 5.2 81.8 12.3
hCNN 82.2† 79.2† 4.3 83.2† 6.4

BiLSTM 79.9 77.8 7.1 80.6 19.6
ESIM 84.2 79.8 32.2 86.7 79.5

Table 5.3: A Comparison Between Different Base Models

• SS-Adv and DRSS-Adv denote adding the adversarial loss into SS and DRSS

as in Section 5.2.3.

All the methods in this chapter are implemented with Tensorflow and are trained

on machines with NVIDIA Tesla K40m GPU.

Evaluation Metrics: For PI, since our goal is to retrieve the most similar candidate

for each query question, we use our model to predict each candidate’s probability of

being paraphrase as its similarity score, and then rank all the candidates. To evalu-

ate the ranking performance, we use Precision@1, Recall@1, F1@1 as metrics; to

evaluate the classification performance for all question pairs, we employ two met-

rics: the Area under the Receiver Operating Characteristic curve (AUC) score [19]

and the classification accuracy (ACC). For NLI, we only use ACC as the evaluation

metric.

5.4.2 Comparisons Between Base Models

In Table 5.3, we compared different models for classifying sentence pairs with

hCNN in both efficiency and effectiveness. Note that to fairly evaluate the effi-

ciency of each model, we compute the total time of predicting all the test sentence

pairs on CPU by setting the mini-batch size to 1, and report the average time. Also,

for feature map sizes in BCNN, ABCNN and the BCNN component in hCNN, we

set them as 50 for PI and 300 for NLI.

First, we can find that LSTM-based methods are generally much slower than

84

Prec@1 Rec@1 F1@1 ACC AUC

Tgt-Only 0.717 0.551 0.623 0.792 0.822
Src-Only 0.619 0.368 0.461 0.719 0.686
Mixed 0.735 0.532 0.618 0.788 0.810
Fine-Tune 0.713 0.567 0.632 0.790 0.825
FS 0.734 0.595 0.657 0.797 0.831
SS 0.744 0.601 0.665 0.800 0.837
SS-Adv 0.743 0.603 0.666 0.808 0.842

DRSS 0.757 0.608 0.674† 0.812† 0.847
DRSS-Adv 0.753 0.620 0.680† 0.809 0.849

Table 5.4: The Result of Paraphrase Identification Task

CNN-based methods. Especially for ESIM, although it can outperform all CNN-

based models, its computational time for each sentence pair is 32.2ms for our dataset

and 79.5ms for SNLI, which is 6-11 times of CNN-based models. This means that

most existing state-of-the-art models can only support low QPS, and therefore hard

to be applied to industry. Second, clearly for both tasks, hCNN performs better

than the other CNN-based methods, which indicates that BCNN and Pyramid are

complementary to each other, and can work better when combined. Moreover, we

verified that the improvements of hCNN over the other methods are significant with

p < 0.05 based on McNemar’s paired significance test [37]. Finally, while the

computational cost of hCNN is slightly higher than BCNN and Pyramid, it can still

serve 233 question pairs per second, which is able to satisfy the current demand of

our industrial bot.

5.4.3 Comparisons Between DA Methods

We further evaluated the performance of our domain adaptation method in Table 5.4

and Table 5.5.

We can observe from Table 5.5 that for all the five target domains, Src-Only

perform much worse than Tgt-Only, and the average performance of Mixed is even

worse than Tgt-Only. This implies that the source domain is quite different from all

the target domains, and simply mixing the training data in two domains may lead to

85

Fict. Trav. Gov. Tele. Slate AVG

Tgt-Only 0.647 0.658 0.692 0.644 0.579 0.644
Src-Only 0.520 0.516 0.540 0.520 0.488 0.517
Mixed 0.647 0.647 0.675 0.648 0.580 0.639
Fine-Tune 0.653 0.652 0.684 0.651 0.591 0.646
FS 0.662 0.671 0.704 0.657 0.588 0.656
SS 0.653 0.668 0.700 0.668 0.592 0.656
SS-Adv 0.666 0.666 0.701 0.664 0.597 0.659

DRSS 0.665 0.674† 0.706† 0.673† 0.605† 0.665
DRSS-Adv 0.676† 0.673 0.707† 0.675† 0.607† 0.668

Table 5.5: The Classification Result of NLI Task

the model overfitting the source data since |Ds| is much larger than |Dt|. In addition,

it is observed that the widely used Fine-Tune method can perform slightly better

than Tgt-Only in most cases, which shows that pre-training the model parameters

on a related source domain is better than randomly initializing them. Moreover, in

all the five domains, the performance of two existing supervised domain adaptation

frameworks FS and SS are both 1.9% better than that of Tgt-Only, which proves

their usefulness. Furthermore, our proposed method DRSS improves the average

performance of SS to 0.665, and the improvements are significant over all the tasks

with p < 0.05 based on McNemar’s paired significance test. This suggests that cap-

turing the relationship between domains is generally useful for domain adaptation.

Finally, we can see that the incorporation of adversarial loss into SS and DRSS fur-

ther boosts their performance, and DRSS-Adv can achieve the best accuracy across

all the methods. Similar trends can be also observed for the PI task from Table 5.4.

Interestingly, by comparing Table 5.3 and Table 5.4, we find that with the help of

training data from the source domain, the performance of DRSS-Adv is even better

than that of ESIM. These observations demonstrate the effectiveness of our domain

adaptation method.

Apart from the effectiveness, we also measure the efficiency of each method.

Since the first five methods only use a single hCNN model for prediction, the com-

putational time is the same as hCNN. As for SS, DRSS and their adversarial exten-

86

S SC T TC

S

SC

T

TC

SNLI→Slate

S SC T TC

S

SC

T

TC

SNLI→ Fict.

S SC T TC

S

SC

T

TC

SNLI→Trav.

S SC T TC

S

SC

T

TC

SNLI→Gov.

S SC T TC

S

SC

T

TC

SNLI→Tele.

S SC T TC

S

SC

T

TC

Quora→ECom.

Figure 5.4: Learnt Correlation Matrix. A darker color means a larger entry value.
S:Source, T:Target, SC:Source-shared, TC: Target-shared.

sions, the computational time is 6.9ms, which is slightly longer than the other five

methods but still much shorter than LSTM-based methods as in Table 5.3.

5.4.4 Domain Relationships

After obtaining the covariance matrix Ω for each source/target pair, we can derive

their corresponding correlation matrices. For better comparison, here we show the

square root of the correlation matrices for DRSS.

As shown in Figure 5.4 that across all the six source/target pairs, Wsc and Wtc

are positively related with each other. This is intuitive as the shared network is

supposed to learn shared features between the source and the target domains, thus

the learned Wsc and Wtc should be close to each other. This also shows the learned

correlation matrix helps to capture the inter-domain relationship between Wsc and

Wtc.

In Figure5.4, we can also see that for most source/target pairs except

SNLI→Fict, the correlation between Ws and Wsc and that between Wt and Wtc

learnt by our model are with small values. This indicates that in most cases, the

shared feature space and the domain-specific feature space learnt by SS tend to be

87

different from each other, and our model can help to reveal such intra-domain rela-

tionships.

Finally, to help us get a deeper insight on the helpfulness of the adversarial

training, we perform comparisons on the correlation matrices learnt by DRSS and

DRSS-Adv. We first show the result of SNLI→Fict. in Table 5.6. As we can see,

for DRSS, the correlation between Ws (or Wt) and Wsc (or Wtc) is relatively

large, while for DRSS-Adv, the correlation is relatively small. For the other sub-

tasks, we find that the learnt matrices of DRSS-Adv are similar to those of DRSS,

but we still observe that the intra-domain correlations of DRSS-Adv are generally

smaller than those of DRSS. This shows that adding the adversarial loss can en-

courage the shared feature space to capture more domain-independent features, and

further make the shared and domain-specific feature spaces more different. There-

fore, the adversarial training can lead our model to better satisfy our assumption on

the domain relationships, and finally improve the performance. All the above obser-

vations demonstrate that our model can capture the inter-domain and intra-domain

relationship as mentioned in Section 5.2.2.

5.4.5 Extrinsic Evaluations

As mentioned in Section 5.3, for the online reranking algorithm, we propose to

train GBDT by treating the prediction score of our DRSS model as another feature.

To achieve this, we first took out the prediction scores of our DRSS model on the

validation set. Then, we combined them together the other features as introduced

DRSS DRSS-Adv

Ws Wsc Wt Wtc Ws Wsc Wt Wtc

Ws 1.000 0.242 0.101 0.205 1.000 0.090 0.055 0.062
Wsc 0.242 1.000 0.008 0.247 0.090 1.000 0.024 0.221
Wt 0.101 0.008 1.000 0.127 0.055 0.024 1.000 0.043
Wtc 0.205 0.247 0.127 1.000 0.062 0.221 0.043 1.000

Table 5.6: Correlation Matrices on SNLI→Fict.

88

Offline Online Evaluation

F1@1 Time(ms per query) Prec@1

GBDT 0.539 20.1 0.614
GBDT-DRSS 0.681 80.7 0.729

Table 5.7: The Performance of Online Serving.

in Section 5.3, and trained GBDT on the validation set. The model performance on

the test set is reported in Table 5.7. Note that the test time here denotes the average

serving time (including the Response Time), which is different from the reported

test time in Table 5.3.

As we can see from the offline test, the GBDT model with the feature derived

from our DRSS model (referred to as GBDT-DRSS) is respectively 26.3% and 7.1%

better than our existing online model (referred to as GBDT) and the GBDT model

with the feature derived from hCNN (refered to as GBDT-hCNN) in F1@1. Al-

though adding our DRSS feature leads to more computational time, the total predic-

tion time is 80.7ms for each query question (i.e., QPS of 12), which is acceptable

for our chatbots.

For online serving, to accelerate the computation, we set the number of candi-

dates returned by Lucene as 30, and bundle the 30 candidates into a mini-batch to

feed into our model for prediction. For online evaluation, we randomly sampled

2750 questions, where 1317 questions are answered by GBDT and 1433 questions

are answered by GBDT-DRSS. Then, we asked one business analyst to annotate if

the nearest question returned by models expresses the same meaning as the query

question, and compared their precision at top-1. As shown in Table 5.7, the Prec@1

of GBDT-DRSS is 18.8% higher than that of GBDT.

5.5 Discussion

In this chapter, we systematically evaluated different base methods and domain

adaptation techniques for modelling sentence pairs, with the goal of proposing an

89

effective and efficient domain adaptation framework for PI and NLI. Specifically,

we first proposed a hybrid CNN model on the basis of two existing models, and

then further proposed a general supervised domain adaptation framework, which

can simultaneously perform the shared feature learning and domain relationship

learning in an end-to-end mode. Evaluations on both a benchmark dataset and our

own dataset showed that (1) our hybrid CNN model is both effective and efficient in

comparison with several representative models; (2) our domain adaptation frame-

work can outperform all the existing frameworks across six source/target pairs. We

further deployed our full domain adaptation model in our online chatbot system,

and showed that it can improve the performance of the existing system by a large

margin.

90

Chapter 6

Improving Multi-label Emotion

Classification via Sentiment

Classification with Dual Attention

Transfer Network

In this chapter, we target at improving the performance of multi-label emotion clas-

sification with the help of sentiment classification. Specifically, we propose a new

transfer learning architecture to divide the sentence representation into two differ-

ent feature spaces, which are expected to respectively capture the general senti-

ment words and the other important emotion-specific words via a dual attention

mechanism. Extensive experimental results demonstrate that our transfer learning

approach can outperform several strong baselines and achieve the state-of-the-art

performance on two benchmark datasets.

6.1 Introduction

In recent years, the number of user-generated comments on social media plat-

forms has grown exponentially. In particular, social platforms such as Twitter allow

91

ID Tweet Emotion

T1 AI revolution, soon is possible #fearless #good #goodness joy, optimism
T2 Shitty is the worst feeling ever #depressed #anxiety fear, sadness
T3 I am back lol. #revenge joy, anger

Table 6.1: Example Tweets from SemEval-18 Task 1.

users to easily share their personal opinions, attitudes and emotions about any topic

through short posts. Understanding people’s emotions expressed in these short posts

can facilitate many important downstream applications such as emotional chat-

bots [139], personalized recommendations, stock market prediction, policy stud-

ies, etc. Therefore, it is crucial to develop effective emotion detection models to

automatically identify emotions from these online posts.

In the literature, emotion detection is typically modeled as a supervised multi-

label classification problem, because each sentence may contain one or more emo-

tions from a standard emotion set containing anger, anticipation, disgust, fear, joy,

love, optimism, pessimism, sadness, surprise and trust. Table 6.1 shows three ex-

ample sentences along with their emotion labels. Traditional approaches to emo-

tion detection include lexicon-based methods [110], graphical model-based meth-

ods [61] and linear classifier-based methods [89, 60]. Given the recent success

of deep learning models, various neural network models and advanced attention

mechanisms have been proposed for this task and have achieved highly competitive

results on several benchmark datasets [109, 1, 35, 7, 39, 52].

However, these deep models must overcome a heavy reliance on large amounts

of annotated data in order to learn a robust feature representation for multi-label

emotion classification. In reality, large-scale datasets are usually not readily avail-

able and costly to obtain, partly due to the ambiguity of many informal expressions

in user-generated comments. Conversely, it is easier to find datasets (especially

in English) associated with another closely-related task: sentiment classification,

which aims to classify the sentiment polarity of a given piece of text (i.e., posi-

tive, negative and neutral). We expect that these resources may allow us to improve

sentiment-sensitive representations and thus more accurately identify emotions in

92

31

L
S
T
M

ys yt

xs xt

L
S
T
M

L
S
T
M

L
S
T
M

ys yt

xs xt

L
S
T
M

L
S
T
M

ys yt

xs xt

a. Fully-Shared (FS) b. Private-Shared-Private (PSP) d. Dual Attention Transfer Network

α𝑠 α𝑠α𝑝 α𝑝 α𝑠 α𝑝

L
S
T
M

L
S
T
M

ys yt

xs xt

α𝑠 α𝑝

c. Shared-Private (SP)

Attention
weights

Sentence
Embedding

Sentence
Encoding

Layer

Figure 6.1: Overview of Different Transfer Learning Models.

social media posts. To achieve these goals, we propose an effective transfer learn-

ing (TL) approach in this chapter.

Most existing TL methods either 1) assume that both the source and the tar-

get tasks share the same sentence representation [70] or 2) divide the represen-

tation of each sentence into a shared feature space and two task-specific feature

spaces [64, 133], as demonstrated by Figure 6.1.a and Figure 6.1.b. However, when

applying these TL approaches to our scenario, the former approach may lead the

learnt sentence representation to pay more attention to general sentiment words such

as good but less attention to the other sentiment-ambiguous words like shock that

are also integral to emotion classification. The latter approach can capture both the

sentiment and the emotion-specific words. However, some sentiment words only

occur in the source sentiment classification task. These words tend to receive more

attention in the source-specific feature space but less attention in the shared feature

space, so they will be ignored in our emotion classification task. Intuitively, any

sentiment word also indicates emotion and should not be ignored by our emotion

classification task.

Therefore, we propose a shared-private (SP) model as shown in Figure 6.1.c,

where we employ a shared LSTM layer to extract shared sentiment features for

both sentiment and emotion classification tasks, and a target-specific LSTM layer

to extract specific emotion features that are only sensitive to our emotion classifica-

tion task. However, as pointed out by [64] and [133], it is not guaranteed that such

a simple model can well differentiate the two feature spaces to extract shared and

93

target-specific features as we expect. Take the sentence T1 in Table 6.1 as an exam-

ple. Both the shared and task-specific layers could assign higher attention weights to

good and goodness due to their high frequencies in the training data but lower atten-

tion weights to fearless due to its rare occurrences. In this case, this SP model can

only predict the joy emotion but ignores the optimism emotion. Hence, to enforce

the orthogonality of the two feature spaces, we further introduce a dual attention

mechanism, which feeds the attention weights in one feature space as extra inputs

to compute those in the other feature space, and explicitly minimizes the similarity

between the two sets of attention weights. Experimental results show that our dual

attention transfer architecture can bring consistent performance gains in compari-

son with several existing transfer learning approaches, achieving the state-of-the-art

performance on two benchmark datasets.

6.2 Methodology

6.2.1 Base Model for Emotion Classification

Given an input sentence, the goal of emotion analysis is to identify one or multiple

emotions contained in it. Formally, let x = (w1,w2, . . . ,wn) be the input sentence

with n words, where wj is a d-dimensional word vector for word wj in the vocabu-

lary V , and is retrieved from a lookup table E ∈ Rd×|V|. Moreover, let E be a set of

pre-defined emotion labels. Accordingly, for each x, our task is to predict whether

it contains one or more emotions in E . We denote the output as e ∈ {0, 1}K where

ek ∈ {0, 1} denotes whether or not x contains the k-th emotion. We further assume

that we have a set of labeled sentences, denoted by De = {x(i), e(i)}Ni=1.

Sentence Representation: As any standard text classification problem, the hid-

den representation hj of each word wj in the input sentence can be computed with

any effective neural network architectures, including CNN [50], RNN [24] and

Tree-Structured Neural Networks (TNN) [96, 100]. Since our goal is to leverage

94

sentiment classification to help improve the state-of-the-art performance of multi-

label emotion classification, we use the attention-based LSTM model as our base

model in this Chapter, which has been shown to perform much better than CNN-

based approaches [39, 7]. Specifically, we first employ the standard bi-directional

Long Short Term Memory (Bi-LSTM) network to sequentially process each word

in the input:

−→
hj = LSTM(

−−→
hj−1,xj,Θf),

←−
hj = LSTM(

←−−
hj+1,xj,Θb),

where Θf and Θb denotes all the parameters in the forward and backward LSTM.

Then, for each word xj , its hidden state hj ∈ Rd is generated by concatenating
−→
hj

and
←−
hj as hj = [

−→
hj ;
←−
hj].

For emotion classification, since emotion words are relatively more important

for final predictions, we adopt the widely used attention mechanism [6] to select the

key words for sentence representation. Specifically, we first take the final hidden

state hn as a sentence summary vector z, and then obtain the attention weight αi for

each hidden state hj as follows:

uj = v> tanh(Whhj + Wzz), (6.1)

αj =
exp(uj)∑n
l=1 exp(ul)

, (6.2)

where Wh,Wz ∈ Ra×d and v ∈ Ra are learnable parameters. The final sentence

representation H is computed as:

H =
n∑
j=1

αjhj.

Output Layer: We first apply a Multilayer Perceptron (MLP) with one hidden layer

on top of H, followed by normalizing it to obtain the probability distribution over

95

all of the emotion labels:

p(e(i) | H) = o(i) = softmax(MLP(H)).

Then, we propose to minimize the KL divergence between our predicted probability

distribution and the normalized ground truth distribution as our objective function:

L =
1

N

N∑
i=1

K∑
k=1

e
(i)
k

(
log(e

(i)
k)− log(o

(i)
k)
)
.

During the test stage, we will select a threshold γ on the development set so that the

emotion with scores higher than γ will be predicted as 1.

6.2.2 Transfer Learning Architecture

Due to the limited number of annotated data for multi-label emotion classification,

here we resort to sentiment classification to consider a transfer learning scenario.

Let Ds = {x(m), y(m)}Mm=1 be another set of labeled sentences for sentiment classi-

fication, where y(m) is the ground-truth label indicating whether the m-th sentence

is positive, negative or neutral.

Shared-Private (SP) Model

Intuitively, sentiment classification is a coarse-grained emotion analysis task, and

can be fully leveraged to learn a more robust sentiment-sensitive representation.

Therefore, we first use a shared attention-based Bi-LSTM layer to transform the in-

put sentences in both tasks into a shared hidden representation Hc, and also employ

another task-specific Bi-LSTM layer to get the target-specific hidden representation

Ht. Next, we employ the following operations to map the hidden representations to

96

31

See Justin Bieber …… So happy

... ...
AI revolution #fearless …… #good #goodness

......

Softmax

Source Task
positiveneutralnegtive

MLP

joy

Target Task

optimismloveanticipation anger fear disgust sad surprise pessimismtrust

Source Input Sentence Target Input Sentence

α𝑠

α𝑡Hc

Ht

Figure 6.2: Dual Attention Transfer Network.

the sentiment label y and the emotion label e:

p(y(m)|Hc) = softmax
(
WsHc + bs

)
,

p(e(i)|Hc,Ht) = softmax
(
MLP([Hc; Ht])

)
,

where Ws ∈ Rd×3 and bs ∈ R3 are the parameters for the source sentiment classi-

fication task.

Proposed Dual Attention Transfer Network (DATN)

As we introduced before, the shared and target-specific feature spaces in the above

SP model are expected to respectively capture the general sentiment words and

the task-specific emotion words. However, without any constraint, the two feature

spaces may both tend to pay more attention to frequently occurring and important

sentiment words like great and happy, but less to those rarely occurring but cru-

cial emotion words like anxiety and panic. Therefore, to encourage the two feature

spaces to focus on sentiment words and emotion-specific words respectively, we

propose using the attention weights computed from the shared layer as extra inputs

to compute the attention weights of the target-specific layer. Specifically, as shown

in Figure 6.2, we first use Eq.6.1 and Eq.6.2 to compute the attention weights αs in

97

the shared layer, and then use the following equation to obtain the attention weights

αt in the target specific layer:

utj = vt
>

tanh(Wt
hh

t
j + wαα

s
j + Wt

zz
t),

αtj =
exp(utj)∑n
l=1 exp(utl)

.

In addition, we introduce another similarity loss to explicitly enforce the difference

between the two attention weights and minimize the cosine similarity between αs

and αt.

Finally, our combined objective function is defined as follows:

J =− 1

M

M∑
m=1

log p(ym|Hc) + L+ λ
N∑
i=1

cos sim(αsi , α
t
i),

where λ is a hyperparameter used to control the effect of the similarity loss.

Model Details

During the training stage, we adopted the widely used alternating optimization strat-

egy, which iteratively samples one mini-batch fromDs for only updating the param-

eters in the left part of our model, followed by sampling another mini-batch from

De for updating all the parameters in our model. It is also worth noting that in Fig-

ure 6.2, we first obtain the shared attention weights αs and feed it as extra inputs to

compute αt. In fact, to differentiate the attention weights in the two feature spaces,

we can also first compute αt, followed by computing αs based on αt. We refer to

these two variants of our model as DATN-1 and DATN-2 respectively.

6.3 Experiments

6.3.1 Experiment Settings

Datasets: We conduct experiments on both English and Chinese languages.

98

Dataset Train Dev Test Words

E1 SemEval-18 6,838 886 3,259 32,557
S1 SemEval-16 28,631 - - 40439

E2 Ren-CECps-1 13,841 1,972 3,602 40,099S2 Ren-CECps-2 15,199 - -

Table 6.2: The number of sentences in each dataset.

For English, we employ a widely used Twitter dataset from SemEval 2016 Task

4A [72] as our source sentiment classification task. For our target emotion classi-

fication task, we use the Twitter dataset recently released by SemEval 2018 Task

1C [68], which contains 11 emotions as shown in the top of Figure 6.2. To tokenize

the tweets in our dataset, we follow [75] by adopting most of their preprocessing

rules except that we split the hashtag into ‘#’ and its subsequent word.

For Chinese, we use a well-known Chinese blog dataset Ren-CECps from [88],

which contains 1487 documents with each sentence labeled by a sentiment label and

8 emotion labels: anger, expectation, anxiety, joy, love, hate, sorrow and surprise.

Given the difficulty of finding a large-scale sentiment classification dataset specific

to Chinese blogs, we simply divided the original dataset to form our source and

target tasks1. The basic statistics of our two datasets are summarized in Table 6.2.

Parameter Settings: The word embedding size d is set to be 300 for E1 and

200 for E2, and the lookup table E is initialized by pre-trained word embeddings

based on Glove2. The hidden dimension and the number of LSTM layers in both

datasets are set to be 200 and 1. During training, Adam [53] is used to schedule the

learning rate, where the initial learning rate is set to be 0.001. Also, the dropout rate

is set to 0.5. After tuning, λ is set as 0.05 for both datasets, and γ is set as 0.12 for

E1 and 0.2 for E2. All the models are implemented with Tensorflow.

Evaluation Metrics: We take the official code from SemEval-18 Task 1C and

use accuracy and Macro F1 score as main metrics. For E2, we follow [136] to use

average precision (AP) and one error (OE) as secondary metrics.

1The first 560/80/160 documents are used as train/dev/test set for emotion classification, and the
remaining 687 documents are used for sentiment classification.

2https://nlp.stanford.edu/projects/glove/.

99

Methods S1→ E1 S2→ E2

ACC↑ F1↑ ACC↑ F1↑ AP↑ OE↓

Base 0.569 0.521 0.368 0.399 0.648 0.531
FT 0.575 0.519 0.372 0.398 0.655 0.519
FS 0.577 0.526 0.386 0.403 0.662 0.507
PSP 0.579 0.531 0.384 0.405 0.658 0.517
APSP 0.580 0.540 0.389 0.399 0.670 0.499

SP 0.577 0.532 0.389 0.410 0.667 0.507
DATN-1 0.582 0.543 0.393 0.410 0.670 0.501
DATN-2 0.583 0.544 0.400 0.420 0.674 0.498

Rank 2 0.582 0.534 - 0.392 0.641 0.523
Rank 1 0.595 0.542 - 0.416 0.680 0.455
DATN-2∗ 0.597 0.551 - - - -
Base† - - 0.445 0.426 0.725 0.425
DATN-2† - - 0.457 0.444 0.732 0.415

Table 6.3: The results of different transfer learning methods by averaging ten runs (top)
and the comparison between our best model and the state-of-the-art systems (bottom).
DATN-2∗ indicates the ensemble results of ten runs. Base† and DATN-2† denotes the aver-
age results of conducting ten-fold cross validation on the whole dataset for fair comparison,
and here for the source and target tasks in DATN-2†, we use the same training data. For E1,
Rank1 and Rank2 are the top two systems from the official leadboard; For E2, Rank1 and
Rank2 are from [137, 136].

6.3.2 Results

To better evaluate our proposed methods, we employed the following systems for

comparison: 1) Base, training our base model in Section 6.2.1 only on De; 2) FT

(Fine-Tuning), using Ds to pre-train the whole model, followed by using De to Fine

Tune the model parameters; 3) FS, the Fully-Shared framework by [70] as shown

in Figure 6.1.a; 4) PSP and APSP, the Private-Shared-Private framework and its

extension with Adversarial losses by [64] as shown in Figure 6.1.b; 5) SP, DATN-

1 and DATN-2, the Shared-Private model and two variants of our Dual Attention

Transfer Network as shown in Figure 6.1.c and Figure 6.1.d.

In Table 6.3, we report the comparison results between our method and the base-

line systems. It can be easily observed that 1) for transfer learning, although the per-

formance of SP is similar to or even lower than some baseline systems, our proposed

dual attention models, i.e., DATN-1 and DATN-2, can generally boost SP to achieve

the best results. To investigate the significance of the improvements, we combine

100

31

When you dread going to work early … but you always come back home happy ; smiling # goodday

Base

DATN-2
α𝑠

α𝑡

Methods Prediction

joy, optimism

joy, optimism,
love

Figure 6.3: Comparison of attention weights between Base and our DATN-2 model on a
test sentence from SemEval-18. Note that the ground truth emotion labels for this example
are joy, optimism and love.

each model’s predictions of all emotion labels followed by treating them as a sin-

gle label, and then perform McNemar’s significance tests [37]. Finally, we verify

that for English, DATN-1 is significantly better than Base, FT, FS and SP, while

DATN-2 is significant better than all the methods except APSP; for Chinese, DATN-

1 and DATN-2 are significantly better than all the compared methods. 2) Even

compared with the state-of-the-art systems in E1 which also employ other external

resources, including the affective embedding, emotion lexicon and sentiment clas-

sification datasets [7], the ensemble results of DATN-2 can achieve slightly better

performance; in addition, it is clear that our model can obtain the best performance

in E2.

Furthermore, to obtain a better understanding of the advantage of our method,

we choose one sentence from the test set of E1, and visualize the attention weights

obtained by Base and DATN-2 in Figure 6.3. We can see that Base pays more atten-

tion to those frequent emotion words while ignoring the less frequent but important

emoji, and thus fails to predict the love emotion implied by the emoji. In con-

trast, with the proposed dual attention mechanism, DATN-2 makes correct predic-

tions since it can respectively capture the general sentiment words and the emotion-

specific emojis.

6.4 Discussion

In this chapter, we proposed a novel dual attention-based transfer learning approach

to leverage sentiment classification to improve the performance of multi-label emo-

tion classification. The model divides the sentence representation into shared and

101

target-specific feature spaces, and utilizes a dual attention mechanism to enforce the

two feature spaces to capture different key information in the sentence. Using two

benchmark datasets, we show the effectiveness of the proposed transfer learning

method.

102

Chapter 7

Conclusion

7.1 Summary

Although standard supervised learning, especially deep learning, has been exten-

sively applied in a myriad of NLP tasks in recent years, the heavy reliance on

annotated data hinders its performance in those resource-scarce domains or tasks.

Therefore, in this dissertation, we focus on proposing effective transfer learning

approaches to leverage the annotations in other resource-rich domains/tasks to im-

prove the model performance in our target domain/task under two different settings:

unsupervised transfer learning and supervised transfer learning.

Specifically, this thesis makes the following main contributions to transfer learn-

ing in NLP:

• Unsupervised transfer learning

First, we argue that most existing domain adaptation methods are unscalable

and computationally costly due to their reliance on dimensionality reduction

and multi-layer auto-encoders. To address this issue, we propose a hassle-free

domain adaptation method to derive the domain-independent feature repre-

sentations for each instance by simply calculating its similarity with a set of

exemplar vectors chosen from the target domain. Moreover, we further ex-

plore how to extend a famous domain adaptation method (SCL) to neural net-

103

work models, and propose a general auxiliary task-based neural domain adap-

tation framework to help induce the shared representations across domains.

Besides, to apply the general framework to sentiment classification, we also

carefully design several domain-independent auxiliary tasks, and demonstrate

the significant improvements of our method over existing domain adaptation

methods in both sentence-level and document-level sentiment classification.

• Supervised transfer learning

Since the core idea of transfer learning is to only transfer the shared knowl-

edge while exclude the source-specific knowledge from the target domain/-

task, we aim to develop different techniques to better characterize the shared

knowledge and domain/task-specific knowledge in previous transfer learning

approaches. To achieve this goal, we first propose a unified model to ex-

plicitly model the inter-domain and intra-domain relationships based on an

existing transfer learning framework, and then incorporate an adversarial loss

to make the shared representations more invariant across domains. Further-

more, we propose another novel dual attention transfer network, where we

incorporate several constraints into our model to enforce the shared LSTM

channel to capture the shared representations and the task-specific LSTM

channel to capture the task-specific representations respectively.

7.2 Future Direction

Although we proposed several transfer learning models including unsupervised

transfer learning methods and supervised transfer learning methods for a number

of NLP tasks in this dissertation, we acknowledge that there are still many open

problems worth further investigations from our research communities in the future:

• New Transfer Learning Models for Text Generation

To the best of our knowledge, in NLP, most existing transfer learning models,

104

including the approaches from Chapter 3 to Chapter 6, only focus on the in-

put encoder, i.e., how to encode each instance into a shared feature space [78].

However, we argue that these transfer learning approaches may not be quite

effective for many text generation tasks such as text summarization and dia-

logue generation, since the most popular neural architectures for text genera-

tion (i.e., sequence to sequence models) contain both a sequence encoder and

a sequence decoder. Therefore, in the future, it should be a promising direc-

tion to work on cross-domain text generation tasks with the goal of proposing

effective transfer learning models from the encoder and decoder perspectives.

• Learning Shared Representations at Word Level

The core idea of our proposed four approaches in this thesis is to learn the

shared representations for each input sentence or document. Another possi-

ble direction, which is still not well studied in NLP, is to learn cross-domain

word embeddings so that the word vectors of the corresponding words in

different domains are close to each other. For example, in sentiment clas-

sification, assuming that the source and the target domains are respectively

Movie and Restaurant, we may expect their domain-specifc aspect words

(e.g., plot from Movie domain and ambiance from Restaurant domain) and

their domain-specifc sentiment sentiment words (e.g., attractive from Movie

domain and delicious from Restaurant domain) have similar word embed-

dings. To achieve this, incorporating both the domain-invariant pivot words

and the domain-independent syntactic patterns might be one possible solution

to learn robust word embeddings against domain shift, and should be worth-

while to be further explored.

• Transfer Learning with Multiple Sources

In this thesis, we have shown the effectiveness of leveraging a single source

domain to improve the model performance in the target domain. However,

in real scenarios, we may have access to a large amount of annotated data

105

from multiple source domains. In this case, since the similarity between each

source domain and the target domain might be different from each other, we

may encounter other challenges, i.e., how to define the similarity between

two domains and how to better leverage the annotated data from the source

domains that are more similar to the target domain. Although multi-source

domain adaptation has been extensively studied in many existing work, most

of them only focus on traditional discrete representations and linear classi-

fiers, and the exploration in neural network approaches is still quite limited.

Hence, an end-to-end unified neural framework is required to solve all the

abovementioned challenges for multi-source domain adaptation in the future.

106

Bibliography

[1] M. Abdul-Mageed and L. Ungar. Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics, 2017.

[2] R. K. Ando and T. Zhang. A framework for learning predictive structures from mul-
tiple tasks and unlabeled data. The Journal of Machine Learning Research, 6:1817–
1853, 2005.

[3] A. Aue and M. Gamon. Customizing sentiment classifiers to new domains: A case
study. In Proceedings of recent advances in natural language processing (RANLP),
2005.

[4] A. Axelrod, X. He, and J. Gao. Domain adaptation via pseudo in-domain data selec-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2011.

[5] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining. In Proceedings of the Seventh
conference on International Language Resources and Evaluation, 2010.

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] C. Baziotis, N. Athanasiou, A. Chronopoulou, A. Kolovou, G. Paraskevopoulos,
N. Ellinas, S. Narayanan, and A. Potamianos. NTUA-SLP at SemEval-2018 task
1: Predicting affective content in tweets with deep attentive rnns and transfer learn-
ing. arXiv preprint arXiv:1804.06658, 2018.

[8] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan.
A theory of learning from different domains. Machine Learning, 79(1-2):151–175,
2010.

[9] S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning under covariate
shift. Journal of Machine Learning Research, 10(Sep):2137–2155, 2009.

[10] J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, 2007.

[11] J. Blitzer, S. Kakade, and D. P. Foster. Domain adaptation with coupled subspaces.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, 2011.

107

[12] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural corre-
spondence learning. In Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, 2006.

[13] D. Bollegala, T. Maehara, and K.-i. Kawarabayashi. Unsupervised cross-domain
word representation learning. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics, 2015.

[14] D. Bollegala, T. Mu, and J. Goulermas. Cross-domain sentiment classification using
sentiment sensitive embeddings. IEEE Transactions on knowledge and data engi-
neering, 6(2):398–410, 2016.

[15] D. Bollegala, D. Weir, and J. Carroll. Using multiple sources to construct a sentiment
sensitive thesaurus for cross-domain sentiment classification. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, 2011.

[16] A. Bordes, N. Usunier, S. Chopra, and J. Weston. Large-scale simple question an-
swering with memory networks. arXiv preprint arXiv:1506.02075, 2015.

[17] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus
for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, 2015.

[18] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and C. Potts. A
fast unified model for parsing and sentence understanding. In Proceedings of the
54th Annual Meeting of the Association of Computational Linguistics, 2016.

[19] A. P. Bradley. The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[20] Y. S. Chan and H. T. Ng. Domain adaptation with active learning for word sense
disambiguation. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, 2007.

[21] M. Chen, Z. E. Xu, K. Q. Weinberger, and F. Sha. Marginalized denoising autoen-
coders for domain adaptation. In Proceedings of the 29th International Conference
on Machine Learning, 2012.

[22] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen. Enhanced lstm
for natural language inference. In Proceedings of the 55th Annual Meeting of the
Association of Computational Linguistics, 2017.

[23] Y. Choi and C. Cardie. Learning with compositional semantics as structural inference
for subsentential sentiment analysis. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2008.

[24] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[25] L. Cui, S. Huang, F. Wei, C. Tan, C. Duan, and M. Zhou. Superagent: A customer
service chatbot for e-commerce websites. In Proceedings of the 55th Annual Meeting
of the Association of Computational Linguistics, Demonstration, 2017.

108

[26] W. Dai, G.-R. Xue, Q. Yang, and Y. Yu. Transferring naive bayes classifiers for text
classification. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, 2007.

[27] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning. In Pro-
ceedings of the 24th international conference on Machine learning, pages 193–200,
2007.

[28] H. Daumé III. Frustratingly easy domain adaptation. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, 2007.

[29] H. Daumé III and J. Jagarlamudi. Domain adaptation for machine translation by
mining unseen words. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, 2011.

[30] H. Daumé III, A. Kumar, and A. Saha. Frustratingly easy semi-supervised domain
adaptation. In Proceedings of the 2010 Workshop on Domain Adaptation for Natural
Language Processing, 2010.

[31] Y. Ding, J. Yu, and J. Jiang. Recurrent neural networks with auxiliary labels for cross-
domain opinion target extraction. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[32] L. Dong, F. Wei, K. Xu, S. Liu, and M. Zhou. Adaptive multi-compositionality for
recursive neural network models. IEEE Transactions on Audio, Speech & Language
Processing, 24(3):422–431, 2016.

[33] M. Dredze and K. Crammer. Online methods for multi-domain learning and adapta-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2008.

[34] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

[35] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann. Using millions
of emoji occurrences to learn any-domain representations for detecting sentiment,
emotion and sarcasm. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, 2017.

[36] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-
hand, and V. Lempitsky. Domain-adversarial training of neural networks. Journal of
Machine Learning Research, 17(59):1–35, 2016.

[37] L. Gillick and S. J. Cox. Some statistical issues in the comparison of speech recog-
nition algorithms. In International Conference onAcoustics, Speech, and Signal Pro-
cessing, 1989.

[38] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the Twenty-eight Inter-
national Conference on Machine Learning, 2011.

[39] H. He and R. Xia. Joint binary neural network for multi-label learning with applica-
tions to emotion classification. arXiv preprint arXiv:1802.00891, 2018.

109

[40] L. Hirschman, M. Colosimo, A. Morgan, and A. Yeh. Overview of BioCreAtIvE task
1B: normailized gene lists. BMC Bioinformatics, 6(Suppl 1):S11, 2005.

[41] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,
pages 1735–1780, 1997.

[42] B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for
matching natural language sentences. In Advances in Neural Information Processing
Systems, 2014.

[43] M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings of
SIGKDD, 2004.

[44] Y. Hu, K. Zhai, V. Eidelman, and J. Boyd-Graber. Polylingual tree-based topic mod-
els for translation domain adaptation. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), 2014.

[45] J. Huang, A. Gretton, K. M. Borgwardt, B. Schölkopf, and A. J. Smola. Correcting
sample selection bias by unlabeled data. In Advances in neural information process-
ing systems, pages 601–608, 2007.

[46] J. Jeon, W. B. Croft, and J. H. Lee. Finding similar questions in large question and
answer archives. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, 2005.

[47] J. Jiang and C. Zhai. Instance weighting for domain adaptation in NLP. In Proceed-
ings of the 45th Annual Meeting of the Association of Computational Linguistics,
2007.

[48] T. Kanamori, S. Hido, and M. Sugiyama. A least-squares approach to direct impor-
tance estimation. Journal of Machine Learning Research, 10(Jul):1391–1445, 2009.

[49] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 7:881–892, 2002.

[50] Y. Kim. Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing, 2014.

[51] Y. Kim, C. Denton, L. Hoang, and A. M. Rush. Structured attention networks. arXiv
preprint arXiv:1702.00887, 2017.

[52] Y. Kim, H. Lee, and K. Jung. Attnconvnet at semeval-2018 task 1: Attention-based
convolutional neural networks for multi-label emotion classification. arXiv preprint
arXiv:1804.00831, 2018.

[53] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[54] A. Kumar, A. Saha, and H. Daume. Co-regularization based semi-supervised domain
adaptation. In Advances in neural information processing systems, 2010.

[55] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger. From word embeddings to docu-
ment distances. In international Conference on Machine Learning, 2015.

110

[56] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural
architectures for named entity recognition. In Proceedings of NAACL-HLT, 2016.

[57] T. Lei, R. Barzilay, and T. Jaakkola. Molding CNNs for text: non-linear, non-
consecutive convolutions. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2015.

[58] F. Li, S. J. Pan, O. Jin, Q. Yang, and X. Zhu. Cross-domain co-extraction of sentiment
and topic lexicons. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-Volume 1, 2012.

[59] F.-L. Li, M. Qiu, H. Chen, X. Wang, X. Gao, J. Huang, J. Ren, Z. Zhao, W. Zhao,
L. Wang, and G. Jin. Alime assist: An intelligent assistant for creating an innovative
e-commerce experience. In Proceedings of the ACM International on Conference on
Information and Knowledge Management. Demonstration, 2017.

[60] L. Li, H. Wang, X. Sun, B. Chang, S. Zhao, and L. Sha. Multi-label text categoriza-
tion with joint learning predictions-as-features method. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, 2015.

[61] S. Li, L. Huang, R. Wang, and G. Zhou. Sentence-level emotion classification with
label and context dependence. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics, 2015.

[62] Z. Li, Z. Yu, W. Ying, W. Yuxiang, and Q. Yang. End-to-end adversarial memory net-
work for cross-domain sentiment classification. In Proceedings of the International
Joint Conference on Artificial Intelligence, 2017.

[63] B. Liu, M. Huang, J. Sun, and X. Zhu. Incorporating domain and sentiment su-
pervision in representation learning for domain adaptation. In Proceedings of the
International Joint Conference on Artificial Intelligence, 2015.

[64] P. Liu, X. Qiu, and X. Huang. Adversarial multi-task learning for text classification.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, 2017.

[65] M. Long, J. Wang, G. Ding, S. J. Pan, and S. Y. Philip. Adaptation regularization: A
general framework for transfer learning. IEEE Transactions on Knowledge and Data
Engineering, 26(5):1076–1089, 2014.

[66] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[67] M. Miwa and M. Bansal. End-to-end relation extraction using lstms on sequences
and tree structures. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2016.

[68] S. M. Mohammad, F. Bravo-Marquez, M. Salameh, and S. Kiritchenko. Semeval-
2018 task 1: Affect in tweets. In SemEval, 2018.

[69] L. Mou, R. Men, G. Li, Y. Xu, L. Zhang, R. Yan, and Z. Jin. Natural language
inference by tree-based convolution and heuristic matching. In Proceedings of the
54th Annual Meeting of the Association of Computational Linguistics, 2016.

111

[70] L. Mou, Z. Meng, R. Yan, G. Li, Y. Xu, L. Zhang, and Z. Jin. How transferable
are neural networks in nlp applications? In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, 2016.

[71] T. Nakagawa, K. Inui, and S. Kurohashi. Dependency tree-based sentiment classi-
fication using CRFs with hidden variables. In Proceedings of the North American
Chapter of the Association for Computational Linguistics, 2010.

[72] P. Nakov, A. Ritter, S. Rosenthal, F. Sebastiani, and V. Stoyanov. Semeval-2016 task
4: Sentiment analysis in twitter. In SemEval, 2016.

[73] M. L. Nguyen, I. W. Tsang, K. M. A. Chai, and H. L. Chieu. Robust domain adap-
tation for relation extraction via clustering consistency. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2014.

[74] T. H. Nguyen and R. Grishman. Employing word representations and regularization
for domain adaptation of relation extraction. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
2014.

[75] O. Owoputi, B. O’Connor, C. Dyer, K. Gimpel, N. Schneider, and N. A. Smith.
Improved part-of-speech tagging for online conversational text with word clusters.
In Proceedings of NAACL, 2013.

[76] S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen. Cross-domain sentiment classi-
fication via spectral feature alignment. In Proceedings of of the 19th international
conference on World Wide Web, 2010.

[77] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer
component analysis. Neural Networks, IEEE Transactions on, 22(2):199–210, 2011.

[78] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowl-
edge and data engineering, 22(10):1345–1359, 2010.

[79] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of the 42nd annual meeting
on Association for Computational Linguistics, 2004.

[80] B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment cate-
gorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, 2005.

[81] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification us-
ing machine learning techniques. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2002.

[82] L. Pang, Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng. Text matching as image
recognition. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, 2016.

[83] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit. A decomposable attention model
for natural language inference. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, 2016.

112

[84] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, 2014.

[85] B. Plank and A. Moschitti. Embedding semantic similarity in tree kernels for domain
adaptation of relation extraction. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2013.

[86] N. Ponomareva and M. Thelwall. Do neighbours help?: an exploration of graph-
based algorithms for cross-domain sentiment classification. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, 2012.

[87] M. Qiu, F.-L. Li, S. Wang, X. Gao, Y. Chen, W. Zhao, H. Chen, J. Huang, and W. Chu.
Alime chat: A sequence to sequence and rerank based chatbot engine. In Proceedings
of the 55th Annual Meeting of the Association of Computational Linguistics, 2017.

[88] C. Quan and F. Ren. Sentence emotion analysis and recognition based on emotion
words using ren-cecps. International Journal of Advanced Intelligence, 2010.

[89] X. Quan, Q. Wang, Y. Zhang, L. Si, and L. Wenyin. Latent discriminative mod-
els for social emotion detection with emotional dependency. ACM Transactions on
Information Systems (TOIS), 34(1):2, 2015.

[90] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, 2016.

[91] S. Riedel, L. Yao, and A. McCallum. Modeling relations and their mentions without
labeled text. Machine learning and knowledge discovery in databases, 2010.

[92] T. Rocktäschel, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, and P. Blunsom. Rea-
soning about entailment with neural attention. International Conference on Learning
Representations, 2016.

[93] H. Shimodaira. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of statistical planning and inference, 90(2):227–
244, 2000.

[94] R. Socher, E. H. Huang, J. Pennin, C. D. Manning, and A. Y. Ng. Dynamic pool-
ing and unfolding recursive autoencoders for paraphrase detection. In Advances in
Neural Information Processing Systems, 2011.

[95] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts.
Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing, 2013.

[96] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts.
Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, 2013.

113

[97] M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe. Direct im-
portance estimation with model selection and its application to covariate shift adap-
tation. In Advances in neural information processing systems, pages 1433–1440,
2008.

[98] C. Sun and K. Lam. Multiple-kernel, multiple-instance similarity features for effi-
cient visual object detection. IEEE Transactions on Image Processing, 22(8):3050–
3061, 2013.

[99] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from
tree-structured long short-term memory networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics, 2015.

[100] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from
tree-structured long short-term memory networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics, 2015.

[101] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image generation.
International Conference on Learning Representations, 2017.

[102] M. Tan, C. d. Santos, B. Xiang, and B. Zhou. Lstm-based deep learning models for
non-factoid answer selection. arXiv preprint arXiv:1511.04108, 2015.

[103] D. Tang, B. Qin, and T. Liu. Document modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2015.

[104] I. Titov. Domain adaptation by constraining inter-domain variability of latent feature
representation. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, 2011.

[105] O. Vinyals and Q. Le. A neural conversational model. arXiv preprint
arXiv:1506.05869, 2015.

[106] D. Wang and E. Nyberg. A long short-term memory model for answer sentence
selection in question answering. In Proceedings of the 53rd Annual Meeting of the
Association of Computational Linguistics, 2015.

[107] D. Wang and T. F. Zheng. Transfer learning for speech and language processing.
In Signal and Information Processing Association Annual Summit and Conference
(APSIPA), 2015 Asia-Pacific, pages 1225–1237. IEEE, 2015.

[108] S. Wang and J. Jiang. A compare-aggregate model for matching text sequences.
International Conference on Learning Representations, 2017.

[109] Y. Wang, S. Feng, D. Wang, G. Yu, and Y. Zhang. Multi-label chinese microblog
emotion classification via convolutional neural network. In Asia-Pacific Web (AP-
Web) and Web-Age Information Management (WAIM) Joint Conference on Web and
Big Data, 2016.

[110] Y. Wang and A. Pal. Detecting emotions in social media: A constrained optimiza-
tion approach. In Proceedings of the International Joint Conference on Artificial
Intelligence, 2015.

[111] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. Towards universal paraphrastic
sentence embeddings. International Conference on Learning Representations, 2016.

114

[112] A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

[113] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok. Interpreting tf-idf term weights
as making relevance decisions. ACM Transactions on Information Systems (TOIS),
26(3):13, 2008.

[114] R. Xia, X. Hu, J. Lu, J. Yang, and C. Zong. Instance selection and instance weighting
for cross-domain sentiment classification via PU learning. In Proceedings of the
International Joint Conference on Artificial Intelligence, 2013.

[115] R. Xia, F. Xu, J. Yu, Y. Qi, and E. Cambria. Polarity shift detection, elimination and
ensemble: A three-stage model for document-level sentiment analysis. Information
Processing & Management, 52(1):36–45, 2016.

[116] R. Xia, J. Yu, F. Xu, and S. Wang. Instance-based domain adaptation in NLP via
in-target-domain logistic approximation. In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014.

[117] M. Xiao and Y. Guo. Feature space independent semi-supervised domain adaptation
via kernel matching. IEEE transactions on pattern analysis and machine intelligence,
37(1):54–66, 2015.

[118] R. Yan, Y. Song, and H. Wu. Learning to respond with deep neural networks for
retrieval-based human-computer conversation system. In SIGIR, 2016.

[119] P. Yang, W. Gao, Q. Tan, and K.-F. Wong. Information-theoretic multi-view do-
main adaptation. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), 2012.

[120] Y. Yang and J. Eisenstein. Fast easy unsupervised domain adaptation with marginal-
ized structured dropout. In Proceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics, 2014.

[121] Y. Yang and J. Eisenstein. Unsupervised multi-domain adaptation with feature em-
beddings. In Proceedings of the North American Chapter of the Association for
Computational Linguistics, 2015.

[122] Z. Yang, R. Salakhutdinov, and W. W. Cohen. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. International Conference on Learning
Representations, 2017.

[123] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention
networks for document classification. In Proceedings of the North American Chapter
of the Association for Computational Linguistics, 2016.

[124] W. Yin and H. Schütze. Convolutional neural network for paraphrase identification.
In Proceedings of the North American Chapter of the Association for Computational
Linguistics, 2015.

[125] W. Yin, H. Schütze, B. Xiang, and B. Zhou. Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. Transactions of the Association for
Computational Linguistics, 4:259–272, 2016.

[126] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in
deep neural networks? In Advances in neural information processing systems, 2014.

115

[127] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions.
Transactions of the Association for Computational Linguistics, 2:67–78, 2014.

[128] J. Yu and J. Jiang. A hassle-free unsupervised domain adaptation method using in-
stance similarity features. In Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), 2015.

[129] J. Yu and J. Jiang. Learning sentence embeddings with auxiliary tasks for cross-
domain sentiment classification. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, 2016.

[130] J. Yu and J. Jiang. Pairwise relation classification with mirror instances and a com-
bined convolutional neural network. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguistics: Technical Papers, 2016.

[131] J. Yu and J. Jiang. Learning auxiliary tasks for document-level cross-domain sen-
timent classification. In Proceedings of the 8th International Joint Conference on
Natural Language Processing, 2017.

[132] J. Yu, L. Marujo, J. Jiang, P. Karuturi, and B. William. Improving multi-label emotion
classification via sentiment classification with dual attention transfer network. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018.

[133] J. Yu, M. Qiu, J. Jiang, J. Huang, S. Song, W. Chu, and H. Chen. Modelling domain
relationships for transfer learning on retrieval-based question answering systems in
E-commerce. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, 2018.

[134] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text
classification. In Advances in Neural Information Processing Systems, 2015.

[135] Y. Zhang and D.-Y. Yeung. A convex formulation for learning task relationships in
multi-task learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty
in Artificial Intelligence, 2010.

[136] D. Zhou, Y. Yang, and H. Yulan. Relevant emotion ranking from text constrained
with emotion relationships. In Proceedings of the North American Chapter of the
Association for Computational Linguistics, 2018.

[137] D. Zhou, X. Zhang, Y. Zhou, Q. Zhao, and X. Geng. Emotion distribution learning
from texts. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, 2016.

[138] G. Zhou, Z. Xie, J. X. Huang, and T. He. Bi-transferring deep neural networks for
domain adaptation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, 2016.

[139] H. Zhou, M. Huang, T. Zhang, X. Zhu, and B. Liu. Emotional chatting machine:
emotional conversation generation with internal and external memory. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2018.

116

[140] F. Zhuang, X. Cheng, P. Luo, S. J. Pan, and Q. He. Supervised representation learn-
ing: Transfer learning with deep autoencoders. In Proceedings of the International
Joint Conference on Artificial Intelligence, 2015.

117

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2018

	Feature-based transfer learning In natural language processing
	Jianfei YU
	Citation

	1 Introduction
	1.1 Motivation
	1.2 Methodology
	1.2.1 A Hassle-free Unsupervised Domain Adaptation Method with Instance Similarity Features
	1.2.2 An Unsupervised Neural Domain Adaptation Method with Auxiliary Tasks for Sentiment Classification
	1.2.3 A Supervised Neural Domain Adaptation Method for Retrieval-based Question Answering Systems
	1.2.4 A Neural Task Adaptation Method for Improving Multi-label Emotion Classification via Sentiment Classification

	1.3 Our Contributions
	1.4 Organization

	2 Literature Review
	2.1 Unsupervised Transfer Learning
	2.1.1 Feature-Based Approaches
	2.1.2 Instance-Based Approaches

	2.2 Supervised Transfer Learning
	2.2.1 Feature-Based Approaches
	2.2.2 Instance-Based Approaches

	I Unsupervised Transfer Learning
	3 A Hassle-Free Unsupervised Domain Adaptation Method Using Instance Similarity Features
	3.1 Introduction
	3.2 Adaptation with Similarity Features
	3.2.1 The Method
	3.2.2 Justification
	3.2.3 Exemplar Vectors Selection

	3.3 Experiments
	3.3.1 Tasks and Data Sets
	3.3.2 Methods for Comparison
	3.3.3 Results
	3.3.4 Impact of the Number of Exemplar Vectors
	3.3.5 Stability Comparison between ISF and KISF

	3.4 Discussion

	4 An Unsupervised Neural Domain Adaptation Framework with Auxiliary Tasks for Sentiment Classification
	4.1 Introduction
	4.2 Domain Adaptation Framework
	4.2.1 Notation and Task Formulation
	4.2.2 Overview of Our Proposed Framework

	4.3 Auxiliary Tasks for Sentiment Classification
	4.3.1 Auxiliary Task 1
	4.3.2 Auxiliary Task 2

	4.4 Model
	4.4.1 Domain Adaptation for Sentence-Level Sentiment Classification
	4.4.2 Domain Adaptation for Document-Level Sentiment Classification
	4.4.3 Model Optimization
	4.4.4 Differences from SCL

	4.5 Experiments
	4.5.1 Data Sets and Experiment Settings
	4.5.2 Baselines and Hyperparameters
	4.5.3 Results
	4.5.4 Case Study

	4.6 Discussion

	II Supervised Transfer Learning
	5 A Supervised Neural Domain Adaptation Framework via Modeling Domain Relationships for Retrieval-based Question Answering Systems
	5.1 Introduction
	5.2 Model
	5.2.1 Problem Formulation and Notation
	5.2.2 Proposed Domain Adaptation Method
	5.2.3 Adversarial Loss
	5.2.4 Base Model
	5.2.5 Inference
	5.2.6 Implementation Details

	5.3 Online System
	5.4 Experiments
	5.4.1 Experiment Settings
	5.4.2 Comparisons Between Base Models
	5.4.3 Comparisons Between DA Methods
	5.4.4 Domain Relationships
	5.4.5 Extrinsic Evaluations

	5.5 Discussion

	6 Improving Multi-label Emotion Classification via Sentiment Classification with Dual Attention Transfer Network
	6.1 Introduction
	6.2 Methodology
	6.2.1 Base Model for Emotion Classification
	6.2.2 Transfer Learning Architecture

	6.3 Experiments
	6.3.1 Experiment Settings
	6.3.2 Results

	6.4 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Future Direction

