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a b s t r a c t 

There are two types of information in each handwritten word image: explicit information which can be 

easily read or derived directly, such as lexical content or word length, and implicit attributes such as the 

author’s identity. Whether features learned by a neural network for one task can be used for another task 

remains an open question. In this paper, we present a deep adaptive learning method for writer identifi- 

cation based on single-word images using multi-task learning. An auxiliary task is added to the training 

process to enforce the emergence of reusable features. Our proposed method transfers the benefits of 

the learned features of a convolutional neural network from an auxiliary task such as explicit content 

recognition to the main task of writer identification in a single procedure. Specifically, we propose a new 

adaptive convolutional layer to exploit the learned deep features. A multi-task neural network with one 

or several adaptive convolutional layers is trained end-to-end, to exploit robust generic features for a spe- 

cific main task, i.e., writer identification. Three auxiliary tasks, corresponding to three explicit attributes 

of handwritten word images (lexical content, word length and character attributes), are evaluated. Exper- 

imental results on two benchmark datasets show that the proposed deep adaptive learning method can 

improve the performance of writer identification based on single-word images, compared to non-adaptive 

and simple linear-adaptive approaches. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Writer identification is a typical pattern-recognition problem

which aims to recognize the author of a handwritten passage from

an image of it. The authorship is an implicit (indirect) attribute of

a handwritten document. A writer-identification system usually ex-

tracts the handwriting-style information from the query document

image and compares it with the style information of known writ-

ers. The handwriting style is usually measured by a number of ge-

ometric features, such as global statistics of ink traces [1,2] or the

distribution of graphemes [3,4] . The reliability of a typical writer-

identification system using handcrafted features depends on the

amount of text in handwritten images. In [5] it was found that

when using traditional writer identification approaches, about 100

letters are needed per sample of Western handwriting to achieve

the very satisfactory results. 

However, in the digital era, handwriting is an increasingly rare

activity. In forensic applications, this requires a new approach to

be able to recognize the writer based on the very small amount
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f available text, which may be as little as a single word. In this

aper, we study the writer-identification problem based on single-

ord images, which is a challenging problem because the infor-

ation contained in a single word is a highly limited information

ource for modelling an author’s writing style. In order to solve

his problem, the convolutional neural network (CNN) [6] is used

or writer identification in this paper because it can learn discrimi-

ative and hierarchical features at different abstraction levels from

aw data and it has achieved good performance on various applica-

ions in computer vision [6–8] and handwriting recognition [9,10] . 

There are two types of information in any given image of a

andwritten word: explicit information, such as the lexical con-

ent, word length and character attributes, and implicit informa-

ion, such as the writer’s identity. Explicit information can be de-

ived relatively easily from the image sample itself, whereas im-

licit information must be derived from a separate source. An ex-

mple is shown in Fig. 1 . The derivation or estimation of implicit

nd explicit information actually corresponds to different tasks,

uch as word recognition and writer identification, which would be

reated separately in traditional pattern recognition methods. Word

ecognition methods extract shape features which come from a se-

uence of curvilinear strokes in word images [11] , while writer-

dentification methods extract the slant, curvature or ink-width

https://doi.org/10.1016/j.patcog.2018.11.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.11.003&domain=pdf
mailto:heshengxgd@gmail.com
mailto:mailto:L.Schomaker@ai.rug.nl
https://doi.org/10.1016/j.patcog.2018.11.003
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Fig. 1. There are two types of information in any given image of a handwritten word: implicit information, such as the writer identity and explicit information such as the 

exact word content, word length and character presence. 
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istribution to capture the writing style applied to form the hand-

ritten word [1,2] . This distinction appears to involve a loss of re-

ources and a lack of generalizability, which becomes clearer as

ore tasks are attempted - such as document dating or historical

riting-style classification - for which completely new approaches

eed to be designed. At the same time, specific aspects of shape

nformation can be expected to be useful for more than one task. 

Performing more than one task on the same input data corre-

ponds to the multi-task learning problem [12–14] and this has

een achieved successfully in many applications. In this paper, we

pply multi-task learning to the same input to train neural net-

orks on writer identification with an additional auxiliary task,

.e., word-text recognition, which addresses the explicit informa-

ion present in a handwritten word image. 

It has been shown in [15] that the layers of learned convolu-

ional neural networks transition from being more general, towards

he input layer, to being more task-specific, towards the output

ayer. The layers close to the input will contain more general repre-

entations which can be shared between different tasks in multi-

ask learning. However, layers close to the output become more

pecific to each task and they cannot be used directly for other

oals than the one trained for. In the literature, transfer learning

s usually adopted to transfer general features between multiple

asks by sharing several lower layers closer to the input. Adaptive

earning can be applied to transfer the specific features of the aux-

liary task to the main task by a linear combination of input acti-

ation maps, in order to achieve better performance in the main

ask [16,17] . 

Because the information capacity of the convolutional neural

etwork is quite large, as expressed in the number of weights, it

s to be expected that it can learn different features for differ-

nt tasks. For example, the features learned for word recognition

ight capture word-shape information, while features learned for

riter identification might capture the ink density or curvature in-

ormation in the handwritten images. Deep adaptive learning aims

o transfer and mix the learned features from one task to and

ith another in order to improve performance by using an inte-

ral end-to-end training procedure. This is expected to work due

o the following two reasons: (1) A deep neural network that is

rained just for the writer identification task might be overfitted

or the writer identification problem and therefore it is possible

hat it does not generalize well within this task. Conversely, adapt-

ng the trained features to an additional task during the training

tself is assumed to introduce a regularization which can reduce

he risk of over-fitting [18] and improve the performance on un-

een data. (2) Transferring the learned features from other tasks

an be considered to be feature combination over different path-

ays in a particular layer. Feature combination has been shown to

rovide better performance [1,19] . 

In this paper, we will apply deep adaptive learning to the ap-

lication of writer identification under the difficult condition of a

ery small sample, for instance an isolated word. This is a highly

hallenging problem because the writer-related style information

ill be very limited in the small word image. We will choose

ifferent attributes of handwritten word images as the auxiliary

ask to demonstrate the effectiveness of the proposed deep adap-

ive learning method. In particular, we will choose three tasks as
 i  
he auxiliary task in multi-task learning: word recognition, word

ength estimation and character attribute recognition. When show-

ng a word image to a human reader, the word content will be

ecognized first, but we can ask additional questions about word

ength or about the shape attributes of the characters it contains.

n fact, there may be several other explicit pieces of information

hen we read a handwritten word image, such as the stroke width

f the ink caused by the writing instruments, or the number of

ircle and cross line intersections present in the word image, etc.

o test the hypothesis that the proposed deep adaptive learning

ethod works, we selected explicit information which is very easy

o derive (word label, word length, number of letters), and does

ot require additional complicated pattern-recognition tools such

s a circle detector. In general, the auxiliary tasks should not intro-

uce expensive additional labelling in a real-world application. 

The contributions of this paper are summarized as follows: (1)

e study the writer-identification problem based on single word

mages, which is a very challenging real-life application problem.

2) We propose a non-linear deep adaptive learning method to

ransfer the features learned from an auxiliary task to the writer-

dentification task, fully integrated within the training procedure.

e will demonstrate that the proposed deep adaptive learning

ethod will provide better performance than non-adaptive or

inear-adaptive learning methods. (3) We evaluate three different

uxiliary tasks for writer identification (word recognition, word-

ength estimation and character-attribute recognition), which all

mprove the performance to different degrees. 

Signature identification or verification aims to verify the indi-

idual’s identity from handwritten signatures [20] . The problem

f writer identification based on single-word images is somewhat

imilar to the signature identification problem, since both extract

n individual’s writing style. However, writer identification based

n single-word images aims to identify the writer based on any

iven word, as opposed to the signature, which is stable to the

ndividual and usually designed by that person to have a unique

ersonal shape, unlike isolated handwritten words from a normal

iece of text. Our proposed method attempts to model the general

riting style from a set of isolated handwritten word images in

he training set. 

This paper is organized as follows. In Section 2 we provide

n overview of related work. We introduce the proposed adaptive

earning in Section 3 . The experimental results are presented and

iscussed in Section 4 . The last section concludes the paper. 

. Related work 

Most writer identification methods are text-independent, ex-

racting features from large image regions - such as pages, text

locks or sentences - instead of small word images. In the last

ew decades, many specially handcrafted features have been de-

igned to extract low-level features from handwritten images.

hese can be roughly grouped into two groups: textural-based and

rapheme-based features. 

Textural-based methods extract statistical information from the

ntire text blocks as features. Considering the handwritten text as

 texture, textural features are extracted to measure the similar-

ty in handwriting style between different handwritten document
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Table 1 

Advantages and disadvantages of different writer-identification methods. 

References Features Advantages Disadvantages 

Texture-based features 

[21–23] Each pixel is described by local binary patterns (LBP and 

LPQ) and the feature from the whole text-block is 

computed by a normalized histogram. 

Easy to compute without binarization and 

segmentation. Parameter-free methods. 

The LBP histogram itself is not 

effective and some 

post-processing steps are 

usually applied, such as 

GLCM, PCA or Run-length. 

[24–26] Computes the response of handcrafted Gabor-based filters 

to describe the texture properties of handwriting style. 

Each type of filter captures certain handwritten 

character shapes, thus the feature is easy to 

understand and explain to end users. 

Requires careful design or 

selection of the parameter 

values of filters. 

[1,2,27,28] Extracts the writing style information based on ink trace 

by edge or contour angles. The feature vector is the joint 

distribution of angles on each position of ink trace. 

Fast and efficient to compute. Captures curvature and 

slant information of the writing style. 

Requires binarization or 

high-contrast images. 

Grapheme-based features 

[29–31] Computes contour and stroke fraglets for handwritten 

characters. 

Informative and each grapheme represents an entire 

letter or parts of letters which are shared between 

different characters. 

Requires binarization, 

segmentation and an 

effective fragmentation 

heuristic for 

connected-cursive 

handwritten documents. 

[3,32] Extracts small patches on handwritten characters. The patches are small so that they can be used for 

many different scripts and can be generated 

randomly. 

No pattern in the small patches 

carries any semantic 

information. The patches are 

too small and the 

distribution is not distinctive 

enough for graphemic style 

differences, thus performance 

is limited. 

[33] Uses the elliptic model to generate an exhaustive number 

of graphemes. 

Model-driven method without codebook training 

(grapheme selection involved to obtain a compact 

feature vector). 

Morphological operations are 

needed to match the 

handwriting contours and 

graphemes. Due to elliptic 

model limitation, it is only 

evaluated for Arabic texts. 

[4] Extracts junction parts on the ink traces. Junctions are prevalent in different handwritten scripts. 

Their shape contains the writing style of the author 

and can be used for cross-script writer identification. 

Requires binarized images and 

the performance is limited in 

poor-quality images. 
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images. Local binary patterns (LBP) [21,22] and local phase quanti-

zation (LPQ) are proposed in [21] and the run-length of LBP is pro-

posed in [34] for writer identification. A run-length histogram with

four principal directions is proposed in [23] for writer identifica-

tion in a multi-script environment. Filter-based features, such as

Gabor [24] , XGabor [25] and oriented Basic Image Feature Columns

(oBIF Columns) [26] , have also been studied. Some features can be

extracted from the contours of the ink trace, such as Hinge-based

features [1,2,27,28] , which extract the slant property of characters

alongside other information, such as stroke width [2] and curva-

ture information [3] . Other features, such as symbolic representa-

tion [35] and k-adjacent segments (kAS) [36,37] are also used for

writer identification. Gaussian Mixture Models (GMMs) are used to

model a person’s handwriting in [38] and Hidden Markov Model

(HMM)-based recognizers are used in [39] . 

Grapheme-based features extract allographic patterns and

map them into a common space (also known as a codebook).

Connected-component contours (CO 

3 ) are proposed in [29,31] for

writer identification using upper-case Western scripts, and have

more recently been extended to Fraglets [1,30] for cursive hand-

writing documents. Small patches extracted from characters are

used as graphemes in [3,32] and synthetic graphemes which

have been generated based on the beta-elliptic model are used

in [33] on Arabic handwritten document images. The junctions in

handwritten images are very useful for measuring the handwriting

style and they are considered to be basic elements of the hand-

written text for writer identification in [4] . SIFT feature [40] and

RootSIFT descriptor are also used for writer identification [41,42] .

Both the textural-based and grapheme-based features can be used

to generate more powerful features by the co-occurrence or joint
eature principle, which can be found in [19] . Table 1 shows the

dvantages and disadvantages of each method mentioned above. 

Writer identification based on scarce data has also been investi-

ated. For example, Alaei and Roy [35] propose a writer identifica-

ion method based on the line and page-level, where performance

t the page-level is higher than the performance at the line-level.

imilar conclusion were obtained in [26] , where comparable per-

ormance was achieved based on at least three lines using the oBIF

eatures with delta encoding. Adak and Chaudhuri [43] propose a

riter identification method for isolated Bangla characters and nu-

erals. The handcrafted features usually need more text because

tatistical information is used to model the writing style, and the

orresponding feature distribution must be stable and representa-

ive when more texts are given. However, there are usually only a

ew letters/characters in single-word images. Therefore, the hand-

rafted feature distribution extracted on their basis does not ap-

roximate the true distribution of the writing style, resulting in

oor performance. If the amount of text is limited, the importance

f small structural fragments of shape evidence becomes greater.

e expect convolutional deep learning to be able to learn the nec-

ssary feature-kernel shapes. 

Recently, deep learning has also been used for writer identi-

cation. For example, a neural network can be trained based on

 small block, segmented from the text line with a sliding win-

ow [44] or a texture block [45] . A deep multi-stream CNN is

roposed in [46] to learn deep features for writer identification.

s mentioned above, a deep neural network can learn discrim-

native and hierarchical features [47] and can recognize writers

n the basis of less data. Therefore, deep learning can capture a

riting style based on single-word images. However, all of these
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Fig. 2. Overall diagram of the proposed deep adaptive convolutional neural network. The input is a grayscale word image of 120 × 40 pixels. There are eight convolutional 

layers for each task, four max-pooling layers and three fully-connected layers in this framework. Each convolutional block contains two convolutional layers and one max- 

pooling layer (the kernel size is denoted in the boxes). F i 1 (x ) denotes the feature maps on the i th block for the main writer identification task (blue) and F i 2 (x ) for the 

auxiliary task (red). The notation @‘ k ’ above each block indicates the number of kernels used in the convolution. The number n in the last layer represents the number of 

classes. The block C i ( · ) is an adaptive function, which has three types in this paper: Baseline when C i (·) = 0 , Linear-adaptive when C i (·) = 

�
 α and Deep-adaptive when 

C i (·) = cnn, i.e., a deep network itself. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ethods consider writer identification as a single task. Multi-task

earning aims to jointly learn classifiers for several related tasks

sing shared representation. For example, the method proposed

n [48] uses an external task to improve semantic segmentation in

atural images. Other multiple-task learning methods using CNN

nclude edge labels and surface normals [49] and face detection

nd face landmark detection [12] . Hwang and Kim [14] propose

ulti-task learning for the classification and localization of medical

mages. Misra et al. [16] propose a cross-stitch unit in order to learn

n optimal combination of shared and task-specific representations

mong multiple tasks. Multi-task learning is also evaluated in nat-

ral language processing, which demonstrates that adding an aux-

liary task can help improve the performance of the main task [50] .

ur proposed method uses a non-linear adaptive strategy which

ntroduces a convolutional layer to transfer features from the aux-

liary task to the main task. 

. Proposed method 

In this section, we describe the proposed method for writer

dentification based on single-word images using deep adaptive

earning. We first introduce the structure of the CNN used for the

ulti-task learning, with the writer identification as its main task.

fter that, we show how to transfer and adapt the learned fea-

ures from the auxiliary task to the main task to improve the per-

ormance of writer identification. 

.1. Main architecture of the convolutional neural network 

The architecture of our convolutional neural network is a multi-

ask adaptation of the AlexNet structure [6] , which is shown in

ig. 2 . The architecture contains a pathway for the main task and a

athway for the auxiliary task. The two pathways interact at sev-

ral possible layers where adaptation takes place. For the main

ask, the pathway consists of eight convolutional layers, with four

ax-pooling layers after every two convolutional layers in order

o increase the depth of network and three fully connected layers.

ll of the inputted handwritten word grayscale images are resized

o 120 × 40 × 1. The size of the receptive field is 3 × 3 for all of

he convolutional layers, which is widely used in deep neural net-

orks [51,52] . The convolutional stride is fixed at one pixel for all

f the convolutional layers. The number of filters of each convolu-

ional layer is depicted in Fig. 2 . The first two convolutional layers

re shared by both task pathways. For the auxiliary task, each layer

irrors a corresponding layer in the pathway for the main task.

etails concerning this configuration are presented below. 
After each convolutional or fully-connected layer (except for the

ast softmax layer), the leaky-ReLU (Rectified linear unit) activa-

ion function [53] is used to avoid neurons dying if their input

ctivations are below the threshold, which is defined as: f (x ) =
ax (λx, x ) (in this paper, λ = 0 . 1 ). Spatial pooling is also very

mportant in CNN models to integrate the available information

nd simultaneously to reduce the size of the feature maps. In our

odel, a max-pooling layer with a kernel size of 2 × 2 and a stride

tep of 2 is implemented after every two convolutional layers (see

ig. 2 ) to reduce the size of the input representation. Dropout lay-

rs [54] a dropout rate of 50% are applied after the first two fully

onnected layers in order to mitigate the over-fitting problem. The

ast layer is usually a softmax layer for single label recognition. For

he loss function, we applied the cross-entropy loss, which mea-

ures the dissimilarity between the true label distribution and the

redicted label distribution. 

.2. Auxiliary pathway and adaptive transfer 

As shown in Fig. 2 , the auxiliary pathway receives shared-

eature patterns and the layers are organized in parallel to the

ain pathway. It would be beneficial to adapt the learned high-

evel task-specific features from the layers near the output layer

f the neural network of the auxiliary task to the main task in or-

er to improve the performance, if the learned features from layers

ear the output layer are reusable in another task [15] . However,

t is unlikely that the learned features can be used as they are,

nd some task-specific fine-tuning is likely to be required. There-

ore, we propose an adaptive network which transfers the repre-

entation from layers near the output layer of an auxiliary task to

he main task via an adaptive function, C i ( · ). Given two activation

aps r(F i 
1 
) and r(F i 

2 
) from the convolutional layer F i ( i = 2 , 3 , 4 in

ig. 2 ) for both tasks ( F 1 for writer identification and F 2 for the

uxiliary task), we learn a combination of r(F i 
1 
) and r(F i 

2 
) and feed

t as input to the next layer F i +1 
1 

of the main task by: 

n (F i +1 
1 ) = r(F i 1 ) + C i 

(
r(F i 2 ) 

)
(1)

here in (F i +1 
1 

) is the input of the next layer F i +1 
1 

and C i ( · ) is

n adaptive function on the layer F i 
2 

which adapts the represen-

ation r(F i 
2 
) from the auxiliary task to the main task of writer

dentification. 

Different adaptive functions C i ( · ) can be applied, and in this

aper, we evaluate three types of functions as follows: 

1. Baseline ( C i (·) = 0 ): The adaptive function is zero, which means

that there is no adaptation between two tasks. This can be con-
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sidered as the baseline, in which two tasks share the first two

convolutional layers without adaptation. 

2. Linear-adaptive ( C i (·) = 

�
 α): The adaptive function is a linear

mix function, which is similar to the cross-stitch unit proposed

in [16] . In this case, Eq. (1) becomes: 

in j (F i +1 
1 ) = α j · r j (F i 1 ) + (1 − α j ) · r j (F i 2 ) (2)

where j is the index of the number of activation maps in the

layer F i , αj is the parameter which weights the activation from

the main task and 1 − α j weights the activation from the aux-

iliary task. Note that we set different α to different activation

maps and the dimensionality of the � α vector is the same as the

depth of the layer r(F i 
2 
) , i.e., the number of filters in the layer

r(F i 
2 
) . Given the initialization ( α= 0.5), the � α is also learned dur-

ing training and the network can find the optimal weights of

the adaptive function between the activation maps of the aux-

iliary and the main tasks. 

3. Deep-adaptive ( C i (·) = CNN): In this case, the adaptive function

is a convolutional neural network itself. In this paper, we use

two convolutional layers with the kernel 3 × 3 and the number

of kernels of each C i ( · ) is the same as the corresponding layers

F i 
1 

and F i 
2 

in order to make the dimension equal for the add

operation. From Eq. (1) we can obtain: 

C i 
(

r(F i 2 ) 
)

= in (F i +1 
1 ) − r(F i 1 ) (3)

where r(F i 
1 
) is the features on the i th layer and in (F i +1 

1 
) is the

input features of the (i + 1) th layer of the main task. Therefore,

C i 
(

r(F i 
2 
) 
)

is the residual features of the main task learned from

layer F i 
2 

of the auxiliary task. Using the convolutional layers as

the adaptive function makes it possible to capture more com-

plex structures between the activation maps of the different

tasks and find the best adaptive representations between two

different tasks. These adaptive layers are also learned jointly

during the training, and the loss of the main task is back-

propagated through these adaptive layers. 

3.3. Training 

There are two losses in our network: Loss au for the auxiliary

task and Loss wi for the writer-identification task. The cross-entropy

loss function is computed in this paper for both the auxiliary and

the main tasks. The network is trained jointly for the auxiliary and

writer-identification task, based on a weighting strategy in our pa-

per. The objective function is defined as: 

Loss total = (1 − λ) Loss au + λLoss wi (4)

where λ is the trade-off weight of the two losses. At the begin-

ning of training, these two losses are equal, so we set λ = 0 . 5 . In

practice, we have found that the loss of the auxiliary task, which

recognizes the explicit information, decreases faster than the loss

of the writer-identification task. Therefore, we increase the λ af-

ter a given iteration to fine-tune the network for writer identifica-

tion. As explained in [14] , the relative importance of the two losses

weighted by λ can be back-propagated to the adaptive layers C i ( · ).

4. Experiments 

In this section, we conduct experiments on two benchmark

datasets for writer identification based on single-word images with

three different auxiliary tasks. 

4.1. Datasets 

We evaluate our proposed methods through the use of two

publicly available CVL and IAM datasets which present segmented
ord images with labels for both word and writer. The proposed

ethod is evaluated through using these two datasets separately,

ecause the writers from these two datasets differ. 

CVL [55] consists of 310 writers, each of which contributing at

east five pages in English and German. The word regions were

utomatically labelled and were evaluated by two students inde-

endently. In order to train the network for this paper, we se-

ect word images with at least twenty instances. Ultimately, this

ielded 99,513 selected word images which were randomly split

nto training (70,778 word images) and testing (28,735 word im-

ges) sets. 

IAM [56] consists of 657 writers, each contributing at least

ne page in English. Like the CVL dataset, the word images were

lso provided in the dataset with labels for both word and writer.

gain, we selected words with more than twenty instances, yield-

ng a total of 49,625 images randomly split into training (35,421

ord images) and testing (14,201 word images) sets. 

.2. Implementation details 

The neural network was first initialized using the Xavier

ethod proposed in [57] , which has proven to work very well in

ractice and can speed up training. The adaptive learning rate algo-

ithm Adam proposed in [58] was used to train the neural network,

ith an initial learning rate of 0.0 0 01. The size of the mini-batch

as set to 100 and the number of training iterations was set to

0,0 0 0. 

During training, the parameter of λ in Eq. (4) was set to 0.5 for

he first 10,0 0 0 iterations. It was then increased by 0.0 6 6 at every

0 0 0 iterations, up to 0.9 at the end of training. Our network was

rained using the Tensorflow platform [59] . Training took about 7.5

ours for the Baseline and Linear-adaptive CNN models and 8.5

ours for the Deep-adaptive model, on a single GPU (NVIDIA GTX

60 with 4G memory). 

.3. Performance of writer identification with word recognition as 

uxiliary task 

The lexical content of the word image is a very important in-

ormation, which corresponds to the word recognition or spotting

roblem [60,61] . This section reports the experimental results with

ord recognition as the auxiliary task to improve the performance

f writer identification based on single-word images. Three hun-

red different words were selected from the CVL dataset and 446

ifferent words from the IAM data set. Fig. 3 presents an example

f the word images with two attributes: writer and lexical content.

Table 2 shows the performance of writer identification with

ord recognition as the auxiliary task. From the table we can

ee that the word-recognition accuracies are higher than those of

riter identification, which demonstrates that writer identification

implicit information) based on single-word images is more chal-

enging than word recognition (explicit information). In addition,

daptive learning methods provide better results than the baseline

or writer identification and the Deep-adaptive model achieves the

est performance on the two datasets, outperforming the Baseline

nd Linear-adaptive models by 3.3% and 1.6% on CVL and 3.8% and

.5% on IAM in terms of the Top-1 recognition rate. 

Since the writer-identification performance based on single-

ord images is lower than that of word recognition, another inter-

sting question is raised: how many words are needed to achieve

 higher performance for writer identification, similar to the per-

ormance for word recognition? To answer this question, we did

nother set of experiments about writer identification based on N

ord images from the same writer. We randomly selected N word

mages for each writer and put them into the trained CNN model.

he average response of the last layer of the CNN model from all
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Fig. 3. Examples of handwritten word images from the CVL dataset with different words and writers. Each image has two attributes: lexical content and the writer’s identity. 

Table 2 

Performance of writer identification using different adaptive learning methods with word 

recognition as the auxiliary task on the CVL and IAM datasets. 

Model Writer identification Word recognition ( aux. ) 

CVL IAM CVL IAM 

Top1 Top5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 

Baseline 75.3 92.4 65.7 83.5 95.1 99.1 93.5 98.7 

Linear-adaptive 77.0 93.1 68.0 84.7 94.1 98.9 91.3 98.1 

Deep-adaptive 78.6 93.7 69.5 86.1 94.5 99.0 92.6 98.4 

Fig. 4. Performance (Top1) of writer identification using different numbers of words (from 1 to 10 words), using CNN models trained with word recognition as the auxiliary 

task on the CVL dataset (Figure (a)) and dummyTXdummy-(the IAM dataset (Figure (b)). 
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 word images was used to recognize the writer by: 

 = 

1 

N 

N ∑ 

i 

CNN (x i ) (5) 

here x i is the i th input image and CNN( x i ) is the response of the

ast layer of the CNN model. The procedure was repeated 20 times

or each writer and the average results for different values of N are

eported in Fig. 4 . 

From Fig. 4 we can see that writer-identification performance

ncreases with more word images from the same writer. The Deep-

daptive model achieves the best results with different numbers of

ords for writer identification. The Top-1 performance for writer

dentification using the Deep-adaptive model was 79.1% and 68.3%

hen using one word, and this increases to 99.8% and 92.0% when

sing five words on CVL and IAM , respectively. For the special-

zed textural features such as the Hinge [1] , the minimum text

or writer identification is 100 characters [5] . However, the write-

dentification performance using CNN models with five words are

omparable to the results obtained for textural features. 
.4. Performance of writer identification with word length estimation 

s auxiliary task 

Word length (number of letters in a word) is another visual at-

ribute of handwritten word images. In this section, we report on

riter-identification experiments using word length estimation as

he auxiliary task. The maximum word length for both CVL and

AM is 13 characters. Therefore, the number of classes for word

ength estimation is 13. Fig. 5 shows an example of word images

ith different word lengths. 

Table 3 shows the writer-identification performance based on

ingle-word images with word length estimation as the auxiliary

ask. From the table we can see that the word length is also

n important attribute and transferring the learned features from

ord length estimation can also improve writer-identification per-

ormance. Like the results in Table 2 , the Deep-adaptive model

rovides the best performance. 

Fig. 6 shows the writer-identification performance for different

ord lengths. From the figure, we can see that the performance

f writer identification is much less sensitive to word length, un-

ess this is greater than 2. This could be because word images

ith more than two characters contain more texts which can help

o extract stable writing style information by deep learning. An-
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Fig. 5. Examples of handwritten word images from the CVL dataset with different word lengths and writers. Each image has two attributes: word length and the writer’s 

identity. 

Table 3 

Performance of writer identification using different adaptive learning methods, with word 

length estimation as the auxiliary task on the CVL and IAM datasets. 

Model Writer identification Word length estimation ( aux. ) 

CVL IAM CVL IAM 

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 

Baseline 75.3 92.5 66.0 82.9 94.3 99.9 91.5 99.8 

Linear-adaptive 75.9 92.7 65.4 83.1 92.7 99.9 90.4 99.8 

Deep-adaptive 79.1 94.3 68.3 85.2 93.6 99.9 91.6 99.9 

Fig. 6. Performance of writer identification (Top-1) for different CNN models with different word lengths on the CVL (Figure (a)) and IAM (Figure (b)) datasets. 
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other reason might be that resizing the word images with one

or two characters introduces more noise than word images with

more than two characters. Note that the performance for word

images longer than eleven characters decreases because there are

few words with more than eleven characters on the CVL and IAM

datasets, thus the number of training samples is not sufficient. 

4.5. Performance of writer identification with character attribute 

recognition as auxiliary task 

Characters contained in the word are also important attributes

and are used for word spotting in [9,62] . In this section, we

also report on writer-identification experiments using character at-

tribute recognition as the auxiliary task. We use similar attributes

to [62] and each word is represented by a binary histogram with

26 bins, corresponding to 26 English letters. Each element of this

histogram represents whether the word being studied contains the

relevent letter. Note that we consider lower-case and upper-case

letters as the same attribute because there are few upper-case let-

ters in handwritten documents. We also do not consider the spa-

tial information about the characters in a word. For example, the
ord “are” contains characters ‘a’, ‘e’ and ‘r’, and their correspond-

ng histogram bins are set to 1 and the others are zeros, the same

s the PHOC histogram [62] at the first level. Character attribute

ecognition is a multiple-label learning problem. Therefore, we use

he sigmoid activation function instead of softmax on the last layer

f the auxiliary task. 

Table 4 presents the writer-identification performance based

n single-word images with character attribute recognition as the

uxiliary task. From the table we obtain the same conclusion: the

eep-adaptive model improves the performance of writer identifi-

ation in both datasets. 

Fig. 7 shows the writer-identification performance of word im-

ges containing different characters. From the figure we can see

hat all characters contain writing style information about the

riter. The performance for word images which contain the char-

cters ‘a’,‘d’,‘h’,‘t’ is slightly higher than word images which con-

ain other characters. There are two possible reasons for different

etters containing different amounts of handwriting style informa-

ion: (1) the shapes of these characters are written differently by

ifferent writers. (2) These characters typically touch others in a

ursive handwritten word and the connecting shapes (ligatures)
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Table 4 

Performance of writer identification using deep adaptive learning with character attribute 

recognition as the auxiliary task on the CVL and IAM datasets. 

Model Writer identification Character attribute recognition ( aux ) 

CVL IAM CVL IAM 

Top1 Top5 Top1 Top5 Accuracy Accuracy 

Baseline 75.1 92.6 65.9 83.4 93.4 91.3 

Linear-adaptive 75.3 92.4 65.5 83.4 82.8 77.9 

Deep-adaptive 76.5 93.2 67.6 84.3 85.1 81.6 

Fig. 7. The performance (Top-1) of writer identification with different character attributes. The top figure shows the performance for the CVL dataset in which there is no 

word containing the character ‘j’ and the bottom figure shows the performance for the IAM dataset in which there is no word containing the character ‘z’. 
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Table 5 

Performance (Top-1) of writer identification with different input sizes, using dif- 

ferent adaptive learning methods with word recognition as the auxiliary task on 

the CVL and IAM datasets. W.I. means Writer Identification while W.R. means Word 

Recognition in this table. 

Model Input size: 40 × 120 × 1 Input size: 32 × 96 × 1 

CVL IAM CVL IAM 

W.I. W.R. W.I. W.R. W.I. W.R. W.I. W.R. 

Baseline 75.3 95.1 65.7 93.5 66.7 95.1 61.6 94.2 

Linear-adaptive 77.0 94.1 68.0 91.3 69.3 94.0 61.8 91.2 

Deep-adaptive 78.6 94.5 69.5 92.6 69.9 94.5 63.5 92.2 

Training Time 8.5 h 5.6 h 

v  

a  

m  

t  

v  

i  

i

etween the characters are also written differently by different

riters. 

.6. Performance with reduced input image sizes 

In this section, we evaluate the writer-identification perfor-

ance to test the effect of reduced input image sizes. A smaller

nput size of 32 × 96 × 1 was chosen to make sure that the min-

mum size of the last convolutional layer is greater than 1 pixel,

ince there are four max-pooling layers with stride 2 in our net-

ork. Tables 5 –7 show the writer-identification performance for

ifferent adaptive methods with different auxiliary tasks. From

hese tables we can see that the input size affects the writer-

dentification performance and that a smaller input size pro-

ides poorer results. However, the recognition performance of the

xplicit information is approximately the same. This is because

ecognition of the explicit information extracts whole-word charac-

eristics, such as word shape and outline, which are less-sensitive

o the word image size. Conversely, the writer-identification model

equires detailed features, such as the curvature information of the

nk traces, which are missing or deformed in the small images.

t should be noted that the proposed Deep-adaptive model pro-
ides the best writer-identification performance for reduced im-

ge sizes, albeit less than when using large images with the same

odel. Although training on large images takes more computing

ime, it provides better performance for writer identification (74.1%

s 66.7% average of CVL vs IAM with word recognition as the aux-

liary task). Therefore, we selected a 40 × 120 × 1 input size, which

s a good trade-off between accuracy and efficiency. 
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Table 6 

Performance (Top-1) of writer identification with different input sizes, using different adap- 

tive learning methods with word length estimation as the auxiliary task on the CVL and 

IAM datasets. W.I. means Writer Identification while W.L.E. means Word Length Estimation 

in this table. 

Model Input size: 40 × 120 × 1 Input size: 32 × 96 × 1 

CVL IAM CVL IAM 

W.I. W.L.E. W.I. W.L.E. W.I. W.L.E. W.I. W.L.E. 

Baseline 75.3 94.3 66.0 91.5 66.4 94.5 60.5 91.4 

Linear-adaptive 75.9 92.7 65.4 90.4 68.4 92.8 59.2 89.4 

Deep-adaptive 79.1 93.6 68.3 91.6 69.9 93.6 61.8 90.2 

Training Time 8.5 h 5.6 h 

Table 7 

Performance (Top-1) of writer identification with different input sizes, using different adap- 

tive learning methods with word attribute recognition as the auxiliary task on the CVL and 

IAM datasets. W.I. means Writer Identification while W.A.R. means Word Attribute Recogni- 

tion in this table. 

Model Input size: 40 × 120 × 1 Input size: 32 × 96 × 1 

CVL IAM CVL IAM 

W.I. W.A.R. W.I. W.A.R. W.I. W.A.R. W.I. W.A.R. 

Baseline 75.1 93.4 65.9 91.3 67.6 93.6 60.1 90.6 

Linear-adaptive 75.3 82.8 65.5 77.9 69.7 83.9 60.6 76.8 

Deep-adaptive 76.5 85.1 67.6 81.6 70.4 86.1 63.5 82.3 

Training Time 8.5 h 5.6 h 

Table 8 

Single-word writer-identification performance using different 

approaches on the CVL and IAM datasets. 

Method CVL IAM 

Top1 Top5 Top1 Top5 

Hinge [1] 25.8 48.0 26.7 45.4 

Quill [2] 29.4 52.6 35.9 57.8 

Chain Code Pairs [3] 22.4 44.6 21.6 39.7 

Chain Code Triplets [3] 28.8 51.4 30.5 49.8 

COLD [34] 12.8 29.6 15.7 32.1 

QuadHinge [28] 30.0 52.4 37.2 57.8 

CoHinge [28] 25.9 46.9 26.8 47.2 

CNN [6] 75.3 92.6 66.0 83.5 

CNN + Adaptive 79.1 93.7 69.5 86.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Final overview of the writer-identification performance using the 

Deep-adaptive model with different auxiliary tasks. 

Auxiliary tasks CVL IAM 

Top1 Top5 Top1 Top5 

Baseline 75.2 92.5 65.8 83.3 

Word recognition 78.6 93.7 69.5 86.1 

Word length recognition 79.1 94.3 68.3 85.2 

Character attribute recognition 76.5 93.2 67.6 84.3 

Combined 78.5 94.0 67.5 84.3 
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4.7. Comparison with other studies 

This section compares other writer identification methods us-

ing the CVL and IAM datasets based on single-word images. For

the handcrafted features, we used the “leave-one-out” strategy, the

same as the traditional writer identification approach [1,3] . The

representation of each writer is computed as the average word fea-

tures except the query one. Table 8 shows the performance of the

different writer-identification methods. From the table, we can see

that the traditional handcrafted features fail to identify the writer

based on single-word images, which is also shown in [5] . The CNN

model provides much better results than the handcrafted features,

and our proposed deep adaptive learning method provides the best

results. 

4.8. Discussion 

From Tables 2 –4 , we can see the following. (1) Generally, other

conditions being equal, recognizing implicit information (writer

identification) is more difficult than recognizing explicit informa-

tion such as word recognition, word length estimation and char-

acter attribute recognition. Since the implicit information is em-

bedded in the patterns of handwritten characters or ink traces, it

usually needs more reference data to be recognized correctly. (2)
daptive learning can improve the performance of the main task.

or example, the writer identification performance of the Linear-

daptive and Deep-adaptive models with three different auxil-

ary tasks is better than that of the Baseline model on both two

atasets. (3) The writer identification performance of the Deep-

daptive model is better than that of the Linear-adaptive model.

his is because the deep adaptive learning model can learn the

on-linear relationship between different tasks. (4) The perfor-

ance of the auxiliary task decreases in adaptive learning be-

ause the main task information is back-propagated to the auxil-

ary task layers. However, the Deep-adaptive performance is better

han that of the Linear-adaptive model, showing that the residual

daptive blocks C ( · ) can transfer the useful information from the

uxiliary task to the main task on the forward phase and mask

he useless information back-propagated to the auxiliary task. (5)

sing word recognition and word length estimation as the auxil-

ary tasks yields better results for writer identification in the two

atasets than using character attribute recognition (see Table 9 ).

his could be because the character attribute recognition results

re not a good choice as an auxiliary task, thus the learned fea-

ures contain less useful information. Therefore, choosing a high

erforming auxiliary task can also result in a greater improvement

n the main task. (6) We also attempted to combine all three auxil-

ary tasks together in our experiments, considering the word itself

nd word length as attributes, similar to the character attributes.

he results are shown in Table 9 and we can see that combining

ll the auxiliary tasks cannot improve performance. This could be
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ecause during training, the loss is dominated by the character at-

ributes. For example, the word “Imagine” has 7 character bits and

nly 1 word bit and 1 word length bit. Thus, the neural network

ocuses on recognizing the character attributes, which results in a

oorer performance than that of the other two auxiliary tasks. (7)

he large performance difference between traditional methods and

NN for writer identification based on difficult single-word images

see Table 8 ) indicates that the necessary information for writer

dentification is somehow present in individual words. However,

s with most CNN methods, there may be some over-fitting which

ed to the current results. More research is needed to assess the

ffectiveness of the dropout mechanism used during training, for

nstance. 

The experimental results provide several interesting factors to

onsider when designing a modern writer identification system:

1) it is better to ask writers to write more words, with at least five

ords to achieve a high performance. (2) Since the writer identifi-

ation performance of word images with less than two characters

s very low, it is better to ask writers to write words with as least

hree characters and each word should contain writing-sensitive

etters, such as ‘a’, ‘d’, ‘h’, and ‘t’. 

. Conclusion 

This paper has studied the writer identification problem based

n single-word images using deep adaptive learning in a multi-task

earning framework. Three different tasks which recognize the ex-

licit information of handwritten word images were used as the

uxiliary tasks to improve the performance of writer identifica-

ion. The experimental results on two benchmark datasets have

hown several interesting conclusions. Firstly, writer identification

s more difficult than other attribute recognition problems because

he writer’s identity is the implicit information, and even people

hemselves find recognizing a writer based on single-word images

ifficult. Secondly, adaptive learning can improve the performance

f writer identification since different tasks learn different features

nd the specific representations of the auxiliary task can be trans-

erred to the main task. Thirdly, deep adaptive learning can capture

he complex relationship between the specific features of different

asks and can thus provide better performance. 

The performance of writer identification based on single-word

mages is still much poorer compared to the performance of other

asks using deep learning, and it still needs to be improved in the

uture. Recently, there has been a big shift from handcrafted fea-

ures to handcrafted structures in neural networks. Therefore, more

omplex neural network structures can be investigated in the fu-

ure for writer identification. 
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