13,599 research outputs found

    Machine Learning for handwriting text recognition in historical documents

    Get PDF
    Olmos ABSTRACT In this thesis, we focus on the handwriting text recognition task over historical documents that are difficult to read for any person that is not an expert in ancient languages and writing style. We aim to take advantage and improve the neural networks architectures and techniques that other authors are proposing for handwriting text recognition in modern handwritten documents. These models perform this task very precisely when a large amount of data is available. However, the low availability of labeled data is a widespread problem in historical documents. The type of writing is singular, and it is pretty expensive to hire an expert to transcribe a large number of pages. After investigating and analyzing the state-of-the-art, we propose the efficient application of methods such as transfer learning and data augmentation. We also contribute an algorithm for purging mislabeled samples that affect the learning of models. Finally, we develop a variational auto encoder method for generating synthetic samples of handwritten text images for data augmentation. Experiments are performed on various historical handwritten text databases to validate the performance of the proposed algorithms. The various included analyses focus on the evolution of the character and word error rate (CER and WER) as we increase the training dataset. One of the most important results is the participation in a contest for transcription of historical handwritten text. The organizers provided us with a dataset of documents to train the model, then just a few labeled pages of 5 new documents were handled to adjust the solution further. Finally, the transcription of nonlabeled images was requested to evaluate the algorithm. Our method raked second in this contest

    Unsupervised Adaptation for Synthetic-to-Real Handwritten Word Recognition

    Full text link
    Handwritten Text Recognition (HTR) is still a challenging problem because it must deal with two important difficulties: the variability among writing styles, and the scarcity of labelled data. To alleviate such problems, synthetic data generation and data augmentation are typically used to train HTR systems. However, training with such data produces encouraging but still inaccurate transcriptions in real words. In this paper, we propose an unsupervised writer adaptation approach that is able to automatically adjust a generic handwritten word recognizer, fully trained with synthetic fonts, towards a new incoming writer. We have experimentally validated our proposal using five different datasets, covering several challenges (i) the document source: modern and historic samples, which may involve paper degradation problems; (ii) different handwriting styles: single and multiple writer collections; and (iii) language, which involves different character combinations. Across these challenging collections, we show that our system is able to maintain its performance, thus, it provides a practical and generic approach to deal with new document collections without requiring any expensive and tedious manual annotation step.Comment: Accepted to WACV 202

    Boosting Handwriting Text Recognition in Small Databases with Transfer Learning

    Full text link
    In this paper we deal with the offline handwriting text recognition (HTR) problem with reduced training datasets. Recent HTR solutions based on artificial neural networks exhibit remarkable solutions in referenced databases. These deep learning neural networks are composed of both convolutional (CNN) and long short-term memory recurrent units (LSTM). In addition, connectionist temporal classification (CTC) is the key to avoid segmentation at character level, greatly facilitating the labeling task. One of the main drawbacks of the CNNLSTM-CTC (CLC) solutions is that they need a considerable part of the text to be transcribed for every type of calligraphy, typically in the order of a few thousands of lines. Furthermore, in some scenarios the text to transcribe is not that long, e.g. in the Washington database. The CLC typically overfits for this reduced number of training samples. Our proposal is based on the transfer learning (TL) from the parameters learned with a bigger database. We first investigate, for a reduced and fixed number of training samples, 350 lines, how the learning from a large database, the IAM, can be transferred to the learning of the CLC of a reduced database, Washington. We focus on which layers of the network could be not re-trained. We conclude that the best solution is to re-train the whole CLC parameters initialized to the values obtained after the training of the CLC from the larger database. We also investigate results when the training size is further reduced. The differences in the CER are more remarkable when training with just 350 lines, a CER of 3.3% is achieved with TL while we have a CER of 18.2% when training from scratch. As a byproduct, the learning times are quite reduced. Similar good results are obtained from the Parzival database when trained with this reduced number of lines and this new approach.Comment: ICFHR 2018 Conferenc

    A Comprehensive Study of ImageNet Pre-Training for Historical Document Image Analysis

    Full text link
    Automatic analysis of scanned historical documents comprises a wide range of image analysis tasks, which are often challenging for machine learning due to a lack of human-annotated learning samples. With the advent of deep neural networks, a promising way to cope with the lack of training data is to pre-train models on images from a different domain and then fine-tune them on historical documents. In the current research, a typical example of such cross-domain transfer learning is the use of neural networks that have been pre-trained on the ImageNet database for object recognition. It remains a mostly open question whether or not this pre-training helps to analyse historical documents, which have fundamentally different image properties when compared with ImageNet. In this paper, we present a comprehensive empirical survey on the effect of ImageNet pre-training for diverse historical document analysis tasks, including character recognition, style classification, manuscript dating, semantic segmentation, and content-based retrieval. While we obtain mixed results for semantic segmentation at pixel-level, we observe a clear trend across different network architectures that ImageNet pre-training has a positive effect on classification as well as content-based retrieval

    Deep Adaptive Learning for Writer Identification based on Single Handwritten Word Images

    Get PDF
    There are two types of information in each handwritten word image: explicit information which can be easily read or derived directly, such as lexical content or word length, and implicit attributes such as the author's identity. Whether features learned by a neural network for one task can be used for another task remains an open question. In this paper, we present a deep adaptive learning method for writer identification based on single-word images using multi-task learning. An auxiliary task is added to the training process to enforce the emergence of reusable features. Our proposed method transfers the benefits of the learned features of a convolutional neural network from an auxiliary task such as explicit content recognition to the main task of writer identification in a single procedure. Specifically, we propose a new adaptive convolutional layer to exploit the learned deep features. A multi-task neural network with one or several adaptive convolutional layers is trained end-to-end, to exploit robust generic features for a specific main task, i.e., writer identification. Three auxiliary tasks, corresponding to three explicit attributes of handwritten word images (lexical content, word length and character attributes), are evaluated. Experimental results on two benchmark datasets show that the proposed deep adaptive learning method can improve the performance of writer identification based on single-word images, compared to non-adaptive and simple linear-adaptive approaches.Comment: Under view of Pattern Recognitio
    • …
    corecore