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Abstract

In this thesis, we focus on the handwriting text recognition task over historical
documents that are difficult to read for any person that is not an expert in ancient
languages and writing style.

We aim to take advantage and improve the neural networks architectures and
techniques that other authors are proposing for handwriting text recognition in
modern handwritten documents. These models perform this task very precisely
when a large amount of data is available. However, the low availability of labeled
data is a widespread problem in historical documents. The type of writing is
singular, and it is pretty expensive to hire an expert to transcribe a large number of
pages.

After investigating and analyzing the state-of-the-art, we propose the efficient
application of methods such as transfer learning and data augmentation. We also
contribute an algorithm for purging mislabeled samples that affect the learning
of models. Finally, we develop a variational auto encoder method for generating
synthetic samples of handwritten text images for data augmentation.

Experiments are performed on various historical handwritten text databases
to validate the performance of the proposed algorithms. The various included
analyses focus on the evolution of the character and word error rate (CER and
WER) as we increase the training dataset.

One of the most important results is the participation in a contest for transcrip-
tion of historical handwritten text. The organizers provided us with a dataset of
documents to train the model, then just a few labeled pages of 5 new documents
were handled to adjust the solution further. Finally, the transcription of non-labeled
images was requested to evaluate the algorithm. Our method raked second in this
contest.
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Resumen

En esta tesis, nos centramos en la tarea handwriting text recognition sobre docu-
mentos históricos que presentan cierta dificultad de lectura para cualquier persona
que no sea un experto en lenguajes antiguos y estilo de escritura.

Nuestro objetivo es aprovechar y mejorar las arquitecturas y técnicas de deep
learning que otros autores están proponiendo para handwriting text recognition
en documentos manuscritos modernos. Estos modelos realizan esta tarea con
mucha precisión cuando se dispone de una gran cantidad de datos. Sin embargo,
la baja disponibilidad de datos etiquetados es un problema generalizado en los
documentos históricos. El tipo de escritura es singular y resulta bastante caro
contratar a un experto para que transcriba una gran cantidad de páginas.

Tras investigar y analizar el estado del arte, proponemos la aplicación eficiente
de métodos como el aprendizaje por transferencia y el aumento de datos. También
contribuimos con un algoritmo para eliminar muestras mal etiquetadas que afectan
el aprendizaje de modelos. Finalmente, desarrollamos un método basado en
Variational AutoEncoders para generar muestras sintéticas de imágenes de texto
escritas a mano para el aumento de datos.

Se realizan experimentos en varias bases de datos históricas de texto escrito
a mano para validar el rendimiento de los algoritmos propuestos. Los diversos
análisis incluidos se centran en la evolución de la tasa de error de caracteres
(CER) y palabras (WER) a medida que aumentamos el conjunto de datos de
entrenamiento.

Uno de los resultados más importantes es la participación en un concurso de
transcripción de textos históricos manuscritos. Los organizadores nos propor-
cionaron un conjunto de datos de documentos para entrenar el modelo, luego
se manejaron solo unas pocas páginas etiquetadas de 5 nuevos documentos para
ajustar aún más la solución. Finalmente, solicitan la transcripción de imágenes no
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VIII Resumen

etiquetadas para evaluar el algoritmo. Nuestro método obtuvo el segundo lugar en
este concurso.

Se han publicado contribuciones significativas de esta tesis en una revista y en
dos artículos de conferencias. Pronto se enviará un artículo más a una revista.
Estos trabajos se enumeran a continuación:

• José Carlos Aradillas, Juan José Murillo-Fuentes and Pablo M. Olmos,
“Boosting Offline Handwritten Text Recognition in Historical Documents
With Few Labeled Lines,” in IEEE Access, vol. 9, pp. 76674-76688, 2021,
doi: 10.1109/ACCESS.2021.3082689.

• José Carlos Aradillas, Juan José Murillo-Fuentes and Pablo M. Olmos,
“Improving offline HTR in small datasets by purging unreliable labels,” 2020
17th International Conference on Frontiers in Handwriting Recognition
(ICFHR), 2020, pp. 25-30, doi: 10.1109/ICFHR2020.2020.00016.

• José Carlos Aradillas, Juan José Murillo-Fuentes and Pablo M. Olmos,
“Boosting Handwriting Text Recognition in Small Databases with Trans-
fer Learning,” 2018 16th International Conference on Frontiers in Hand-
writing Recognition (ICFHR), 2018, pp. 429-434, doi: 10.1109/ICFHR-
2018.2018.00081.

• José Carlos Aradillas, Isabel Valera, Juan José Murillo-Fuentes and Pablo M.
Olmos, “Data Augmentation by Variational Autoencoders for Handwritten
Text Recognition,” 2021, in preparation.
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1 Introduction

1.1 Motivation

Throughout history, humankind has generated a tremendous amount of knowledge
and cultural heritage in text, painting, sculpture, or architecture, among others.
The conservation of these works in their different formats has been one of the
challenges for professionals such as paleontologists, historians, archaeologists, or
restorers since they began to worry about the deterioration of the different works.
Apart from conservation, a process of dissemination and transfer of knowledge is
also essential. It is needed to provide access to any text document, work of art, or
architecture archives, whether public or private, for anyone who requires it.

Only in Europe do we have a vast heritage of historical documents. In the
Archives Portal Europe (APE)1 is available information from millions of archival
materials stored in hundreds of archival institutions. For example, in the APE we
can find almost 100 archives in Spain, 500 archives in Italy, almost 200 archives
in Germany, and more than 250 archives in England. Some of the information one
can find in the APE is if the documents in some specific archive are digitalized, or
they only have the original documents in physical paper.

Spain has a vast network of historical archives, national, regional, and provincial
levels. Data published by the Ministry of Education, Science and Culture (MECyC)
in 2014 show that, only in the archives managed at the state level, there are more
than 427,000 linear meters of occupied shelving [29]. As a reference, the 9000
meters of shelves of the General Archive of the Indies in Seville contain around
80 million pages of documents dated between the 16th and 18th centuries.

1 https://www.archivesportaleurope.net/directory
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2 Chapter 1. Introduction

This vast amount of information is the object of the painstaking task of organiz-
ing and describing each one of the documents by the archivists. The documentary
registration process requires a partial transcription of the document to evaluate
its historical context and the events or activities described in it for subsequent
cataloging within the archive system. The process is entirely manual since it
requires the intervention of an archivist in all its stages. According to statistics
from 2013, the access system online to the digitized funds of the national archives
of the MECyC, called Portal de Archives Españoles (PARES) [28], has more than
30 million digitized documents, of which about 6 million have been cataloged and
described.

The primary motivation of this thesis is to investigate and advance in the
development of tools that facilitate the tasks of conservation and study of ancient
manuscript documents found in historical archives. In particular, we aim at
improving the transcription stage, one in the whole pipeline, as described next.

1.2 Handling historical documents

Once the good conservation has been achieved, the primary purpose of the archive
is to make these documents accessible to the general public and researchers, in
particular, informing about the holdings, sections, series, and existing documents
[5]. For this, a set of descriptors are included for each document. Since the
descriptors of the documents cannot summarize all the content, there is a massive
amount of information that, although it may be decisive for the result of an
investigation, is not accessible without reading the documents in full. This can be
solved partially by digitizing, e.g., by scanning the documents.

Several aspects must be considered when carrying out a document digitization
project, with the main objective of not damaging the original documents. These
are:

• Storage: how books and historical documents are stored makes a big
difference in how well they hold up over time.

• Handling books and historical documents must be approached carefully.

• Scanning: Choosing a scanning method that does not damage books or
historical documents is a top priority.

Once the problem of digitizing documents has been solved by generating
scanned images of their pages, the next step would be to facilitate access to the
information contained in their texts in the same way that we access the information
in digital texts through search engines. This comprises several tasks.
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1.3 Handwriting text recognition related tasks

Once we have the image of a page, we need to segment the parts, including text,
then proceed with the information retrieval. In Figure 1.1 and Figure 1.2, some
examples of historical documents have been included to illustrate the difficulty of
this task.

(a) (b)

Figure 1.1 In (a), image from the hagiography Vita Sancti Galli. In (b), image
from the manuscript notes of George Washington.

1.3.1 Layout analysis and segmentation

An important initial step for information retrieval of historical documents is layout
analysis, and segmentation [12, 46, 79, 68]. Historical documents usually have a
complex layout, which makes their analysis difficult. [100]. They contain textual
elements such as insertions, annotations, and corrections [9]. Moreover, such
manuscripts contain decorative elements such as ornaments, illustrations, and
comments in the margins and between text lines. See Figure 1.1 for examples of
ornaments and side-notes or page numbers. All these elements make the layouts
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of the manuscripts very heterogeneous [10]. In some documents, it becomes
quite a difficult task. See, for example, in Figure 1.2 some details of pages in the
DIVA-HisDB dataset.

Figure 1.2 Details of pages in the DIVA-HisDB dataset.

Some recent works in this task are [104, 98, 24, 51, 68, 57, 3] where different
models are used. In [98, 83] the authors propose a Fully Connected Network (FCN)
while in [68] a U-Net is preferred with quite good results. In [3] a Convolutional
Neural Network (CNN) is first used to perform further steps later to improve the
results, exhibiting good results in the DIVA-HisDB dataset.

It is interesting to remark that we could identify a two-stage process. The first
one is where the layout is extracted: we get subregions of the image where we
find text in this process. Moreover, a second step is where we segment lines or
words of text within these layouts. This segmentation, in turn, can be performed by
segmenting the region of the image where a line or word is found or by underlining
the text. Images of text lines or words can be binary, gray levels or RGB, and
can be saved in different resolutions. In Figure 1.3 we include the result of the
text segmentation using the underline approach, while the same page, from the
Archivo General de Indias, is segmented by extracting images with lines of text in
Figure 1.4.

In some cases, we have images where the text is just part of it. Imagine we want
to retrieve the number of a house from a picture of the street. This is known as
scene text recognition. In this task, the recognizer tries first to find regions of texts
in natural images and afterward recognize the texts in these regions [22, 36].
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Figure 1.3 Line segmentation using the underline approach, obtained with DhSeg-
ment [68] for a document of the General Archive of the Indies. Image
from [97].

1.3.2 Information retrieval

Once we have images with pieces of text, we can perform any information retrieval
approach. This information can be, e.g.:

• author identification

• search for some information or words

• transcript the full text
Author Identification

Writer and signature identification and verification are other kinds of tasks in the
field of handwriting recognition. It consists of identifying the authorship of some
text. There are some recent works on this topic [49, 77, 45, 60].

Word spotting

Given a user-defined query, word spotting retrieves a list containing word images
relevant to the query. Typically word spotting methods rank all retrieved word
images from a given document collection by a specific criterion and sort them by
their similarities. [78] Often, this query representation is either an image (Query-
by-Example, QbE) or a string defining the sought-after word (Query-by-String,
QbS)[93].
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Figure 1.4 Line segmentation providing images of texts, obtained with the Neural
Line Segmenter approach [83] for a documente of the General Archive
of the Indies. Image from [97].

Some recent works related to this task could be found in [56, 96, 15]. These
approaches are helpful when no transcription of the document is available. Note
that the problem can be cast as a segmentation one where we are looking for some
patterns in the document’s images. A demonstrator of one of the proposed tools
can be tried at the Carabela Project http://carabela.prhlt.upv.es/ , where datasets
from Archivo General de Indias y al Archivo Histórico Provincial de Cádiz are
used.

Text recognition

In this case, we wish to obtain a full-text recognition from an image of a word, line,
or paragraph. This problem poses a wide set of difficulties. Here, architectures
based on CNN plus Recurrent Neural Network (RNN) and in particular Long
Short Term Memory (LSTM) followed by a Connectionist Temporal Classification
(CTC) have recently achieved best error rates [99, 16, 74, 94, 7].

The task of text recognition applied to historical documents at line level is the
primary motivation of this dissertation. In the next chapter, we give further details
about this task.

http://carabela.prhlt.upv.es/
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1.4 Thesis overview

1.4.1 Goal and scope of the thesis

In this thesis, we deal with the Handwriting Text Recognition (HTR) problem
applied to ancient documents from the middle ages to the early modern period
of history. State-of-the-art techniques have proved to be quite accurate when
large homogeneous databases are available. However, the accuracy degrades
when tested with new documents that differ from those in the training set. The
approaches can be retrained with new labeled (manually transcripted) text from
the set of new documents, being the objective to label as few text lines as possible
[8, 7]. This is the ultimate goal of this work, to achieve low rates of transcription
errors while reducing the number of needed lines to be labeled in the to-be-
transcripted dataset. We assume we already have the images with the text and the
labels, i.e., the text, and we will work with images of entire lines.

1.4.2 Organization

The organization of this text is as follows. This chapter introduces the impor-
tance of the conservation and transference of the knowledge contained in ancient
documents and the different analyses and operations we can perform in those
documents. The literature about handwriting text recognition applied to current
and historical documents is investigated in Chapter 2. The central part of this thesis
is focused on the solution of the handwriting text recognition task when we only
have a small dataset of a few pages or lines available from some specific author,
script, or language to train the Deep Neural Network (DNN) models. In Chapter 3
the datasets used in this thesis are described. In Chapter 4 we analyze how to apply
transfer learning from a model previously trained with a considerable amount
of data from different writers. In Chapter 5 we take several data augmentation
techniques from the literature and investigate how to apply them in combination
with the transfer learning method proposed in Chapter 4. In Chapter 6 we propose
a method to detect and correct some errors in the labelings of the training set with
the aim of improving the performance. In Chapter 7 we propose a method to gener-
ate images of handwriting text lines using a Conditional Variational Auto Encoder
(C-VAE) model to use the new samples as data augmentation. We compare with
the results presented in Chapter 5. The proposed model and the results we achieve
in this chapter will be published in a journal paper that is under preparation.

Conclusions and future lines of research are included in Chapter 8
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1.4.3 Contributions

The main contributions of this thesis, sketched in Figure 1.5, are2:

• We analyze how to perform TL from a massive database to a smaller
historical database, determining which model layers need fine-tuning.

• We analyze methods to combine TL and Data Augmentation (DA) efficiently.
It is not trivial to apply DA when TL is applied. Authors usually use these
techniques by default, and in some cases, it could worsen the performance.
We show it in Chapter 5.

• We propose the Corrupted Label Purging (CLP) algorithm to mitigate the
effects of incorrect labeling in the training set. The manual transcription of
documents by an expert can lead to some errors. We show that these errors
in the training set can affect the performance of the models and propose an
algorithm to solve it.

• We develop a new Variational Auto Encoder (VAE) approach to generate
new images of historical text lines. We use these images as a new data
augmentation technique and compare them with the classical ones. We
also show how the HTR evaluation method can be used to evaluate other
generative methods proposals.

Text?

Learning with Few Annotated Lines
Transfer Learning

CNN + BLSTM + CTC Model

Data Aug
mentati

on

Labeling Errors

Label: meno d’osservarle che cio non e corretto: in ogni.
True: ma non poteva …

Figure 1.5 Main contributions of the Thesis.

2 The implementation of the contributions are available in https://github.com/josarajar/
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1.4.4 Publications

We have published the contributions of Chapter 4, Chapter 5 and Chapter 6 in one
journal paper and two international conference papers listed below:

• José Carlos Aradillas, Juan José Murillo-Fuentes and Pablo M. Olmos,
“Boosting Offline Handwritten Text Recognition in Historical Documents
With Few Labeled Lines,” in IEEE Access, vol. 9, pp. 76674-76688, 2021,
doi: 10.1109/ACCESS.2021.3082689.

• José Carlos Aradillas, Juan José Murillo-Fuentes and Pablo M. Olmos,
“Improving offline HTR in small datasets by purging unreliable labels,” 2020
17th International Conference on Frontiers in Handwriting Recognition
(ICFHR), 2020, pp. 25-30, doi: 10.1109/ICFHR2020.2020.00016.

• José Carlos Aradillas, Juan José Murillo-Fuentes and Pablo M. Olmos,
“Boosting Handwriting Text Recognition in Small Databases with Trans-
fer Learning,” 2018 16th International Conference on Frontiers in Hand-
writing Recognition (ICFHR), 2018, pp. 429-434, doi: 10.1109/ICFHR-
2018.2018.00081.

The proposed model and the results we achieve in Chapter 7 will be submitted
to a journal, currently under preparation.

• José Carlos Aradillas, Isabel Valera, Juan José Murillo-Fuentes and Pablo M.
Olmos, “Data Augmentation by Variational Autoencoders for Handwritten
Text Recognition,” 2021, in preparation.





2 State of the Art

2.1 Machine learning tools for handwriting recognition

The HTR problem currently falls under the computer vision and pattern recognition
areas. In the previous chapter, the different tasks that can be found within the
HTR field were introduced. Among these tasks, in this thesis, we focus on the
transcription of historical handwritten documents from segmentations of their lines.
In the training stage, we also have the image labeled, i.e., the text corresponding
to the image.

2.1.1 Handwriting text line recognition

There is a primary classification of the different problems in the machine learning
literature depending on the available data. When a set of image-label pairs is
available, the task is known as supervised learning which is the case of the HTR
problem. When the label, the corresponding text, is not available, the task is
referred to as unsupervised learning. Finally, if only scalar reward values are
provided, the task is referred to as reinforcement learning. In this thesis, we
are usually focused on a supervised task, although in Chapter 7 we take some
unsupervised learning tools as an intermediate step to solve the main HTR task.

In the supervised learning task, we have a training set S of input-label pairs
(X, l), where X is an element of the input space X and l is an element of the label
space L. To measure the performance of the trained model, a test set S′ is also
provided. It is assumed that both S and S′ have been drawn independently from
the same distribution DX×L. A portion of the training set is usually extracted to
validate the performance of the model during training and prevent overfitting.

11
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Figure 2.1 Example of image of a text line of the IAM dataset.

In the supervised HTR problem, the format of the input-label data has to be
defined. In this text, the input X consists of an h×w× c tensor. The tensor
dimensions are referred to as h for the height, w for the width, and c for the
number of channels. If we consider an RGB image, c = 3 and if we consider a
gray image c = 1. Each value of the tensor corresponds to the pixel value of an
RGB or gray image.

The definition of the label space is a key factor in the way authors face the
HTR problem. In the case of HTR over images of full lines of handwriting text,
the problem is defined as sequence to sequence problem. As mention in the
previous paragraph, the input X is an image, see Figure 2.1. This image can be
interpreted as a sequence of columns vectors, x, with entries the values of the pixels
X=

[
x(1),x(2),...,x(T )

]
, being T =w the length of the input sequence. On the other

hand, the label l is defined as a sequence of characters l =
[
l(1), l(2), ..., l(U)

]
. The

lengths T and U of each input and label sequences are arbitrary so this problem
differs from typical supervised task. We can assume that U ≤ T .

2.1.2 Evaluating the performance

When evaluating the performance of a model in a supervised task, authors usually
compare the classification provided by the model with the Ground Truth (GT).
When the task consists of identifying each sample with a single label, we can
measure the performance by assigning 1 whenever the ground truth label equals
the model’s output and 0 otherwise. Summing up, by evaluating each sample in
the test set and normalizing the outcomes by the number of elements in the set,
we estimate the test accuracy. If h(X(i)) is the estimation for the text, given input
image X(i), the accuracy yields,

Acc(h,S′) =
1
|S′|

|S′|

∑
i=1

{
1 if h(X(i)) = l(i)
0 otherwise

(2.1)

For isolated character or word recognition, the test accuracy could be represen-
tative enough. However, in this thesis, we are dealing with sequences of characters
or sequences of words. In this case, counting the number of entirely correct
sequences is misleading since there would be no difference between a sentence
with no correct characters and another with only one error.
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If we compare the labeled with the transcribed sequence, we find incorrect
characters or words, but sequences might have different lengths due to inserted or
deleted characters. Historically in handwriting or speech recognition, the most
popular measure of error is based on the Levenshtein edit distance [58], which
takes these possible errors into account.

The Levenshtein edit distance counts the number of operations required to
transform one string into another. The possible edits are insertions, substitutions,
and deletions. The Levenshtein edit distance is computed as follows:

ED = nins +nsub +ndel (2.2)

where nins, nsub and ndel is the number of insertions, substitutions and deletions
measured to transform one text into another, in this case h(X(i)) into l(i). Normal-
izing the minimum distance by the number of characters or words in the target
sequence give us the Character Error Rate (CER) or Word Error Rate (WER),

CER =
nc

ins +nc
sub +nc

del
nc (2.3)

WER =
nw

ins +nw
sub +nw

del
nw (2.4)

The super-index w and c refers to words or characters and the parameter nx is
the overall number of elements in the text in terms of characters (x = c) or words
(x = w).

When measuring the CER, the whitespace character should be taken into ac-
count since this symbol is essential to separate words.

2.1.3 State-of-the-art models

In this subsection, we summarize the most relevant training models that other au-
thors have proposed before and during the development of this thesis. Historically,
we can classify the models into two main different trends, the Hidden Markov
Models (HMM) and the Neural Networks (NN) models.

Since the landmark work by Graves et al. where they proposed the CTC [40],
most models include a RNN with the CTC on top.

Hidden markov models

A HMM describes a stochastic process to handle sequential data, involving two
random variables: the random variable representing the sequence of observations,
denoted by X , and the random variable representing hidden states, denoted by Z.
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In particular, HMM are probabilistic graphical models of the joint likelihood of
the two variables p(X ,Z).

There are techniques to (a) compute the probability of a sequence given a model,
(b) find the sequence of hidden states which is most likely to have produced an
observed one, and (c) find the parameters of the model to maximize the probability
of observing a sequence.

These models have been applied to the HTR task [52, 59, 44, 11, 110]. HMM
is a solution for HTR task when constrained to a particular vocabulary, or the
set of feasible words is fixed. One of the drawbacks of this model is the fact
that the width of the characters has to be similar. Besides, it is necessary to
apply some preprocessing steps to reduce the handwriting variability, such as
normalizing contrast, normalizing skew, normalizing slant, and normalizing size.
The performance of HMM was outperformed by NN models, and they are not
being used anymore for HTR of historical documents.

Deep neural networks

NN have become a trend for solving most pattern recognition tasks. They consist
of basic processing units linked to each other with weighted connections. These
units are called neurons due to the similarity of these models with the biological
neurons. The input of each unit is the weighted combination of the outputs of
other units.

The basic and quite extended type of unit of a neural network is called perceptron
and was proposed in [76], see Figure 2.2 as:

y = f (x) = f (w1x1 +w2x2 + ...+wnxn +b) (2.5)

being f a non-linear function known as activation function, x a column vector of n
dimensions or features, w a vector of weights and b a bias term. Some non-linear
functions are used in different tasks, for example if we have a binary task in which
the model has to choose between two values, we can use the sign(x) function
which takes the values 1 if x > 0 and −1 otherwise. In the case the model requires
a soft output, for example, a probability of an event occurs, the sigmoid function
is usually used, see other activations functions in Figure 2.3:

σ(x) =
1

1+ e−x (2.6)

If we take a set of perceptrons and connect the output of some of them to the
input of others, we have a Multi Layer Perceptron (MLP) NN. Every perceptron in
this NN is denoted as a neuron or unit. A MLP contains units organized in layers,
where several layers can be stacked. The output of the previous layer, y(i−1), is
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Figure 2.2 Perceptron.
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Figure 2.3 Examples of activation functions.

the input to the layer i. The weights of every neuron in a layer can be written as
a row of a matrix W while the biases can be stacked in a vector, b. Since these
weights are different, every unit outputs a different output.

We can formulate the output of each layer of a MLP by using matrix notation:
in the layer i we has the following expression:

y(i) = fi(Wy(i−1)+b(i)) = fi(a(i−1)) (2.7)

where if i = 1, y(i−1) = x and a are the activations. Also, a different activation
function can be used in every layer.
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In a multi-class classification problem the last layer might has multiple units,
one per class. In this case the softmax function [18] is quite extended:

y = softmax(a) =
eai

∑
n
k=1 eak

(2.8)

where a is a vector with the activations of the last layer,

a(i) = Wy(i−1)+b(i) (2.9)

and y is a vector with values in the range 0-1, one per class. A layer providing an
activation as in (2.9) is referred to as Fully Connected (FC).

Convolutional neural networks

When dealing with multidimensional input structures such as images, the inputs
are usually of high dimensions. In this case, the application of MLP involves a
considerable number of weights, as every point, e.g., a pixel in images, is an input
to every unit in the first layer. Besides, in these structures, usually, local structures
are key features to perform the given task. In this scenario, CNN are preferred, as
they exhibit much better performance with a fraction of the number of weights.

The key point in CNN is the application of a convolution with a kernel. The
size of the kernel is usually of a few points, but a large number of different
filters are used. At every layer i and unit j, the input, organized as a tensor of
h(i−1)×w(i−1)×d(i−1), is convolved with a kernel k j(i). Note that we detect
relevant local patterns at the lower layers while exploiting large-scale relations in
the upper ones by using several layers.

As we go through the layers, we usually reduce the sizes of the inputs, h(i)×
w(i), while increasing the number of kernels, i.e., the depth, d(i). This can be
performed either by using the stride or a pooling. See [32] for details. The
dimensions of the tensors, the stride, and pooling used are hyperparameters to be
pre-defined, while in the training stage, the kernels are learned.

In this thesis, the CNN will be used first in the NN model to extract important
features to be later related in a time scale using RNN. As explained later, five
convolutional layers will be used in the first process and reduce the dimensions of
the input image with the text of a line.

Recurrent neural networks

We already discussed that we face a sequence to sequence task, where a sequence
of columns of pixels in an image is translated to a sequence of characters. In this
task, RNN is the state-of-the-art. These networks incorporate some mechanism to
achieve some memory through recurrent connections.
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In a recurrent unit, samples of a sequence input are fed one at a time. In its
simplest form, the output is both the corresponding input and the output at the
previous timestep. Hence, the previous output plays the role of a state or memory
of the unit. The activations, a(t)k , evolve through time with the following recurrence,

a(t)k =
I

∑
i=1

ω in
ki x(t)i +

H

∑
h=1

ωrec
kh z(t−1)

h (2.10)

where x(t)i are the inputs at timestep t, ω in
ki the weights for the inputs, z(t−1) the

output of the layer at the previous timestep and ωrec
kh the corresponding weights.

In general, the output, y, can be any transformation, g(·), of the state or memory,
z. See Figure 2.4.

y(t)

g(·)

z(t)

x(t)

y(1) y(2) y(3) y(4) y(5) y(6)

g(·) g(·) g(·) g(·) g(·) g(·)

z(1) z(2) z(3) z(4) z(5) z(6)

x(1) x(2) x(3) x(4) x(5) x(6)

(a) (b)

Figure 2.4 Block diagram of a RNN in (a) the folded structure, with the recurrent
link in red and (b) unfolded for T = 6.

The sequence of outputs is the outputs of the layer. Several layers can be
staked. Also, within a layer, the Bidirectional Recurrent Neural Network (BRNN)
processes the sequence in both directions. In these networks, the layer has two
independent sub-layers: a forward one (see states z(t) in Figure 2.5), a RNN
starting at time 0 and increasing t, and a backward RNN (states v(t) in Figure 2.5),
i.e., starting at the last timestep and decreasing t. Both layers are connected to the
same input, and their outputs are combined. Also, the outputs of both sublayers
could be staked as input to the next layer.

Other alternative is Multi Dimensional Recurrent Neural Network (MDRNN),
which process an input image with four directions in recurrent layers.
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v(1) v(2) v(3) v(4) v(5) v(6)

z(1) z(2) z(3) z(4) z(5) z(6)

x(1) x(2) x(3) x(4) x(5) x(6)

g(·) g(·) g(·) g(·) g(·) g(·)

y(1) y(2) y(3) y(4) y(5) y(6)

Figure 2.5 Bidirectional RNN, unfolded example for T = 6.

Long-short term memory networks

In RNNs, the vanishing gradient issue prevents the network from learning long-
time dependencies. In [48] the authors proposed the LSTM as an improved
recurrent unit, a.k.a. cell, to solve this problem. In LSTM, we have the input, x(t),
the output, h(t), and an internal state or memory, c(t). A gating system controls the
flow of information, weighting the input information, the output activation, and
the internal state of the unit at the previous timestep to update the current state.The
key idea is to let the unit decide how to update the memory given the input. If the
memory needs to be entirely updated, we forget it, and it will quite depend on the
input. On the contrary, the memory could be preserved and not modified by the
input.

The following equations define the behavior of the LSTM unit. There are three
so-called gates: input, forget and output. Their outputs are computed, respectively,
as:

i(t) = σ(Wi
xx(t)+Wi

hh(t−1)+bi) (2.11)

f(t) = σ(W f
x x(t)+W f

hh(t−1)+b f ) (2.12)

o(t) = σ(Wo
xx(t)+Wo

hh(t−1)+bo) (2.13)
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Figure 2.6 LSTM cell.

Then, the new state and output are computed as

c(t) = f(t)⊗ c(t−1)+ i(t)⊗ c̃(t) (2.14)

h(t) = tanh(c(t))⊗o(t) (2.15)

where

c̃(t) = tanh(Wc
xx(t)+Wc

hh(t−1)+b j) (2.16)

is an auxiliary value and ⊗ denotes element-wise multiplication.
This unit can be used as a layer. Also, several layers can be stacked, being

the output of the lower input to the upper one. Besides, a bidirectional structure
similar to the one explained previously can also be used.

Over the last decade, there has been a trend towards the utilization of LSTMs
[41, 72, 99, 94, 14] jointly with CTC [40] in order to have an end-to-end system
capable of doing the transcription of raw images containing whole lines of text.
RNN-CTC methods for HTR have obtained the lowest error rates in recent HTR
contests [41, 72, 99, 17, 14, 42].

Connectionist Temporal Classification

Since the RNN network only outputs local classifications, for that timestep, a
post-processing stage is required to give the final label sequence. Suppose we
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have the image in Figure 2.1 and we want to recognize the text. Besides, we are
not segmenting the image to locate letters. Labeling unsegmented sequence data,
denoted as temporal classification, is a well-known problem in sequence learning.

Suppose that we feed an RNN with the image in Figure 2.1 to provide T = 120
outputs, but we have U = 44 letters as labels in “monasteries, manors, townships,
or wards and”. In training, as we have the labels, i.e., the sequence of letters, we
need to translate from labels (44) to outputs of the RNN (120). We will need two
temporal indexes, u for labels, and t for outputs of the RNN. Therefore, several
consecutive output indexes of the RNN correspond to the same label index. In
Figure 2.1.3 we depict the RNN followed by the CTC, a block translating from
timesteps, i.e., columns of pixels in an image of a line of text, to letters. The CTC
was proposed in [40] for the labeling of unsegmented data with neural networks.
With the CTC data does not need to be pre-segmented, and the output does not
have to be post-processed: it is already the sequence of characters.

Figure 2.7 RNN and CTC: the output of the RNN is the imput to the CTC, that
translates a sequence of features of length T , the size of the input, into
a sequence of U < T letters, with U unknown.
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Provided that the network outputs for different timesteps are independent, given
the input (because there is no connection from the output layer to intermediate
layers), the probability of a sequence π for a given x at the output of the RNN is

p(π|x) =
T

∏
t=1

p
(

y(t)πt
(x)
)

(2.17)

where p
(

y(t)πt
(x)
)

is the probability of y(t) being in the sequence π at position t,
given x. Since this probability is hard to compute, the activation of the output is
interpreted as this probability.

The output of the CTC is an association of every output of the RNN, y(t), that
depends on x, to a letter l(u). In the CTC the mapping l = B(π) is of major
importance. It translates the sequence of outputs of the RNN into a sequence
of letters. This mapping, to be calculated within the CTC, decides how many
consecutive outputs of the RNN corresponds to a letter or a space between letters.
With this mapping, we calculate the posterior probability of a label sequence
l ∈ L6T by summing over all possible segmentations:

p(l|x) = ∑
π∈B−1(l)

p(π|x) (2.18)

This probability is used by the CTC as the objective function to be maximized.
This computation can be cumbersome, as we need to check for multiple com-
binations, and some approximations can be used to reduce the computational
complexity, with a quite reduced impact on performance. See [40, 41, 39] for
further information.

2.2 State-of-the-art architectures

State-of-the-art architectures for HTR in historical documents combine a CNN
[103] with a RNN with LSTM cells [48]. This type of network models the
conditioned probability, p(l|x), of a character sequence of arbitrary length, U ,
given an image, X, of fixed height and arbitrary width.

These models are configured to minimize the CTC cost function proposed
by Graves in [40]. In some works Two Dimensional LSTM (2D-LSTM) [48]
networks are used [72, 99, 19, 64]. This RNN has two main drawbacks. On the
one hand, it has a vast number of parameters that make learning difficult. On the
other hand, it is not parallelizable [74]. For these reasons, after some attempts, it
has been discarded in this thesis justified by the analyses we make In Chapter 4.
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There are several authors that implement architectures composed of CNN and
Bidirectional Long Short Term Memory (BLSTM) networks [84, 79, 108, 20, 92,
8, 90, 81, 107, 6].

Regarding the state-of-the-art DNN models for HTR, some recent works are
in the line of avoiding recurrence in the models, developing models based in
fully-convolutional networks such as the Gated Convolutional Network (GCN)
[23, 30, 65, 26]. This kind of model reduces the number of parameters in the
architecture.

2.3 Transfer learning

In the HTR problem with a reduced training set, TL was applied by Soullard et al.
in [90]. The main idea behind TL is initializing the parameters of a model by those
learned from a huge dataset beforehand, denoted as source. Then, the available
labeled set of samples of the dataset of interest, the target, is used to refine
the parameters of the model. Usually, just a subset of them [106, 31, 109, 61].
In [61], they analyze how to reduce the dataset shift and enhance the feature
transferability in task-specific layers of deep networks. Hence, with TL we start
learning a different task to avoid learning the whole set of parameters from scratch,
preventing overfitting and favoring convergence. In [90], they proposed a method
that applies TL in both the optical and the language model. In this and other
similar previous proposals on TL, the authors applied DA in both training and test
steps.

2.4 Data augmentation

DA consists in augmenting the training set with synthetically generated samples.
Like TL, it reduces the tendency to overfit when training models with many
parameters and limited labeled data. In DA for image classification problems, the
training set is increased by modifying the original images through transformations
such as scaling, rotation, or flipping images, among others [21]. Several authors
have proposed specific DA techniques for HTR: in [101] the authors apply methods
for augmentation and normalization to improve HTR by allowing the network to
be more tolerant of variations in handwriting by profile normalization. In [73]
they show some affine transformation methods for data augmentation in HTR.
In [55], and [85] they synthesize new lines images by concatenating characters
from different datasets. [55] does it from cursive characters, while in [85] they
do it from a database of handwritten Chinese characters. Similar to [101], in [87]
they also apply some elastic distortions to the original images. In [20] the authors
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improve the performance by augmenting the training set with specially crafted
multi-scale data. They also propose a model-based normalization scheme that
considers the variability in the writing scale at the recognition phase. In these
works, they apply DA in relatively large well-known datasets, but here we show
that the regularization effect of any DA technique has no impact when making the
fine-tuning adaptation to a singular writer in small databases. Accordingly, we
will conclude that the combination of TL and DA applied to small datasets has to
be done carefully to reduce the final error.

2.5 Mislabeled samples

Mislabeled detection in HTR has been seldom studied. In [67] they face a spe-
cific problem in the Institut für Informatik und Angewandte Mathematik (IAM)
database: crossed out words that are labeled with the symbol “#”. The authors pro-
pose a method to avoid how this specific label affects performance. That method
is focused on the specific problem of crossed-out text and how it is annotated in
the GT. The algorithm we propose in Chapter 6 is more general, addressing this
and other possible problems. In related work in [80], the authors apply a method
to align the output of a segmentation process with the available GT.

2.6 Synthetic handwriting text generation

Previous handwriting generation approaches have focused on the online handwrit-
ing generation task where the data is collected in a digital device. The models
learn to follow the pen over a digital surface [39, 66, 63, 2].

Recently, since 2019 some authors have proposed a Generative Adversarial
Networks (GAN) model in order to generate offline handwritten images [50, 4,
35, 53, 43]. However, all those settings have in common that they only generate
images of isolated words.

In [27] Brain Davis et al. propose a GAN for generating images of handwritten
lines conditioned on arbitrary text.

In the historical handwritten field, some works consist in the generation of
handwritten data, although those tasks and approaches are different of HTR. In
[102] they proposed a method to improve the synthesis of word images for the
word spotting task. In [89] they perform document enhancement through a GAN.





3 Databases

In this chapter, we introduce the datasets used in this thesis. Although this thesis
focuses on historical handwritten documents, we also include two well-known
modern databases that researchers use to validate their algorithms. We include
these modern databases because we use them as a starting point to compare
state-of-the-art models, or they are necessary for some steps of our methods.
For example, in Chapter 4 we propose a transfer learning method where these
databases are used as source datasets to train the models from scratch.

In each database, we provide information about the language of the documents,
the script, some digitalization features, and the number of samples. We also
provide some samples from each database.

3.1 The IAM database

The IAM database [62] contains 13353 labeled text lines of modern English
handwritten by 657 different writers. The images were scanned at a resolution
of 300 dpi and saved as Portable Network Graphics (PNG) images with 256
gray levels. In Figure 3.1 we include an image of this database alongside the
GT transcript. The database is partitioned into training, validation, and test sets
of 6161, 900, and 2801 lines, respectively1. Here, the validation and test sets
provided merge in a unique test set. There are 79 different characters in this
database, including capital and small letters, numbers, punctuation symbols, and
white space.

1 The names of the images of each set are provided in the Large Writer Independent Text Line
Recognition Task.

25
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GT: those in authority to find some simple

Figure 3.1 IAM handwritten text sample: image of a line and its transcript..

3.2 The RIMES database

The Reconnaissance et Indexation de données Manuscrites et de fac similÉS
(RIMES) database is a acquisition of french letters handwritten by 1,300 volunteers
who have participated in the RIMES database2 creation by writing up to 5 emails.
The RIMES database thus comprises 12,723 pages corresponding to 5605 mails of
two to three pages. In our experiments, we take a set of 12111 lines derived from
the International Conference on Document Analysis and Recognition (ICDAR)
2011 line-level competition. There are 100 different characters in this database.

3.3 The Washington database

The Washington database includes 565 text lines of the George Washington letters,
handwritten by two authors in the 18th century. Although the language is also
English, the text is written in longhand script and the images are binarized as
illustrated in Figure 3.2, see [108] for a description of the differences between
binarized and binarization-free images when applying HTR tasks. In this database,
they provide four possible partitions to train and validate. In this thesis, we have
randomly chosen one of them. The train, validation, and test set contain 325, 168
and 163 handwritten lines. There are 83 different characters in the database.

GT: As there are several Contracts made by me to

Figure 3.2 Washington handwritten text sample: image of a line and its transcript.

3.4 The Parzival database

The Parzival database [1] contains 4477 text lines handwritten by three writers
in the 13th century. The lines are binarized like in the Washington database, but
the text is written in gothic script. We include a sample in Figure 3.3. There

2 see http://www.a2ialab.com/doku.php?id=rimes_database:icdar_2011

http://www.a2ialab.com/doku.php?id=rimes_database:icdar_2011
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are 96 different characters in this database. Note that the Parzival database has
a considerable number of text lines in contrast to the Washington one. We have
randomly picked a training set of approximately the same volume as in the Wash-
ington training to emulate learning with a tiny dataset, which is the main goal of
this thesis.

GT: finiv heidenfciv ógen.

Figure 3.3 Parzival handwritten text sample: image of a line and its transcript.

3.5 The ICFHR 2018 Competition over READ dataset

In 2018 they offered the set of documents of the International Conference on
Frontiers in Handwriting Recognition (ICFHR)2018 Competition on Automated
Text Recognition on a READ Dataset (https://readcoop.eu/) to compare the perfor-
mance of approaches learning with few labeled pages. The dataset provided for
the competition consists of 22 documents segmented at line level [92], written in
Italian and modern and medieval German. Each of them was written by only one
writer but in different periods and various languages. The training data is divided
into a general set (of 17 documents) and a document-specific set (of 5 documents)
called Konzilsprotokolle_C, Schiller, Ricordi, Patzig, and Schwerin of an equal
script as in the test set.

Hereafter, general is used to denote available source labeled databases different
from the one of matter, while document-specific denotes particular target docu-
ments. Also, the Konzilsprotokolle_C dataset, of the University of Greifswald,
will be abbreviated as Konzil. The general database comprises roughly 25 pages
per document (the precise number of pages varies such that the number of con-
tained characters is almost equal per document). It will be denoted hereafter by
ICFHR18-G.

For the 5 document-specific databases the authors provide 16 labeled pages
plus 15 unlabeled pages. One can check for the error in the transcription of these
databases by sending the authors the 15 transcribed pages. Then, they publish the
results of the transcription on the web of the contest. In Figure 3.4, samples from
five specific target documents are displayed.

The standard unicode normalization form compatibility decomposition is ap-
plied to the GT to provide a common character set over such different documents,
with 102 characters. The goal of the competition is to fit a model to transcript
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each of the 5 specific target documents with the lowest CER possible, using the 17
source documents available for training. Four experiments are conducted for each
document-specific target dataset, simulating that you have 0, 1, 4, or 16 annotated
pages available for training.

Konzil GT: Ruhz; 5, dem Schreiben der Universitat Heidel¬

Schiller GT: Die englische Iphigenia erfreute mich sehr.

Ricordi GT: pianto della nuova officina sperimentale.

Patzig GT: haben hier die herrlichsten Vorarbeiten

Schwerin GT: Dy onphingk her vnd sante yn

Figure 3.4 From top to bottom: Konzil, Schiller, Ricordi, Patzig and Schwerin
handwritten text samples with their transcripts.

In Table 3.1 we include the number of training and test lines available for every
database. While we will use all lines in the test sets, the number of lines of the
training set used vary through the experiments and we will indicate that number in
every case.
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Table 3.1 Number of lines available for training and test in each dataset.

Full train set size Test set size
RIMES 10163 778
IAM 6152 2912
Washington 325 163
Parzival 350 1328
ICFHR18-G 11424 2878
Konzil 351 118
Schiller 238 90
Ricordi 273 110
Patzig 473 168
Schwerin 782 275





4 HTR in Small Historical
Databases: Transfer Learning

4.1 Introduction

The approaches already described in the state-of-the-art and particular NN archi-
tectures on HTR exhibit an outstanding performance if applied to modern and
massive databases such as IAM and RIMES. However, the performance highly de-
teriorates when tackling historical databases with the common property of having
few labeled lines.

In this chapter, we put forward the first contribution of this thesis to solve
this problem by applying TL across different databases. With a smaller number
of parameters and good generalization performance, we show that the network
in Figure 4.2 can achieve remarkable generalization results for small historical
databases once it has been pre-trained over an extensive database. We take the
IAM database [62] to pre-train the network, then use this learning to solve HTR
in the Parzival database [34] by using only 350 lines of text. We show that a test
CER given by the equation (2.3) can achieve as low as 3.3%.

Similar outcomes are also achieved for the Washington database [34]. Further-
more, both databases are binarized, hence making the HTR more challenging. Up
to our knowledge, transfer learning is a novel approach to HTR of text lines. We
published the results of this chapter in [8].

Previous works where other authors applied TL to a problem related to HTR is
presented in [38]. In that work, authors face a different problem in the HTR field:
they use TL to face a word-spotting problem in which the objective dataset has no
ground truth. After our proposal in [8], other authors started using TL for solving

31
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HTR problems applied to historical documents at line level. The same year there
was an international competition with results published in [92]. The organizers
provided one of the databases presented in Chapter 3: the database for the ICFHR
2018 Competition over READ dataset. The contestants sent to the organizers the
transcriptions of lines for 5 different documents from which they only offered 0, 1,
4, and 16 half-annotated pages in different steps of the competition. As we have
shown in Section 5.5, our TL method, along with the architecture presented in
Section 4.3 was better than most of the other participants of the competition.

Reported results prove the importance of performing TL as the right way to train
HTR solutions based on DNN to get a good generalization over small databases.
This is critical in historical documents, typically characterized by small databases
and a vast variety of calligraphic styles.
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Figure 4.1 The proposed Convolutional Recurrent Neural Network (CRNN) archi-
tecture. The number of channels of each CNN layer is shown in this
scheme. Pooling layers after the first, second and third CNN layer are
also depicted. The number T/k with k = 1,2,4,8 is the length of the
sequence. Numbers below blocks denote the depth of the layer i, d(i),
i.e. the number of filters or kernel used to compute it.

The rest of this chapter is organized as follows: Section 4.2 provides an overview
in transfer learning; the neural network used in this chapter, Chapter 5 and Chap-
ter 6 is detailed in Section 4.3; in Section 4.4 we analyze the application of transfer
learning to solve HTR tasks over Washington and Parzival databases and, finally,
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conclusions are drawn in Section 4.7.

4.2 Transfer learning overview

To cope with a reduced set of labeled inputs, we could first train the DNN model
using as source available labeled large datasets. Then, we could apply TL, or
domain adaptation strategies [37] to tune the learned model to later transcript a
target document. As discussed in Chapter 1, we usually deal with different tasks,
where TL has shown useful to share the results of the learning between tasks.

Formally, in HTR, deep learning algorithms have been usually used to solve
problems over a domain D= {X,P(x)}, where P(x) is the marginal probability.
Typically x is the image for a segmented line in the text. The task consists of two
components: a label space Y and an objective predictive function f (·) (denoted by
T = {Y, f (·)}), which can be learned from the training data. The data consists of
pairs {xi,yi}, where xi ∈ X and yi ∈ Y [71] and f (x) = Q(y|x) can be interpreted
as the conditional probability distribution.

Given a source domain DS and a learning task TS, transfer learning aims to
help improve the learning of another target predictive function fT (·) in DT using
the knowledge in DS and TS. In this work, we are interested in inductive transfer
learning in which the target task is different from the source task, as the domains
are different (DS 6=DT ). Here we perform TL by retraining a DNN model where
1) all weights are initialized to the ones of the DNN learned for DS and TS and 2)
the parameters of lower layers can be frozen to the values of the ones obtained
after training with other available source datasets, used as off-the-shelf feature
extractors [75].

To illustrate the performance of the approach, as source domain, we will use the
IAM database [62], while the target domain will be the Washington and Parzival
databases [34].

4.3 Architecture

In this thesis, we implement a network architecture based on the convolutional
recurrent neural network (CRNN) presented in [86]. This approach avoids the
use of 2D-LSTM layers, applying convolutional layers as feature extractors and a
stack of 1D BLSTM layers to perform classification. Previous DNN architectures
for HTR consisted of a combination of 2D-LSTM layers and convolutional layers,
with a collapsing stage before the output layer in order to reshape the features
tensors from 2D to 1D [99, 72]. The use of 2D-LSTM layers at the first stages
has several drawbacks, such as the need for more memory in the allocation of
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Figure 4.2 The network architecture used in this chapter.

activations and buffers during back-propagation and a longer runtime is required
to train the networks since parallel computation cannot be implemented in contrast
to a CNN [74]. Recently, it has been shown that CNN in the lower layers of an
HTR system obtains similar features than an RNN containing 2D-LSTM units
[74].

The CRNN architecture proposed in [86] is comprised of seven CNN with
a max-pooling step at the output of four of them, followed by a stack of two
BLSTM layers at the top of the network. In [8] we have shown that the CRNN
in Figure 4.1, the one used in this work1, achieves better performance than the
original one proposed in [86]. In Figure 4.2 we include the same model with
further details of every block.

It uses a CNN with 5 layers at the bottom, with a 3×3 and 1×1 stride kernel,
the number of filters are 16, 32, 48, 64 and 80, respectively. We use LeakyReLU,
see Figure 2.3, as the activation function. A 2× 2 max-pooling is also applied
at the output of the first 3 layers to reduce the size of the input sequence. At the
output of the CNN, a column-wise concatenation is carried out with the purpose
of transforming the 3D tensors of size w×h×d (width × height × depth) into
2D tensors of size w× (h×d) where w and h are the width and height of the input
image divided by 8, i.e., after 3 stages of 2×2 max-pooling. The depth, d = 80,
is the number of features of the last CNN layer. Therefore, at the output of the
CNN, we have sequences of length w and depth h×80 features.

After the CNN stage, 5 1D-BLSTM recurrent layers of 256 units with hyperbolic
tangent functions and without peephole connections. Since at the output of each

1 Implementation is publicly available in https://github.com/josarajar/HTRTF
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BLSTM layer we have 256 features in each direction, we perform a depth-wise
concatenation to adapt the input of the next layer to the overall size of 512. Dropout
regularization [72, 91] is applied at the output of every layer, except for the first
convolutional one, with rates 0.2 for the CNN layers and 0.5 for the BLSTM
layers.

Finally, each column of features after the 5th BLSTM layer, with depth 512, is
mapped into the L+ 1 output labels with a FC layer, where L is the number of
characters in the alphabet of each database, e.g., 79, 83, 96 or 102 in the IAM,
Washington, Parzival or International Conference on Frontiers in Handwriting
Recognition (ICFHR) 2018 Competition databases, respectively. The additional
dimension is needed for the blank symbol of the CTC [40], which concludes
this architecture. Overall, this CNN-BLSTM-CTC model has, approximately,
9.58×106 parameters, depending on the number of characters in each database.

The architecture is implemented in the open-source framework TensorFlow in
Python, using the GPU-enabled version. We use the Adam algorithm, a learning
rate of 0.003, β1 = 0.9 and β2 = 0.999. The parameters are updated using the
gradients of the CTC loss on each batch of 16 text lines. We apply an early
stopping criterion of 10 epochs without average improvement.

The selected model was the one with the best performance out of the 7+3, 8+0,
4+4, 5+5, and 6+6 configurations, where A+B corresponds to A convolutional
followed by B BLSTM layers. On the other hand, for the CTC we tried best path
decoding and beam search decoding, with no significant improvement of the latter,
despite the difference in computational complexity. In Table 4.1 we describe the
performance achieved by some state-of-the-art architectures and other variations
we have proposed. In these experiments, we take the databases that the authors
use in their experiments. For a fair comparison, we implement, including training,
all the architectures under the same conditions. Hence, the CER and WER values
of the experiments may vary from the result indicated in the authors’ papers.

The goal of this comparison is to choose a convenient architecture that we will
use in all the thesis experiments. The goal of this thesis is not to find the NN
architecture that performs best over massive databases such as IAM and RIMES
but over small ones.

As we show in Table 4.1, both families of 2D-LSTM based and CNN + BLSTM
architectures perform similar. 2D-LSTM architectures achieve the best results
in this comparison. However, as mentioned above, these models have some
drawbacks. The 2D-LSTM architecture proposed in [99] is depicted in Figure 4.3.

Among those drawbacks, usually related to high computational costs and large
numbers of parameters, the most remarkable is presented in Table 4.2. In this
table we include the results of TL with the IAM dataset as source and Washington
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Table 4.1 Evaluation of CER and WER performance of architectures that achieves
state-of-the-art performance over IAM and RIMES datasets. For a fair
comparison, we trained all models under the same conditions. The first
column indicates the model used, “B” means BLSTM, and “C” means
convolutional. The best results are indicated in boldface.

IAM RIMES
CER WER CER WER

2D-LSTM (a) [99] 6.8 18.3 4.0 10.4
2D-LSTM (b) [19] 6.7 18.1 3.8 10.0
7C + 3B 7.5 20.5 4.6 11.4
8C 8.2 25.7 5.7 14.1
4C + 4B [74] 7.3 22.9 4.6 11.3
5C + 5B 7.2 22.2 4.4 10.8
6C + 6B 7.5 22.8 4.4 12.8
5C + 2B 7.8 23.5 4.7 13.2

CNN 
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Figure 4.3 The 2D-LSTM based architecture proposed in [99].

and Parzival datasets as targets. Parameters in all layers are retrained using with
350 lines of this datasets, see below in this chapter for further details. It can
be observed that the 2D-LSTM based models perform worse than the CNN +
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Table 4.2 Evaluation of CER and WER performance of architectures that achieves
state-of-the-art performance over Washington and Parzival datasets. For
a fair comparison, we trained all models under the same conditions.
The first column indicates the model used, “B” means BLSTM, and “C”
means convolutional. The models have been pretrained with the IAM
database. The best results are indicated in boldface.

Washington Parzival
CER WER CER WER

2D-LSTM (a) [99] 7.9 27.3 4.8 13.4
2D-LSTM (b) [19] 8.2 26.7 5.0 13.7
7C + 3B 5.6 22.1 3.4 10.8
8C 7.2 23.1 3.5 10.9
4C + 4B [74] 5.5 23.2 3.4 10.8
5C + 5B 5.3 21.9 3.3 10.5
6C + 6B 5.9 23.4 3.6 11.0
5C + 2B 5.6 23.1 3.8 10.9

BLSTM families. Furthermore, when used with TL their performance degrades.
On the contrary, models based on CNN plus BLSTM, see e.g. the 5C+5B model,
experience a remarkable improvement.

4.4 Transfer learning for HTR

In this chapter, we investigate how TL can be applied to reuse the parameters
learned during training an extensive database to learn another reduced corpus in the
HTR problem. While the extensive database has thousands of lines (5000−7000)
the training set for the new HTR problem is of a few hundred sizes (150−350).
The proposed methodology is as follows: We first studied the best strategy to
perform TL in detail. We did TL from the IAM database to the Washington one,
first with 325 text lines as training data to later face the learning with 250 and 150
text lines. Then, the best strategies found were validated by the Parzival database.

4.4.1 Learning from scratch

When training the CRNN architecture from scratch for the Washington database,
the CER tends to 0% if it is evaluated over the training set while a CER of over
40% is reached when evaluating the validation set. It can be concluded that there
is not enough number of samples and we have overfitting. The convergence is
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Figure 4.4 Evolution of the error while training the CRNN architecture with ran-
dom initialization and the Washington database.

depicted in Figure 4.4.

4.4.2 Simple TL by just initialization

In the first instance, we trained the network for an extensive database, IAM, and
applied the learned solution to the Washington database. We only transcribed the
familiar characters to both databases. We got a CER = 82%. This poor result may
be due to the heterogeneity between both databases: 1) their images have different
resolutions, 2) the calligraphies of the texts correspond to different centuries, 3) the
sets or alphabets of characters are different, and 4) the images used in training are
in grayscale while the database where the learning results are applied is binarized.
These differences can be observed in Figure 3.1 and Figure 3.2.

At this point, it is interesting to note that due to the stage of column-wise
concatenation between CNN and BLSTM layers, the number of parameters in the
first BLSTM layer depends on the height of the input images. Therefore, to apply
the same CRNN structure to two different databases, it is necessary to resize the
images of the target database so that they have the same height as the images of
the training database.

4.4.3 Best TL strategy

As a first approach of TL, we added one more BLSTM layer on top of the BLSTM
part of the CRNN architecture. We learned this new layer while keeping the rest
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Table 4.3 CER evaluated in Washington datasets in a model obtained after retrain-
ing a set of layers in the model previously trained over the IAM database.
It has been retrained with 325 lines images. Lowest values in boldface.

CER (%)

Trainable Layers Train Valid Test

FC 55.1 46.2 47.1

BLSTM5, FC 13.0 22.1 23.6

BLSTM[4,5], FC 4.2 14.4 17.4

BLSTM[3,4,5], FC 0.6 10.6 12.8

BLSTM[2,3,4,5], FC 0.2 8.7 6.7

BLSTM[1,2,3,4,5], FC 0.2 5.3 6.6

Conv[5], BLSTM[1,2,3,4,5], FC 0.2 4.8 6.1

Conv[4,5]. BLSTM[1,2,3,4,5], FC 0.2 5.2 6.3

Conv[3,4,5], BLSTM[1,2,3,4,5], FC 0.3 4.5 5.5

Conv[2,3,4,5], BLSTM[1,2,3,4,5], FC 0.5 4.3 5.4

Conv[1,2,3,4,5], BLSTM[1,2,3,4,5], FC 0.2 4.6 5.3

of the layers fixed to the values learned for the IAM database. This architecture
is prone to overfitting. However, reducing the number of units of this new layer
from 256 to 128 or 64 did underfit. These results discouraged us from adding new
layers to the already trained architecture.

We next kept the architecture and studied how the parameters could be initialized
and learned. We initialized the architecture to the values trained with the IAM
database and then trained just a subset of layers from top to bottom, using 325 text
lines from the Washington database. The result of this analysis can be observed
in Table 4.3. This table includes the CER evaluated on the training, evaluation,
and test sets. In the first column of the table, we indicate the layers that have been
left free during the retraining. The rest of the layers remain fixed and initialized to
the result of the learning of the extensive database. For example, BLSTM[3,4,5]
FC indicates that the three upper BLSTM and the FC layers have been retrained,
keeping the rest of the network fixed. The analysis involves both the layers in the
BLSTM networks and the CNN layers.

We first trained just the FC layer of the structure in order to include the number
of characters that the Washington database has (83+1 for CTC blank character).
We retrained this last layer with a training set of 325 lines from the Washington
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database, keeping the rest of the layers fixed. In Table 4.3, the first row, it can
be observed that just retraining the FC layer, the model tends to underfit, a CER
= 52% is obtained, evaluated both in the train set and in the validation set. We
next included the BLSTMs in the set of layers to be retrained. See rows 2-6 in
Table 4.3. Then we also retrained the CNNs, rows 7 to 11.

The most interesting conclusion of this analysis is that by retraining the first
four BLSTM networks, the CER decreases from 47 % to 6.7 %. By retraining
the convolutional layers, i.e., the whole network, we get an extra gain from 6.7
% to 5.3 %. The best result in the test set was obtained when the whole model
was retrained (CER = 5.3 %), while the validation set was obtained when the first
convolutional layer was kept fixed (CER = 4.3 %). Also, by just retraining the top
three convolutional layers, we already get 5.5 %. A possible interpretation of this
behavior is as follows: While CNNs are extracting features from the images [13],
the BLSTM are supporting the classification task. The feature extraction stage is
more transferable than the classification step.

From this analysis, we can conclude that a good TL approach would be to
initialize and retrain the whole network. However, if the first two CNN layers are
kept fixed, we get approximately the same result.

4.4.4 Reducing the training set

We also investigated the performance of this proposed TL approach when the set
of training data was reduced from 325 to 250 and 150. We first randomly chose
250 text lines and repeated the same analysis applied over the set of 325 lines to
investigate the number of layers we should retrain. The results of this analysis are
included in Table 4.4. In this case, the best error rate was achieved when the whole
model except the first convolutional layer was retrained for both validation and test
sets (CER = 6.0 % and CER = 7.1 % respectively). The results are slightly worse
than those of the model trained with 325 text lines. To illustrate the convergence
of the proposed TL, we include the convergence along epochs for this case in
Figure 4.4, retraining the whole network.

Finally, we reduced the training set to 150 text lines and repeated the experi-
ments. The results of this analysis are included in Table 4.5. In this case, the best
result for the validation set was achieved when the whole model was retrained,
fixing the two lower convolutional layers (CER = 7.9 %) while in the test set was
achieved when keeping just the first layer fixed (CER = 9.4 %). These results
could be considered promising if the cost of manually annotating the lines when
creating the training dataset is taken into account2 [84]. It can also be concluded

2 The total time required for a single expert to annotate 20357 lines was estimated as 500 hours
manually.
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Table 4.4 CER evaluated in Washington datasets in a model obtained after retrain-
ing a set of layers in the model previously trained over the IAM database.
It has been retrained with 250 lines images. Lowest values in boldface.

CER (%)

Trainable Layers Validation Test

BLSTM5, FC 26.0 26.9

BLSTM[4,5], FC 18.9 19.5

BLSTM[3,4,5], FC 12.2 14.4

BLSTM[2,3,4,5], FC 8.4 10.5

BLSTM[1,2,3,4,5], FC 7.1 8.4

Conv[5], BLSTM[1,2,3,4,5], FC 6.6 8.1

Conv[4,5]. BLSTM[1,2,3,4,5], FC 5.8 7.3

Conv[3,4,5], BLSTM[1,2,3,4,5], FC 6.2 7.2

Conv[2,3,4,5], BLSTM[1,2,3,4,5], FC 6.0 7.1
Conv[1,2,3,4,5], BLSTM[1,2,3,4,5], FC 6.2 7.6

that not retraining the first, or the first and second, CNN layer is a robust strategy
with varying training data size.

4.4.5 Validation with the Parzival database

To validate the results obtained on the proposed TL algorithm, we applied it to
the Parzival database. The Parzival database contains more than 2000 annotated
text lines. We randomly chose a reduced subset of 350, 250, and 150 text lines
to perform the TL. The CRNN architecture trained from scratch with this 2000
lines train set achieves a CER = 1.7 % for both validation and test sets. The same
model trained for 350 lines got stuck in a value of CER = 18.2 %, similar to the
value of this architecture for the Washington database.

Given the previous results, we focused on the CNN layers. The results can be
observed in Table 4.6. In this case, the best results were also obtained when the
whole model or just the first layer was kept fixed: CER = 3.0 % and 3.3 % in the
validation and test set, respectively, in both cases.

When reducing the number of lines, similar results were obtained. We applied
TL by training a model with a training set of 250 and 150 images, respectively.
The results of these analyses are included in Table 4.7 and Table 4.8. As in the
Washington case, the best error rates are obtained when retraining the whole model
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Table 4.5 CER evaluated in Washington datasets in a model obtained after retrain-
ing a set of layers in the model previously trained over the IAM database.
It has been retrained with 150 lines images. Lowest values in boldface.

CER (%)

Trainable Layers Validation Test

BLSTM5, FC 30.5 31.4

BLSTM[4,5], FC 22.7 24.2

BLSTM[3,4,5], FC 15.7 18.6

BLSTM[2,3,4,5], FC 11.4 14

BLSTM[1,2,3,4,5], FC 10.3 12.6

Conv[5], BLSTM[1,2,3,4,5], FC 9.2 11.2

Conv[4,5]. BLSTM[1,2,3,4,5], FC 8.1 10.1

Conv[3,4,5], BLSTM[1,2,3,4,5], FC 7.9 9.5

Conv[2,3,4,5], BLSTM[1,2,3,4,5], FC 8.4 9.4
Conv[1,2,3,4,5], BLSTM[1,2,3,4,5], FC 10.4 11.9

Table 4.6 CER evaluated in Parzival datasets in a model obtained after retraining
a set of layers in the model previously trained over the IAM database.
It has been retrained with a set of 350 lines images. Lowest values in
boldface.

CER (%)

Trainable Layers Validation Test

BLSTM[1,2,3,4,5], FC 4.2 4.1

Conv[5], BLSTM[1,2,3,4,5], FC 3.8 3.8

Conv[4,5]. BLSTM[1,2,3,4,5], FC 3.3 3.6

Conv[3,4,5], BLSTM[1,2,3,4,5], FC 3.4 3.5

Conv[2,3,4,5], BLSTM[1,2,3,4,5], FC 3.0 3.3
Conv[1,2,3,4,5], BLSTM[1,2,3,4,5], FC 3.0 3.3

or keeping fixed the lower CNN layers. The best results in this case are CER = 4.0
% for the training with 250 text lines and CER = 5.8 % for the 150 text lines case.
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Table 4.7 CER evaluated in Parzival datasets in a model obtained after retraining
a set of layers in the model previously trained over the IAM database.
It has been retrained with a set of 250 lines images. Lowest values in
boldface.

CER (%)

Trainable Layers Validation Test

BLSTM[12345], FC 5.2 5.4

Conv[5], BLSTM[1,2,3,4,5], FC 5.1 4.8

Conv[4,5]. BLSTM[1,2,3,4,5], FC 4.4 4.5

Conv[3,4,5], BLSTM[1,2,3,4,5], FC 4.0 4.1

Conv[2,3,4,5], BLSTM[1,2,3,4,5], FC 3.6 4.0
Conv[1,2,3,4,5], BLSTM[1,2,3,4,5], FC 3.9 4.0

Table 4.8 CER evaluated in Parzival datasets in a model obtained after retraining
a set of layers in the model previously trained over the IAM database.
It has been retrained with a set of 150 lines images. Lowest values in
boldface.

CER (%)

Trainable Layers Validation Test

BLSTM[12345], FC 7.4 7.4

Conv[5], BLSTM[1,2,3,4,5], FC 7.2 7.0

Conv[4,5]. BLSTM[1,2,3,4,5], FC 6.8 6.5

Conv[3,4,5], BLSTM[1,2,3,4,5], FC 6.6 6.5

Conv[2,3,4,5], BLSTM[1,2,3,4,5], FC 6.8 6.6

Conv[1,2,3,4,5], BLSTM[1,2,3,4,5], FC 6.5 5.8

4.5 Application to ICFHR 2018 competition dataset

In previous sections, we analyzed preliminary TL results over the Washington and
Parzival databases by using the IAM database as the source, and we investigated
which layers should be kept fixed to then apply a fine-tuning process to the others.
We concluded that the best choice is to unfreeze all the layers, where the first one
can eventually be fixed. In most cases, fixing only the first CNN layer leads to the
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best performance.

In Table 4.9 we extend the analysis in [8] to the five specific documents in the
ICFHR 2018 Competition dataset, where the 17 documents of the broad set of the
database, in the ICFHR18-G, are used as the source. Results are included when
fixing layers 1 to 3 of the CNN, as fixing other layers provided more significant
errors in all cases. The lowest achieved errors are highlighted in boldface. Training
set size is given in the number of lines. It can be observed that, among all databases,
the best performance is achieved when unfreezing all layers or, at most, only the
first layer is kept frozen. Hereafter the TL is applied by freezing just the first
layer of the DNN model. The results shown in all tables hereafter indicate mean
values of CER or WER. To get the statistics, the model in Figure 4.1 is trained 10
times, where the parameters to initialize are independently and randomly set. In
Table 4.9, a non-parametric bootstrapped confidence interval at 95% [33] is also
included. For the remaining tables, the confidence intervals can be found in the
appendixes.

Table 4.9 TL perfomance: Mean CER (%) and bootstrapped confidence interval at
95%, in brackets, of the model in Figure 4.1 using TL for the Washington,
Parzival, Konzil, Schiller, Ricordi, Patzig and Schwerin datasets (see
Section 5.2) as target domains.

Fixed layers
All free CNN 1 CNN 1,2 CNN 1,2,3

Washing. 5.32 [5.22-5.41] 5.41 [5.24-5.43] 5.53 [5.41-5.64] 6.30 [5.73-7.1]
Parzival 3.30 [3.24-3.36] 3.30 [3.21-3.34] 3.52 [3.36-3.62] 3.63 [3.47-3.69]

Konzil 4.51 [4.33-4.61] 4.37 [4.24-4.54] 4.42 [4.36-5.49] 4.53 [4.43-4.61]
Schiller 9.40 [9.31-9.46] 9.42 [9.34-9.46] 9.48 [9.40-9.54] 10.11 [9.21-10.32]
Ricordi 11.21 [11.14-11.25] 11.20 [10.11-11.23] 11.28 [11.19-11.34] 11.60 [11.41-11.72]
Patzig 10.63 [10.51-10.70] 10.60 [10.52-10.65] 10.68 [10.57-10.74] 12.4 [12.33-12.46]
Schwerin 3.50 [3.46-3.53] 3.50 [3.47 - 3.51] 3.91 [3.81 - 3.94] 4.22 [4.15-4.26]

In Table 4.9 we analyze different strategies of applying TL, with no DA, for
the Washington and Parzival target datasets with the IAM database as the source
and Konzil, Schiller, Ricordi, Patzig, and Schwerin datasets (see Section 5.2) as
target domains with ICFHR18-G as the source. In each of ICFHR 2018 document-
specific datasets, 12 pages are used for training. See the corresponding number
of lines in Table 3.1. We conclude that the good choice is to freeze the first
convolutional layer of the model (column "CNN1"). This solution will be used
later in Chapter 5 and Chapter 6 in combination with other techniques.
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Table 4.10 CER ICFHR 2018 Competition results for LSTM based models: upper
part, other previous approaches and, in the lower part, the results for the
approaches in this work. Lowest mean value highlighted in boldface.

CER (%) per training size CER (%) per document Mean
0 1 4 16 Konzil Schiller Ricordi Patzig Schwerin

OSU[101] 31.40 17.74 13.27 9.02 9.39 21.10 23.27 23.17 12.98 17.86
ParisTech[20] 32.25 19.80 16.98 14.72 10.49 19.05 35.60 23.83 17.02 20.94
LITIS[95] 35.30 22.51 16.89 11.34 9.14 25.69 30.50 25.18 18.04 21.51
PRHLT 32.79 22.15 17.89 13.33 8.65 18.39 35.07 26.26 18.65 21.54
RPPDI[64] 30.80 28.40 27.25 22.85 11.90 21.88 37.29 32.75 28.55 27.32
Ours[8] 32.77 19.51 15.12 8.26 9.16 21.00 29.39 23.25 13.54 18.93

4.6 Comparison to the state-of-the-art

By using the proposed 5+5 DNN model with CNN and BLSTM layers followed
by a CTC, we conclude by analyzing the results of the novel TL approach over the
ICFHR 2018 Competition3. The results included in Table 6.4 were reported by the
organizers of the competition. The contestants provide the transcript of the 15 test
pages for every document in the target set: Konzil, Schiller, Ricordi, Patzig, and
Schwerin. Then, the organizers evaluate the CER, publicly publishing the results.
In this table our results are compared against the 5 original contestants during
the competition: OSU [101], ParisTech [20], LITIS [95], Pattern Recognition and
Human Language Technology (PRHLT) and RPPDI. These approaches use DNN
models based on CNN, LSTM, and CTC, where some modification of the LSTM
is used. The results of the proposal in this chapter are included in the lowest row
of Table 6.4.

Results are presented in three groups of columns. First, the average CER (%)
for the 5 target dataset is included when 0, 1, 4, and 16 pages of the target datasets
are used. The second group of 5 columns reports the average CER (%) for the
learning with 0, 1, 4, and 16 pages in the dataset for every document. The mean
value per row is included in the last column.

4.7 Conclusions

In this chapter, TL applied to a CRNN architecture has been shown to be a
promising technique to reduce the number of labeled data when we face an HTR
problem over manuscripts belonging to a new domain. Besides the reduced number
of labeled data required, this novel procedure also benefits from a speed-up factor
3 The results are publicly available in the ICFHR competition website:

https://scriptnet.iit.demokritos.gr/competitions/10/viewresults/
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since the training is much simpler. In the experiments included, where training
over thousands of text lines is transferred to an HTR problem with a few hundred,
the proposed TL scheme exhibited a good performance when the whole network
is initialized and re-trained. Robust results are obtained if the first or the two first
layers of the CNN are kept fixed. A good performance, with CER in the range
3− 9 %, has been obtained transferring learning from the solution to the HTR
of the IAM database to the HTR of Washington and the Parzival databases, with
training data of sizes 150, 250 and 350 and dealing with different resolutions,
alphabets and types of images.

In the next chapter, we propose the use of DA that can also be used to reduce
the error. Although the combination of DA and TL could be thought of be trivial,
in the next chapter, we will present the efficient way to use the combination of
these techniques when applied to HTR tasks over small datasets.



5 HTR in Small Historical
Databases: Data Augmentation

5.1 Introduction

As mentioned in Chapter 4, once the DNN model to be used has been designed,
an enormous number of training samples are required to minimize the number
of transcription errors, measured in CER in (2.3) or WER in (2.4), given by the
Levenshtein distance [69] between the GT and the output of the model.

However, we might only have a limited number of lines for a given author and
document most of the time. Besides, transcription of part of the documents to get
labeled samples is expensive either in time or money. Take [84] as an example,
where the manual transcription process of a document by an expert in paleography
took an average of 35 minutes per page. In this scenario, allowing for a reduction
in the transcript needed would significantly improve the viability and cost of the
process.

In Chapter 4 we propose the use of TL as an effective method to solve this
problem of lack of data. Another additional tool when facing Deep Learning
(DL) problems with a small number of labeled data consists in the application of
some distortions in the input images in order to augment the database [105]. This
technique is also applied in [74] over the IAM database, decreasing the CER from
8.2 % to 6.4 % on the test set and from 5.1 % to 4.4 % on the validation set. The
distortions applied are affine transformations such as rotation, shearing, translation,
scaling, and some morphological distortions such as erosion and dilation. In this
chapter, we analyze the joint performance of TL presented in Chapter 4 and DA
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methods when applied to HTR. The proposal within this chapter was published in
[7].

5.2 Architecture

In the HTR pipeline, there are several ways to improve the performance of a DNN
model: preprocessing steps, the architecture used, regularization techniques, opti-
mization, language model, and dictionary, among others. The methods proposed in
this chapter are developed for the same DNN architecture presented en Chapter 4
but can be easily used in the pipeline of any other HTR system to reduce transcript
errors. For a fair comparison, in this chapter, we use the same DNN model for all
the experiments. Extra correction steps such as adding a Language Model (LM)
are not included but could be applied to improve the performance further.

5.3 Data Augmentation without transfer learning

In [101] the authors compare various DA approaches using both RIMES [34] and
IAM [62] databases as benchmarks, where transcription is made on the word level.
Note that these databases have a considerably large number of labeled lines. In
Figure 5.1 and Figure 5.2 samples of -slightly- distorted images are shown.

(a) (b)

Figure 5.1 In first column, augmented sample from Washington dataset. In (a) the
new samples generated using Random Warp Grid Distortion (RWGD).
In (b) the grid used to distort them.

When not applying any augmentation technique, they get a CER of 5.35 %
(IAM) and 3.69 % (RIMES). The best CER values reported in [101] by using
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(a) (b)

Figure 5.2 In first column, augmented sample from Washington dataset. In (a) the
new samples generated using RWGD. In (b) the grid used to distort
them.

various DA techniques are 3.93 % and 1.36 %, respectively. Which is equivalent
to an improvement of approximately 2 percentage points in both databases.

Next, we extend the same analysis to scenarios with small training datasets:
Washington, Parzival, Konzil, Schiller, Ricordi, Patzig, and Schwerin databases.
As throughout the whole thesis, the transcriptions are made on line level. Results
for the IAM, RIMES, and the ICFHR18-G, i.e., the 17 documents of the general
dataset in the ICFHR 2018 database, are also analyzed as references. In Table 7.1
we include the CER of our DNN model with no DA and two different DA tech-
niques, affine transformation [73] and random warp grid distortion (RWGD) [101],
for all databases in Chapter 3.

We augment the training set by generating ten copies of every line in the training
set. One of these copies is the original line without distortions.

In Table 7.1, for the largest databases, the DA improvement is around 2 per-
centage points (2 percentage points in IAM, 1.9 percentage points in RIMES, and
2.5 percentage points in ICFHR18-G). However, in the small databases, the CER
reduction is remarkable, in the range of 5 percentage points to 23.6 percentage
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points, see CERs highlighted in boldface. Note that the results in [101] are dif-
ferent to the ones in Table 7.1 because while in [101] transcription is done at the
word level here, whole lines are processed. This explains that in IAM without
DA we get CER 7.2% while in [101] 5.35% is reported. In any case, It can be
concluded that, since the DA acts as a regularization technique to avoid overfitting,
the CER reduction is more remarkable as the size of the training set is reduced. At
this point, it is most interesting to compare the results of TL and DA techniques
when applied independently. It can be observed that TL exhibits, by far, a much
larger CER reduction. Next, we face the design and analysis of both techniques
combined, where RWGD will be used as the DA approach.

Table 5.1 DA perfomance: Mean CER and WER (%) with affine transforma-
tions [73] and RWGD[101] DA approaches evaluated for all datasets in
Chapter 3. The DNN is trained from scratch using the number of lines
indicated by ‘Train size’. Largest DA CER reductions are highlighted in
boldface.

Train size
No method Affine Transf. RWGD[101]

CER WER CER WER CER WER
RIMES 10163 4.4 10.8 2.7 10.7 2.5 10.4
IAM 6152 7.2 22.2 5.9 20.3 5.3 19.7
Washington 325 41.1 85.3 18.7 69.2 17.5 65.2
Parzival 350 18.2 63.0 14.1 56.4 12.9 53,6
ICFHR18-G 11424 12.2 43.7 10.6 40.1 9.7 38.6
Konzil 351 37.1 95.4 26.2 93.4 21.5 90.1
Schiller 238 45.4 88.2 32.4 87.6 30.1 85.5
Ricordi 273 37.2 93.1 36.2 91.1 35.2 90.3
Patzig 473 24.5 86.3 18.5 81.3 17.1 80.5
Schwerin 782 21.1 76.6 17.4 72.9 16.5 71.2

5.4 Combining data augmentation and transfer learning

When comparing DA with TL, the large databases are excluded from the com-
parison. They play the role of source databases in the TL approach. Specifically,
the IAM is the source dataset when Washington and Parzival are targets and
ICFHR18-G in the Konzil, Schiller, Ricordi, Patzig, and Schwerin case. The
RIMES database is only used to enhance the comparisons in this section.

In the combination of TL and DA techniques, there are several possible designs.
Here we propose the following two schemes. In a first approach, we perform DA
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Figure 5.3 Representation of the DA-TL-DA approach (left) and DA-TL approach
(right).

at both the learning from the source dataset and the retraining of the model with
the target one:

1. Train the model from scratch with a source dataset, applying DA.

2. Retrain the model with the target dataset, applying DA.

We name this proposal DA-TL-DA. In a second proposal, denoted by DA-TL, no
DA is applied to the target:

1. Train the model from scratch with a source dataset, applying DA.

2. Retrain the model with the target dataset, without applying DA.

The representation of these two different approaches are depicted in Figure 5.3.
With the aim of evaluating the approaches proposed, we perform the same

experiments as in Section 4.5, obtaining the results included in Table 5.2. For
the sake of completeness and easily comparing the methods, in Table 5.2 are also
included the best performance achieved in Section 4.5 (column TL in Table 5.2)
and Section 5.3 (column DA in Table 5.2), that is TL with the first layer frozen
and DA with RWGD distortions.

In the first step of the DA-TL and DA-TL-DA methods, the model has been
trained from scratch with the IAM database. After that, we fine-tune the model
using data from the Parzival and Washington databases.

In Table 5.3 we include the results when training the model in Figure 4.1 from
scratch with the ICFHR18-G, and being fine-tuned on the 5 specific target data
sets provided. For the sake of completeness, we include in Table 5.3 the results
for 0 pages in the target dataset, i.e., when no labeled sampled from the target is
used. Note that in this case DA-TL-DA cannot be applied.
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Table 5.2 TL and DA combined performance: Mean CER (%) evaluated for Wash-
ington and Parzival datasets using TL and DA with IAM database as the
source. The number of annotated lines used in training is included as
‘Train size’.

Train size
#lines

No method TL DA DA-TL-DA DA-TL

Washington
150 51.6 9.4 22.8 10.0 9.3
250 46.4 7.1 20.4 7.4 7.0
325 41.1 5.4 17.5 5.4 5.4

Parzival
150 21.9 5.8 15.7 6.0 5.6
250 20.7 4.0 14.2 4.2 3.8
350 18.2 3.3 12.9 3.4 3.3

In the light of Table 5.2 and Table 5.3, it can be concluded that applying DA
over the target training set once TL is applied, i.e., DA-TL-DA, either does not
reduce the CER or even it slightly increases it, compared to the result of the TL
approach alone or the DA-TL method. Except for Schwerin, in which DA-TL-DA
slightly improves DA-TL. Put in other words, in general, it is harmful to apply
DA to the target dataset if TL has been applied, when just a reduced number
of labeled lines are available in the target. On the other hand, DA+TL achieves
improvements up to 5 % in the ICFHR 2018 target documents, usually increasing
with the reduction of the training set.

From the discussion above, and bearing Table 5.2 and Table 5.3 in mind, it
can be concluded that DA-TL is a robust approach. When fine-tuning a DNN
that has been previously trained with a similar task (a massive database of HTR
samples), the starting point is reasonably good as we can observe in Table 5.3 for
the training set sizes of 0 pages in all datasets. We show a good generalization
ability of the model for the TL and DA+TL without further training with the target
dataset. Afterward, the DNN model is trained with the target database. Only
a few samples are available in the target set, representing just a limited part of
the support of its marginal distribution, PT (x). After TL, the parameters of the
DNN encode information from both the source and the target training sets. At this
point, we conjecture that by using DA in the target dataset and further refining
the parameters, the DNN model overfits to the augmented versions of the target
samples, forgetting the knowledge learned from the source one, that very much
helps to transcript inputs out of the support generated by augmenting the target
set. This leads to an increase of the final CER.
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Table 5.3 TL and DA combined performance: Mean CER (%) evaluated in ICFHR
2018 Competition Specific datasets as targets using TL and DA with
ICFHR18-G as source. The number of annotated pages used in the
training is included as ‘Train size’.

Training set
size. # pages

None TL DA DA-TL-DA DA-TL

Konzil

0 – 15.50 – – 14.50
1 (29 lines) 48.10 10.85 37.30 14.20 10.80
4 (116 lines) 45.30 6.54 28.71 8.00 6.51

12 (351 lines) 37.10 4.37 21.50 5.00 4.32

Schiller

0 – 24.60 – – 24.60
1 (21 lines) 53.70 17.36 39.50 21.40 17.31
4 (84 lines) 48.40 12.25 33.20 14.00 12.22

12 (238 lines) 45.40 9.42 30.10 10.00 9.38

Ricordi

0 – 39.19 – – 34.23
1 (19 lines) 56.20 23.66 51.0 24.10 22.71
4 (88 lines) 43.52 21.17 40.81 21.10 21.02

12 (273 lines) 37.21 11.20 35.20 10.91 11.14

Patzig

0 – 41.50 – – 38.21
1 (38 lines) 42.54 27.91 35.31 31.42 26.7
4 (156 lines) 37.63 16.40 30.50 18.32 16.11

12 (473 lines) 24.50 10.60 17.13 11.21 10.00

Schwerin

0 – 34.53 – – 31.32
1 (68 lines) 38.40 12.15 30.20 10.62 10.80
4 (264 lines) 29.31 5.73 24.30 5.30 5.52

12 (782 lines) 21.10 3.51 16.50 3.30 3.41

5.5 Comparison to the state-of-the-art

Compared to the state-of-the-art in the ICFHR 2018 Competition Database, we
include the results of the proposal in this chapter in the lowest row of Table 5.4.
In this table, we show how the efficient combination of TL-DA achieves the best
result in the ICFHR 2018 Competition.

Although the mean value of CER is better than the other contestants, we see
that there are some databases in which our results are worse than the others. In
Chapter 6 we propose a new method that improves the results.
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Table 5.4 CER ICFHR 2018 Competition results for LSTM based models: upper
part, other previous approaches and, in the lower part, the results for the
approaches in this Chapter 4 AND Chapter 5. Lowest mean values are
highlighted in boldface.

CER (%) per training size CER (%) per document Mean
0 1 4 16 Konzil Schiller Ricordi Patzig Schwerin

OSU[101] 31.40 17.74 13.27 9.02 9.39 21.10 23.27 23.17 12.98 17.86
ParisTech[20] 32.25 19.80 16.98 14.72 10.49 19.05 35.60 23.83 17.02 20.94
LITIS[95] 35.30 22.51 16.89 11.34 9.14 25.69 30.50 25.18 18.04 21.51
PRHLT 32.79 22.15 17.89 13.33 8.65 18.39 35.07 26.26 18.65 21.54
RPPDI[64] 30.80 28.40 27.25 22.85 11.90 21.88 37.29 32.75 28.55 27.32
TL[8] 32.77 19.51 15.12 8.26 9.16 21.00 29.39 23.25 13.54 18.93
DA-TL 31.55[7] 19.21 14.91 8.16 8.58 21.68 27.84 22.35 12.50 17.83

5.6 Conclusions

In this chapter, we show that before performing TL, applying DA in the source
dataset does reduce the CER. However, applying DA to the target datasets jointly
with TL exhibits worse results than using TL alone. Hence, we propose the DA-TL
approach where the DA is applied to the source dataset in the TL process. This
technique gets the best CER in the ICFHR 2018 Competition.



6 The Corrupted Label Purging
(CLP) Algorithm

In previous chapters, we proposed two techniques to improve the performance
of HTR models over small datasets, that is, datasets that have few samples of
manual-annotated lines. We showed that as TL as DA combined efficiently with
TL have a significant impact on the generalization in the learning of the model.
However, in a deeper analysis of the results, we detected that when we have a small
database, if some of the training lines have some errors, the model’s performance
quite deteriorates, as we work with few labeled lines.

In this chapter, we focus not only on the impact of the number of lines but also
on their quality in the target dataset on the learning process of the DNN model.
We first analyze the impact of the performance on the number of healthy lines,
i.e., lines with no transcription errors in the training dataset. Then we study how
this performance degrades with label errors. Finally, we propose an algorithm to
detect and remove potential label errors in the dataset. Part of the results of this
chapter was presented in [6] and published in [7].

The model used for carrying out the experiments is the same, which was
presented in Chapter 4.

6.1 Performance variation with number of labeled samples

When a few lines are available in the target training set, deep learning models
are pretty sensitive to minor variations in the number of labeled lines. In this
subsection, this sensitivity is evaluated on a specific dataset from the ICFHR
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2018 Competition [92]. The chosen training dataset consists of 16 pages from the
Konzil, which is segmented at line level. Similar results were obtained for the
other datasets.

The ICFHR 2018 target datasets have 16 labeled pages each. Unless otherwise
indicated, 4 of them will be used for testing purposes, while up to 12 pages will be
used for training. Usually, 10 % out of the used training set is devoted to validation.
The ICFHR18-G dataset is used as a source database in the TL-DA approach.

In Figure 6.1.(a) the blue curve in × represents the TL-DA CER versus the
available number of lines, l, of the target training set in the range 29-350 lines,
corresponding to 1 and 12 pages, respectively. In the left part of the figure, the CER
decreases at a rate of 1 percentage point every 4 new lines added to the training
set. After approximately 50 lines, the decreasing rate of the CER changes to
approximately 1 percentage point every 100 lines. This is evidenced in Figure 6.1.
(b) where the absolute value of the variation of the CER in percentage points is
depicted ∆CER, with the increment of the number of annotated lines used in the
target to achieve it, ∆l. It can be concluded that the sensitivity to the number of
samples in the training set is significantly larger for small training sets.

In Figure 6.1 we also include the “Training set with errors” curve (�), which
corresponds to the analysis above but where labeling errors have been artificially
introduced, as follows. The annotation of a line is modified with probability L.
Then, with modified labeling, a character is changed with probability R, in both
cases following a Bernoulli distribution. Every changed character is replaced by
an independently and randomly selected character, following a discrete uniform
probability. In Figure 6.1, where L = 0.2 and R = 0.3, it is interesting to note that
the impact of labeling errors in the CER value is more dramatic for small training
sets while the rate at which the CER decreases with the number of lines added
remains roughly unaltered.

6.2 Types of transcription errors

Before proposing approaches to detect mislabels in the training set, we discuss
three typical types and causes of errors in the datasets.

1. Mislabeled characters. When labeling a training set, the most common
mistake is to confuse a character with another, usually similar. This can be
seen in the well-known IAM database [62], where it is indicated that some
lines could have some annotation errors in the labels. This type of error is
the one simulated in Figure 6.1.
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Figure 6.1 (a) CER (%) divided by the number of annotated lines, l, used and (b)
decrement of CER (%) divided by the number of new labeled lines
added to obtain it, ∆l, in the training of the DNN model with DA-TL
approach using the ICFHR18-G dataset as the source and the Konzil
dataset as the target with no artificial errors (×) corrupted with artificial
errors (�).

2. Label Misalignment. The second kind of detected error happens due to
a misalignment in the labels. This could be caused by, e.g., a mistake in
the name given to some images in the database. This error is encountered
several times in the Ricordi dataset from the ICFHR 2018 Competition [92]
as illustrated in Figure 6.2. It can be observed in this example that the
transcript does not correspond to the handwritten text in the image above.



58 Chapter 6. The Corrupted Label Purging (CLP) Algorithm

On the contrary, it is pretty close to the model output, after being trained
with several lines of the dataset.

GT: meno d’osservarle che cio non e corretto: in ogni.

Model output: ma non poteva nqualuiente assunere direlti inca¬

Figure 6.2 Sample of a completely mislabeled text at Ricordi dataset.

GT: R[icchezz]a M[obil]e solo perche, non avendo ritirato l’intero saldo.

Model output: N.° Mi: solo perche, non avendo ritirato l’intero saldo

Figure 6.3 Sample of special annotations in the GT at the Ricordi dataset.

3. Special annotations in the ground truth. Perhaps, the most common source
of error is due to special annotations that some transcribers or database
managers introduce in some datasets to include some notes inline. In [67]
they found this problem in the IAM database: crossed out words that are
labeled with the symbol “#" followed by the word behind the blot. Training
the model with this labeling might lead to unpredictable behavior since the
model could replace the text using “#" at different parts of the text. The
model will either be able to recognize the text behind the blot or replace the
word with the symbol “#" or both. Another special annotation is included in
Figure 6.3, where they write in brackets extra characters that are not in the
handwritten text. The output of a model trained with samples of the same
dataset is shown below the GT. Despite this line, the CER is about 35%, and
it can be observed that the model output is quite similar to the handwritten
text.

Manually annotating historical documents remains a challenging task that is
prone to errors, even for experts in the field. As discussed in the previous section,
when a massive set of annotated samples is available, deep learning models do not
suffer from a few mislabeled samples, as they better generalize. However, when a
limited set of annotated lines of a specific writer is available to train, mislabeled
lines induce overfitting to transcripts with errors, which are pretty hard to tackle
via regularization. In the example shown in Figure 6.1, we illustrate this problem
when just a few mislabeled lines are introduced.
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Algorithm 6.1 Corrupted Labels Purging (CLP)
Given inputs: source set xS ∈ XS and yS ∈ YS, target set xT ∈ XT and yT ∈ YT
and threshold, ε .
1) Fit the prediction function fS(yS|xS) with the source training set {xS,yS}.
2) Split the target training set into N subsets {xT1

,xT2
,...,xTN

}, {yT1
,yT2

,...,yTN
}.

for n = 1,...,N do
3) Initialize the prediction function fTn

(·) = fS(·).
4) Fine tune the prediction function with the whole target set except for the
nth, {xTi 6=Tn

}, {yTi 6=Tn
}.

5) Include in the new target set, {xT ′ ,yT ′}, all pairs {x(i)Tn
,y(i)Tn
} whose predic-

tions fTn
(y(i)Tn
|x(i)Tn

) have errors below a CER threshold, ε .
end for
6) Initialize the prediction function fT (·) = fS(·).
7) Fine tune the prediction function, fT ′(yT ′ |xT ′), to the modified target set
{xT ′ ,yT ′}.

Output:
Function fT (yT |xT ) over the target domain DT .

6.3 Mislabel detection algorithm

As one of our main contributions, we propose an algorithm to detect and remove
mislabeled lines from the training set, detailed in Algorithm 6.1. A block diagram
of the algorithm is also depicted in Figure 6.4. It divides the target training dataset
into N subsets. For every subset, n, the method performs DA-TL using the rest
of subsets, k = 1, . . . ,N, k 6= n, as training sets and it evaluates the CER metric
over the subset n. Lines with CER above a threshold, ε , in the nth subset are
detected as wrongly transcribed and discarded. Hence, we are implementing
some k-fold validation, in which the size of each validation partition is reduced
after removing problematic lines. Finally, the DA-TL is applied to the resulting
target database. Note that the algorithm performs N +1 different training steps.
However, the N steps concerning the target subsets could be run in parallel since
they are independent of each other. Hence, the run time of applying this algorithm
is approximately double the run time of regular training.

In Figure 6.5 we include the histogram of the CER per line for the 5 ICFHR 2018
document-specific datasets using the CLP algorithm with N = 2. The ICFHR18-G
was used as the source. The histograms were estimated with the CER of the
outputs of the n = 1,2 stages computed with the lines not used during training, see
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the output of “Target subset n” blocks in Figure 6.4. Models have been trained
with 4 pages in the left column, while in the right column, they have been trained
with 12 pages. Lines are corrupted with artificial errors with probability L = 0.1,
while every character in the line label is changed with probability R = 0.3 to a
random value.

Conservatively, we believe that a 10% average number of corrupted lines
represent a label error rate similar to the one we encounter in authentic databases.
It is interesting to observe that the results for the Schwerin dataset are remarkably
better than for the others because it has a significantly more significant number of
lines per page. Besides, in the Ricordi dataset, the histogram for 12 pages exhibits
large values around 0.8. This dataset is known to have label misalignments.

fit
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subset
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include
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Figure 6.4 Corrupted labels purging algorithm. The algorithm applied over target
subset n is depicted. The same procedure should be applied to all the
subsets to build the Target dataset modified.
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Figure 6.5 Histogram of CER with DA-TL and ICFHR18-G as source dataset
for the 5 document-specific datasets using 4 pages (left) and 12 pages
(right) of the target dataset. Lines and characters were corrupted with
probabilities L = 0.1 and R = 0.3 respectively. The histograms were
evaluated with the outputs of the N = 2 target subsets. Red dashed
lines indicate the percentage of lines with CER≤ ε with ε = 50% and
ε = 70%, left and right lines, respectively.



62 Chapter 6. The Corrupted Label Purging (CLP) Algorithm

6.4 CLP threshold analysis

The selection of the threshold is central to the algorithm performance. In Figure 6.5
the CER of the healthy lines is mainly distributed around a mode value to the left
of each histogram, while outliers exhibit larger values. As representative values to
be studied, after extensive simulations, we restrict our analysis to the thresholds
ε = 0.5 and ε = 0.7, for an average rate L = 0.1 of artificially modified lines, and
R = 0.3. In Figure 6.5 we indicate the percentage of lines with CER equal or lower
than 0.5 and 0.7, left and right red dashed lines in the subfigures, respectively. We
conclude that almost 10% of lines have a CER above ε = 0.7 when 4 pages for
training are available, and the same occurs in the case of 12 pages when ε = 0.5.

The selection for ε should not lead to the deletion of healthy lines. Otherwise,
the overall CER would rise. On the other hand, the threshold must ensure a
sensitivity when corrupted lines are encountered.

In the following, we study the CLP algorithm in two different scenarios. The
first experiment we perform consists of applying the CLP algorithm to the ICFHR
2018 target datasets, with 4 and 12 pages as target training set size. Then we
evaluate the CLP for the Washington and Parzival databases, with 150 and 325
lines as target training set sizes. The same procedure is followed through all the
scenarios:

1. Fit the model to the source set.

2. Run DA-TL plus CLP with N = 2.

6.4.1 ICFHR 2018 Competition results

We test the CLP algorithm over real databases where we do not have any prior
knowledge about the pattern of labeling errors. We do also include artificial errors
to evaluate the CLP robustness.

The results of these analyses are reported in Table 6.1 and Table 6.2. Their three
last columns include the results for the DA-TL with no CLP as ‘Baseline’, for the
DA-TL+CLP with ε = 50%, and then for the DA-TL+CLP with ε = 70%. For
every target dataset and training set size three rows are used to report the CER (%)
when no artificial errors are introduced, R = 0, for R = 30% and R = 50%.

In this first case, the ICFHR18-G dataset is used as the source. The 17 docu-
ments of this corpus have a total number of 11424 lines. The DA-TL plus CLP
was applied to the five target documents in the competition: Konzil, Schiller,
Ricordi, Patzig, and Schwerin. The results are included in Table 6.1, where it is
included the average value for the CER and the number of removed lines by the
CLP algorithm.
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Figure 6.6 CER (%) divided by the number of annotated lines, l, with the DA-
TL approach using the ICFHR18-G dataset as source and the Konzil
dataset as target with no artificial errors (×), with artificial errors (�)
and with artificial errors and CLP used (•).

Given the results, we highlight the following aspects. First, note that, when
errors are induced, the threshold ε = 70% performs better in most cases when
the training set is 4 pages while the threshold ε = 50% is the best choice for 12
pages. Exceptions can be observed in Patzig and Schwerin corpora. For the Patzig
dataset, we conclude that ε = 70% is the best choice for every case. This is due
to the distribution of the errors in this dataset, which has a more considerable
variance, and therefore more lines are above the ε = 50% CER, it can be seen in
Figure 6.5. In the Schwerin corpus, the threshold 50% has the best CER in all
cases, the opposite that in the Patzig dataset. This is due to the distribution of the
errors in this dataset that, due to the more significant number of lines used, has
lower variance and most lines are below 10% CER (see Figure 6.5).

It is also interesting to remark that in the Ricordi case, the algorithm improves
the CER in the original dataset, i.e., without synthetic errors. This is explained
by the fact that in this dataset, as already discussed, there are some mislabeled
lines like in the case illustrated in Figure 6.2. Additionally, note that for R = 0
and ε = 70%, a large number of removed lines is quite an indicator of the dataset
containing errors in the annotated lines.

For the sake of completeness, we include in Figure 6.6 the evolution of the CER
versus the number of lines, l, in Figure 6.1 including the CER for the proposed
algorithm (CLP) (◦). The introduction of the CLP improves the TL-DA approach
when the dataset has corrupted lines. In the range, l = [40,50] the TL-DA with
CLP with l = 40 achieves the same CER as the DA-TL with l = 50 lines in the
training set.
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6.4.2 Washington and Parzival results

In this second analysis, the model is pre-trained with the IAM database as the
source dataset to train the model with DA-TL for the Washington and Parzival
targets. There are two main differences to the previous study of the ICFHR 2018
datasets: 1) the number and set of characters are different from the source and
targets datasets, and 2) we compare the CER of both targets in terms of the number
of lines instead of the number of pages, where we consider two cases, 150 lines
and 325 lines, similar to the number of lines used in the previous scenario.

The first rows in Table 6.2 include the results obtained after fine-tuning the
model to the Washington dataset. In this study, the threshold ε = 70% is the best
option when the number of lines is 150 while ε = 50% exhibits the lowest CER
when the number of lines is 325. This is equivalent to the 4 and 12 pages in the
Konzil, Schiller, and Ricordi cases in which the number of lines is similar. We get
an improvement of 0.8 and 0.63 in the case of 150 lines and no deterioration over
the original dataset for these thresholds. In the case of 325 lines, we get a boost of
0.4 and 0.5 and no deterioration over the original dataset.

Results obtained after fine-tuning the model to the Parzival dataset are also
included in Table 6.2, see the lower rows. Similar conclusions can be drawn except
for R = 30% and 150 lines, where the 50% exhibits the best CER. If we choose the
threshold as in the previous cases, 70% and 50%, we still get a slight improvement
or at least no deterioration.

6.5 Correcting label misalignment

In Section 6.2 we summarized the different types of transcription errors. One of
these errors is due to the misalignment of the annotations with the images. When a
high number of lines are classified as mislabels, this type of error can be addressed
by searching within the outputs of the DNN model for the whole target dataset,
the transcript best fitting every annotation in the GT, hence aligning annotations
and images in the dataset. This approach is quite similar to the one proposed in
[80].

In the case of the Ricordi dataset in the ICFHR 2018 competition, we realized
that the CLP detected a high number of mislabeled lines in the dataset. Note
the large numbers of removed lines in Table 6.1 for ε = 70% and this dataset
with R = 0. By simply visual inspection, we confirmed that the error was of
misalignment of images and annotations. Here, we apply the CLP plus the simple
automatic alignment approach described above.
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The comparison between simply removing the mislabeled lines and correcting
the alignment of the database is shown in Table A.6. In this table, one can observe
a significant dropping in the CER when correcting these misalignments of the
lines. In training with 4 pages, the overall decrease is 3.7 percentage points. In the
12 pages analysis, the CER drops 0.3 percentage points when removing the lines
while it further decreases 0.8 percentage points when correcting them. Note also
that the gain is higher when a lower number of annotated lines are used.

6.6 Comparison to the state-of-the-art

Finally, following the comparison made in previous chapters, we sent the tran-
scriptions made using this approach to the ICFHR 2018 Competition. We can see
that by deleting the mislabeled samples, we can achieve an improvement of 0.4
percentage points if compared with the results in Chapter 4 and Chapter 5.

The recent work published by Yousef et al. [107] using a DNN model based on
a fully GCN, outperformed the LSTM based approaches, with a mean value of
13.02 % providing a 23.35 % CER for a 0-page training size.

The results of the proposal in this work are included in the lowest rows of
Table 6.4 where, following the conclusions in Subsection 6.4, we used ε = 70%
for the 1 and 4 pages training and ε = 50% for the 16 pages. Also, the CLP
includes an alignment stage. Results are presented in three groups of columns.
First, the average CER (%) for the 5 target dataset is included when 0, 1, 4, and
16 pages of the target datasets are used. The second group of 5 columns reports
the average CER (%) for the learning with 0, 1, 4, and 16 pages in the dataset for
every document. The mean value per row is included in the last column.

6.7 Conclusions

Comparing to the state-of-the-art in the ICFHR 2018 Competition, it can be
observed that the DA-TL and CLP outperform all approaches within the CNN
+ LSTM + CTC class hence underlining the importance of the issues discussed:
DA is essential, but in the source dataset, TL is to be considered, and mislabeling
detection and correction is essential if the dataset exhibits errors. Besides, the
CLP introduces a residual 0.01 percentage points of loss if the datasets have no
errors in the labels, while the reduction is important if they have. See the results
for the Ricordi corpus, where a reduction of 6.58 percentage points is achieved.
The presence of errors in this database was detected by checking the number of
removed lines by the CLP.
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It is interesting to mention that other variations of the algorithm have been
tried to improve the performance further. In this sense, we tried to evaluate the
CTC loss [40] to select a threshold ε . We found it complex to deal with because
it depends on several factors like the number of epochs in training or if batch
normalization has been applied.
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Table 6.1 Mean CER (%) evaluated in Konzil, Schiller, Ricordi, Patzig and Schw-
erin target documents in the ICFHR2018 Competition datasets for DA-
TL, DA-TL+CLP with ε = 50% and ε = 70%. DA-TL was applied with
both a training set of 4 pages and 12 pages. The annotation for a line is
corrupted with probability L = 0.1, and a character within it is randomly
replaced with probability R. R = 0 indicates no error introduced in
the labelings. The number of removed lines by the CLP algorithm is
included in parentheses in the last two columns. The best-achieved value
in every row is in boldface.

Dataset Train set size R Baseline ε = 50% ε = 70%

Konzil

4 Pages
(116 lines)

0% 7.6 8.5(-31) 7.9(-7)
30% 8.7 8.3 (-41) 7.82 (-14)
50% 9.1 8.2 (-39) 7.9 (-16)

12 Pages
(351 lines)

0% 4.6 5.3 (-1) 4.6 (-0)
30% 5.3 4.6 (-29) 5.0 (-25)
50% 5.5 4.8 (-35) 5.0(-28)

Schiller

4 Pages
(84 lines)

0 % 13.27 14.72 (-12) 13.61 (-5)
30 % 15.19 14.81 (-17) 14.43 (-10)
50 % 15.64 14.96 (-22) 13.87 (-12)

12 Pages
(244 lines)

0 % 9.42 9.76 (-2) 9.42 (-0)
30 % 11.31 10.41 (-22) 10.62 (-22)
50 % 12.75 10.61 (-24) 10.51 (-25)

Ricordi

4 Pages
(88 lines)

0 % 21.1 18.2 (-16) 18.2 (-16)
30 % 23.2 20.8 (-32) 20.5 (-27)
50 % 24.31 21.94 (-44) 20.81 (-27)

12 Pages
(295 lines)

0 % 9.7 9.4 (-38) 9.4 (-38)
30 % 10.47 9.23 (-41) 9.49 (-38)
50 % 10.8 9.53 (-52) 9.75 (-44)

Patzig

4 Pages
(156 lines)

0 % 18.32 18.93 (-7) 18.32 (-0)
30 % 21.41 21.6 (-27) 21.1 (-18)
50 % 21.84 22.12 (-27) 21.31 (-18)

12 Pages
(473 lines)

0 % 11.5 11.96 (-15) 11.54 (-4)
30 % 12.28 12.23 (-61) 11.98 (-52)
50 % 12.8 12.67 (-63) 12.35 (-54)

Schwerin

4 Pages
(264 lines)

0 % 5.3 5.3 (-0) 5.3 (-0)
30 % 5.36 5.31 (-14) 5.36 (-0)
50 % 5.39 5.32 (-26) 5.33 (-12)

12 Pages
(782 lines)

0 % 3.3 3.3 (0) 3.3 (0)
30 % 3.36 3.31 (-14) 3.36 (-0)
50 % 3.53 3.34 (-75) 3.39 (-22)
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Table 6.2 Mean CER (%) evaluated in Washington and Parzival documents for
DA-TL, CLP with threshold ε = 50% and CLP with threshold ε = 70%.
DA-TL was applied with the IAM dataset as the source and using 150
and 325 lines from the target. The annotation for a line is corrupted
with probability L = 0.1 and a character within it randomly replaced
with probability R. R = 0 indicates no error introduced in the labelings.
The number of removed lines by the CLP algorithm is included in
parentheses in the last two columns.

Dataset Train set size R Baseline ε = 50% ε = 70%

Washington

150 lines
0 % 9.4 9.5 (-6) 9.4 (-2)
30 % 11.3 10.6 (-20) 10.5(-14)
50 % 11.5 11.1 (-31) 10.87(-19)

325 lines
0 % 5.3 5.3 (-2) 5.3 (-0)
30 % 6.1 5.7 (-26) 6.1 (-0)
50 % 6.3 5.8 (-34) 6.3 (-0)

Parzival

150 lines
0 % 5.8 5.8 (-0) 5.8 (-0)
30 % 6.4 6.0 (-15) 6.2 (-2)
50 % 6.6 6.2 (-20) 6.1(-14)

325 lines
0 % 3.3 3.3 (-0) 3.3 (-0)
30 % 3.5 3.5 (-0) 3.5 (-0)
50 % 3.5 3.4 (-35) 3.5 (-0)

Table 6.3 Comparison between the CLP algorithm with line removal and the
CLP plus alignment of the GT after detection. The mean CER (%) is
evaluated for the Ricordi document with a training set of size 4 pages
(88 lines) and 12 pages (295 lines).

Train set size Method Baseline ε = 50% ε = 70%
4 Pages CLP 21.1 18.2 18.2

(88 lines) CLP + alignment 21.1 17.4 17.4
12 Pages CLP 9.7 9.4 9.4

(351 lines) CLP + alignment 9.7 8.9 8.9



6.7 Conclusions 69

Table 6.4 CER ICFHR 2018 Competition results for LSTM based models: upper
part, other previous approaches and, in the lower part, the results for
the approaches in this work. Lowest mean values in both parts are
highlighted in boldface.

CER (%) per training size CER (%) per document Mean
0 1 4 16 Konzil Schiller Ricordi Patzig Schwerin

OSU[101] 31.40 17.74 13.27 9.02 9.39 21.10 23.27 23.17 12.98 17.86
ParisTech[20] 32.25 19.80 16.98 14.72 10.49 19.05 35.60 23.83 17.02 20.94
LITIS[95] 35.30 22.51 16.89 11.34 9.14 25.69 30.50 25.18 18.04 21.51
PRHLT 32.79 22.15 17.89 13.33 8.65 18.39 35.07 26.26 18.65 21.54
RPPDI[64] 30.80 28.40 27.25 22.85 11.90 21.88 37.29 32.75 28.55 27.32
TL 32.77 19.51 15.12 8.26 9.16 21.00 29.39 23.25 13.54 18.93
DA-TL 31.55 19.21 14.91 8.16 8.58 21.68 27.84 22.35 12.50 17.83
CLP 30.13 19.10 12.40 7.93 8.59 21.69 22.81 22.35 12.51 17.39





7 Handwriting Text Generation

7.1 Introduction

In previous chapters, we propose three different methods to improve the perfor-
mance of HTR models when only a few manually annotated samples are available
to train the models. Specifically, in Chapter 4 we propose how to perform TL
over state-of-the-art networks which have been previously trained with a huge
database of modern handwriting text. In Chapter 5 we perform different HTR
data augmentation techniques in combination with the TL method proposed in
Chapter 4. Finally, in Chapter 6, we solve a problem with the samples in the
training set which have been mislabeled in the process of manual annotation. We
propose the CLP algorithm to solve this problem.

In this chapter, our goal is to go further in the data augmentation side we use
in Chapter 5 in combination with TL to augment the databases. In Chapter 5 we
generate new samples of pairs input (images of handwriting text lines) - labels
(sequence of characters corresponding to the text in the input image) by distorting
the original images. In that chapter, we differentiated two techniques for distorting
the images by classical operations such as rotation, scaling, and shearing and the
RWGD distortions proposed in [101].

The techniques mentioned above have one common thing, they only generate
new handwritten text images, but the labels are the same. This can lead to a kind of
lexicon overfit. In this chapter, we aim to generate new samples of pairs of image
labels of handwriting text that have new information in the site of the images and
the text that images contain. Our goal is to generate new pairs of images and labels
for any given text.

Previous approaches of handwriting generation have been focused on the online
handwriting generation task where the data is collected in a digital device, that is,

71
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the input of the models are not images, but the information about the position of
the pen over a digital surface when someone is writing text [39, 66, 63, 2].

Recently, in the field of offline HTR, since 2019, some authors proposed gener-
ative adversarial networks (GAN) in order to generate offline handwritten images
[50, 4, 35, 53, 43]. However, all those settings have in common that they only
generate images of isolated words. In [27] Brain Davis et al. propose a GAN for
generating images of handwritten lines conditioned on arbitrary text.

In the framework of historical documents, some works focus on the generative
approach. In [102] they proposed a method to improve the synthesis of word
images for the word spotting task. In [89] they perform document enhancement
through a GAN.

All these works have in common that either they generate images of single
words, or they use a GAN approach to generate images of lines. As mentioned
in previous chapters, state-of-the-art performance by transcribing complete lines
of text has lower CER than when transcribing isolated words. For that reason,
the approach that matches our pipeline is the GAN method proposed in [27] to
generate images of text. In that work, they propose a model to generate images of
handwritten text over the IAM and RIMES database, and they evaluate parameters
such as Fréchet Inception Distance (FID) [47] and Geometry Score (GS) [54].

In this chapter, we alternatively propose a VAE [70] approach to generate
samples of complete lines of handwritten text conditioned to a given text. We
compare the quality of the generated images by transcribing them using the
methods and architectures presented in previous chapters. It is well known that
VAE generative models are, in general, more stable to train. They generalized
better (less pruned to the mode-collapse issue), and, in addition, the latest VAE
proposals based on hierarchies provide highly realistic samples comparables to
GANs. We compare the quality of the images generated with the VAE model with
the quality of the images generated by the GAN model in [27] applied to historical
databases. Furthermore, we report improvements when using VAEs in many of
the scenarios considered.

7.2 VAEs for handwriting text generation

In this chapter, we propose two different architectures to implement a C-VAE that
generates images of complete lines of text conditioned to a given transcribed text.

7.2.1 Conditional VAE

The first approach is the use of a simple C-VAE [88] applied to images of full lines
of text. Usually, non conditioned VAE model the data probability distribution,



7.2 VAEs for handwriting text generation 73

Encoder

Image (X) z

D
ec

od
er

Reconstructed Image
(X')

line of text (l) Space predictor

Figure 7.1 Conditional VAE with space predictor use in this thesis.

p(X), which in our case are the images of handwritten text. When generating
samples in a VAE, the model uses a latent variable vector, z, from which the data
is generated using a likelihood model, p(x|z). The model has two components,
the encoder which infers the probability pθ (z|X) with a variational distribution
qφ (z|X) and the decoder which infers the probability pθ (X|z) [70]. Training the
model amounts to optimizing the ELBO lower bound given by,

L(φ ,θ ,X) =−KL
[
qφ (z|X) ||pθ (z)

]
+Ez∼q

φ
(z|X) [log pθ (X|z)] (7.1)

However, this VAE, when trained with handwritten text images, could generate
new images without any constraint beyond being similar in style to the images in
a database. We are interested in generating new images which represent a given
line of text. In that way, we could generate pairs of images-labels that can be used
as new data for training the architectures presented in previous chapters.

For that reason, we introduce a new variable l which represent the line of text to
which the generated image is conditioned. If we introduce this new variable in the
model, we update equation (7.1) as follows

L(φ1,θ ,X,l) =−KL
[
qφ (z|X) ||pθ (z)

]
+Ez∼q

φ
(z|X) [log pθ (X|z,l)] (7.2)

The model is depicted in Figure 7.1. In the figure, it is shown a block called
space predictor. This block is necessary since the length of a line of text is
unknown. Each sample would have a line with a different number of characters.
For implementation purposes, the width of the input to the decoder has to be
related to the width of the image generated. The space predictor takes the line of
text and builds an encoding matrix where each character has a specific width. This
predictor is trained with the pairs line of text - output of architecture presented in
Chapter 4, before the CTC.
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Figure 7.2 Two-stage VAE proposed in [25].

This model is used as a first proposal, and some samples of the image generated
can be seen in Figure 7.3. In that figure, it can be observed that the handwritten text
generated is too blurred. Intending to reduce this blurriness, in Subsection 7.2.3
we propose a Two-Stage Conditional Variational Auto Encoder (TSC-VAE) based
on the two-stage VAE proposed in [25].

7.2.2 TS-VAE model

The fourth contribution of this thesis is presented in this subsection. Based on
the Two-Stage Variational Auto Encoder (TS-VAE) in [25], which follows the
strategy:

1. Given n observed samples {x(i)}n
i=1, train a κ-simple VAE, with κ ≥ r,

the dimension of the latent space, to estimate the unknown r-dimensional
ground-truth manifold X embedded in Rd using a minimal number of active
latent dimensions. Generate latent samples {z(i)}n

i=1 via z(i) ∼ qφ (z|x(i)). By
design, these samples will be distributed as qφ (z), but likely not as N(z|0, I).

2. Train a second κ-simple VAE, with independent parameters {θ ′,σ ′} and
latent representation u, to learn the unknown distribution qφ (z), i.e., treat
qφ (z) as a new ground-truth distribution and use samples {z(i)}n

i=1 to learn
it.

3. Samples approximating the original ground-truth µgt can then be formed
via the extended ancestral process u ∼ N(u|0, I), z ∼ pθ ′(z|u), and finally
x∼ pθ (x|z).

The two-stage VAE proposed in [25] is depicted in Figure 7.2.
In [25] the authors prove that the FID score achieved by this architecture has

similar values that state-of-the-art GAN architectures evaluated over MNIST,
Fashion MNIST, CIFAR-10, and CelebA datasets.
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Figure 7.3 Two-stage Conditional VAE in which desired text is the input at the
first stage.

We apply this model to HTR, with three remarkable variations: the images are
no longer square, images are sequential data, and we want to manage the generated
text, so we propose a TSC-VAE.

7.2.3 TSC-VAE model

Two possible choices for providing the desired label to the model are proposed:

1. The desired text sequence, l, taking into account at the first stage:

First stage ELBO:

L(φ1,θ1,X,l) =−KL
[
qφ1

(z|X,l) ||pθ1
(z)
]
+Ez∼q

φ1
(z|X,l)

[
log pθ1

(X|z,l)
]

(7.3)

Second stage ELBO:

L(φ2,θ2,z) =−KL
[
qφ2

(u|z) ||pθ2
(u)
]
+Eu∼q

φ2
(u|z)

[
log pθ2

(z|u)
]

(7.4)

2. The desired text l sequence taking into account at the second stage

First stage ELBO:

L(φ1,θ1,X) =−KL
[
qφ1

(z|X) ||pθ1
(z)
]
+Ez∼q

φ1
(z|X)

[
log pθ1

(X|z)
]
(7.5)

Second stage ELBO:

L(φ2,θ2,z,l) =−KL
[
qφ2

(u|z) ||pθ2
(u)
]
+Eu∼q

φ2
(u|z,l)

[
log pθ2

(z|u,l)
]

(7.6)
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Figure 7.4 Two-stage Conditional VAE in which desired text is the input at the
second stage.

7.3 Experiments of generation

In this section, we include some examples of generations of samples with the
proposed approaches.

7.3.1 Generation with the TS-VAE

In Figure 7.5 we include some results of data generation with the TS-VAE when
the training set used in the experiment is the database ICFHR-2018 Competition.
We generated square images of side 128 pixels and appended one after the other
to create a full line. This experiment is carried out without taking into account the
conditionality of the line of text. The TS-VAE generates random text in images
similar to the ones presented in the training set. It can be seen that the strokes of
the characters are well defined. In this experiment, we do not have to worry about
the width of each character since we are not conditioned the images to any text.

Figure 7.5 ICFHR-2018 Patches generation with a two-stage VAE.



7.3 Experiments of generation 77

7.3.2 Generation with the C-VAE and TSC-VAE: sequential MNIST

In this series of experiments, we include generated samples when conditioning
to a particular text, using the TSC-VAE. As a first simple experiment, we aim
at generating a sequence of numbers in one line. The dataset for training is
generated by appending images of the MNIST dataset as inputs and concatenating
the corresponding numbers to build the label. One significant difference between
this database and those used in the subsequent experiments is that the width of
each character is the same.

text = "35567215"

text = "83426557"

text = "40199767"

Figure 7.6 Sequential MNIST generated samples in a C-VAE.

If we compare the samples in Figure 7.6 and Figure 7.7, we can observe the
differences between the simple C-VAE model and the TSC-VAE model. The
images generated by the proposed TSC-VAE model are clearer to human vision
than those generated with the single C-VAE.

Once the TSC-VAE model seems to improve the generation of samples from the
sequence-MNIST database, in Subsection 7.3.3 we take a set from the ICFHR2018
Competition to show how the model works with historical handwritten text.

7.3.3 Generation with the C-VAE and TSC-VAE: ICFHR 2018 dataset

In this section, we face the challenging problem of generating a new sample of
the full line for a historical document dataset. In this case the documents from
the ICFHR-2018 Competition database presented en Chapter 3. Some samples
of generated images with the C-VAE are included in Figure 7.8 while samples
generated with the TSC-VAE are depicted in Figure 7.9. It can be observed that
the ones in Figure 7.9 are much near to the ones in the original dataset.
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text = "82925681"

text = "19690997"

text = "92379101"

Figure 7.7 Sequential MNIST generated samples in a TSC-VAE.

Figure 7.8 ICFHR-2018 Competition full lines generation in a simple C-VAE.

Figure 7.9 ICFHR-2018 Competition full lines generation in TSC-VAE.

7.4 Application to DA

This section of experiments uses the generated samples as DA to reduce overfitting
and improve the recognizer performance. We propose data augmentation with
images generated by a TSC-VAE model. This new method is compared with those
in Chapter 5. In Table 7.1 we include the recognition results measured as CER
and WER. As a baseline, we also include a method to generate images with a
conditional Generative Adversarial Network (cGAN) proposed in [27], included
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as the last column of this table.

In all the experiments shown in Table 7.1 models have been trained from
scratch. Neither transfer learning nor another similar technique has been applied.
We augment the database with images generated from lines of text taken from
some external documents in the same language that the target database but not
from the target database.

Table 7.1 Comparison of different DA strategies. Mean CER and WER (%) are
evaluated over the test set when models are trained with augmented data-
bases. The augmented images are generated by affine transformations
[73], RWGD[101], TSC-VAE and cGAN. The affine transformations
and RWGD columns are the same reported in Chapter 5. The DNN is
trained from scratch using the number of lines indicated by ‘Train size’.

Train size
None Affine Transf. RWGD[101] TSC-VAE cGAN

CER WER CER WER CER WER CER WER CER WER
RIMES 10163 4.4 10.8 2.7 10.7 2.5 10.4 2.6 10.7 2.8 10.7
IAM 6152 7.2 22.2 5.9 20.3 5.3 19.7 5.2 20.1 5.4 20.8
Washington 325 41.1 85.3 18.7 69.2 17.5 65.2 19.2 63.1 17.3 62.4
Parzival 350 18.2 63.0 14.1 56.4 12.9 53,6 13.1 55.2 13.8 54.7
ICFHR18-G 11424 12.2 43.7 10.6 40.1 9.7 38.6 10.5 39.4 11.1 38.5
Konzil 351 37.1 95.4 26.2 93.4 21.5 90.1 25.4 87.3 23.2 88.6
Schiller 238 45.4 88.2 32.4 87.6 30.1 85.5 31.2 88.4 32.4 85.1
Ricordi 273 57.2 93.1 36.2 91.1 35.2 90.3 34.1 90.8 36.2 89.5
Patzig 473 24.5 86.3 18.5 81.3 17.1 80.5 19.4 82.1 19.7 83.6
Schwerin 782 21.1 76.6 17.4 72.9 16.5 71.2 16.9 70.2 17.1 70.9

From Table 7.1, we can see that the four DA methods get similar results.
Therefore, the images generated by TSC-VAE and cGAN are confidence samples
from each database.

7.4.1 Including TL

By combining DA with TL as in Chapter 5 using the generated samples via
generative models, we get the results shown in Table 7.2 for Washington and
Parzival databases and in Table 5.3 for the 5 ICFHR2018 Competition datasets.
We show that the performance of classical DA and DA via TSC-VAE images
(cVDA-TL) and GAN images (cGDA-TL) are similar.

From the results reported in Table 7.2 and Table 7.3, we get the same conclusion
as from the previous section, the images generated with the TSC-VAE and cGAN
improve the performance in the same way that state-of-the-art DA techniques.
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Table 7.2 Mean CER (%) evaluated for Washington and Parzival datasets using
TL and DA with IAM database as source. The number of annotated
lines used in training is included as ‘Train size’.

Train size
#lines

None TL DA DA-TL-DA DA-TL cVDA-TL cGDA-TL

Washington
150 51.6 9.4 22.8 10.0 9.3 9.2 9.3
250 46.4 7.1 20.4 7.4 7.0 7.1 7.0
325 41.1 5.4 17.5 5.4 5.4 5.4 5.3

Parzival
150 21.9 5.8 15.7 6.0 5.6 5.7 5.6
250 20.7 4.0 14.2 4.2 3.8 3.8 3.9
350 18.2 3.3 12.9 3.4 3.3 3.3 3.3

Table 7.3 Mean CER (%) evaluated in ICFHR 2018 Competition Specific datasets
as targets using TL and DA with ICFHR18-G as the source. The number
of annotated pages used in training is included as ‘Train size’.

Training set
size. # pages

None TL DA DA-TL-DA DA-TL cVDA-TL cGDA-TL

Konzil

0 – 15.5 – – 14.5 14.2 14.3
1 (29 lines) 48.1 10.85 37.3 14.2 10.8 10.8 10.9
4 (116 lines) 45.3 6.54 28.7 8.0 6.51 6.42 6.5
12 (351 lines) 37.1 4.37 21.5 5.0 4.32 4.4 4.5

Schiller

0 – 24.6 – – 24.6 24.5 24.5
1 (21 lines) 53.7 17.36 39.5 21.4 17.31 17.62 17.9
4 (84 lines) 48.4 12.25 33.2 14.0 12.22 12.4 12.3

12 (238 lines) 45.4 9.42 30.1 10.0 9.38 9.43 9.25

Ricordi

0 – 39.19 – – 34.2 33.1 33.6
1 (19 lines) 56.2 23.66 51.0 24.1 22.71 22.6 22.1
4 (88 lines) 43.5 21.17 40.8 21.1 21.02 21.3 21.2

12 (273 lines) 37.2 11.2 35.2 10.9 11.1 11.0 11.1

Patzig

0 – 41.5 – – 38.2 38.3 37.8
1 (38 lines) 42.5 27.91 35.3 31.4 26.7 26.4 26.5
4 (156 lines) 37.6 16.4 30.5 18.3 16.1 16.8 16.3
12 (473 lines) 24.5 10.6 17.1 11.2 10.0 10.2 10.2

Schwerin

0 – 34.5 – – 31.3 30.4 30.1
1 (68 lines) 38.4 12.15 30.2 10.6 10.8 10.7 10.8
4 (264 lines) 29.3 5.73 24.3 5.3 5.5 5.4 5.4
12 (782 lines) 21.1 3.5 16.5 3.3 3.4 3.3 3.3

7.5 Evaluation of new generated images

For the last experiment in this chapter, we have to make some consideration about
the images we generated for training the models evaluated in the two last columns
in Table 7.2 and Table 7.3. As in the previous section, we augment the database
with images generated from lines of text taken from some external documents in
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Table 7.4 CER evaluated in test set after different train sets. Real train set is
composed of only 0,1,4 or 12 pages from the original documents. DA
with VAE and DA with GAN train sets are composed of 12 pages, but 1
or 4 are real, the rest are synthetic.

Original Set
Size. # pages

Real Train
Set

cVDA-TL cGDA-TL

Konzil

0 15.50 - -
1 (29 lines) 10.85 10.79 10.65

4 (116 lines) 6.54 6.12 6.04
12 (351 lines) 4.37 - -

Schiller

0 24.60 - -
1 (21 lines) 17.36 16.93 16.88
4 (84 lines) 12.25 11.86 11.81

12 (238 lines) 9.42 - -

Ricordi

0 39.19 - -
1 (19 lines) 23.66 13.41 13.38
4 (88 lines) 21.17 19.53 19.35

12 (273 lines) 11.20 - -

Patzig

0 41.50 - -
1 (38 lines) 27.91 25.24 25.14

4 (156 lines) 16.40 14.95 14.83
12 (473 lines) 10.60 - -

Schwerin

0 34.53 - -
1 (68 lines) 12.15 10.69 10.62

4 (264 lines) 5.73 5.32 5.24
12 (782 lines) 3.51 - -

the same language that the target database but not from the target database.
In the next experiment carried out in this chapter, we compare how much the

performance of the model is affected if, instead of using the original images from
the training set, we generate new images but with the exact text that the original
ones with the TSC-VAE and cGAN approach. We take the labels from the training
dataset and generate the images corresponding to these labels.

The results of these experiments are reported in Table 7.4. In that table, the
column “Real Train Set” shows the CER when the real images of handwritten
text are used for training, the number of pages in each training is indicated in the
“Original Set Size” column. For the experiments in column “DA with VAE” and
“DA with GAN”, we always use 12 pages for training. From these 12 pages, the
number of pages indicated in the “Original Set Size” column is real. The rest of
them are synthetically generated by the VAE or GAN.
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From the results shown in that table, we can conclude that although the perfor-
mance is worse than if we use the original images, these results are better than the
results shown in the previous experiments where the training set was augmented
with images conditioned to labels of a line of text which not appear in the database.

This implies that using transcribed text that belongs to the actual corpus we are
transcribing could lead to further improvements and opens up an exciting approach
for DA techniques, in which we generate transcribed text using some generative
model trained over the historical corpus, and then we feed the text to our image
synthesizer to generate the images.

7.6 Conclusions

This chapter proposes a method to generate new handwritten samples with a
conditional VAE model. We have compared the generated images with the images
generated for other generative models in the literature, specifically the cGAN
model proposed in [27]. We have reported some samples of the images gener-
ated with different VAEs models and finally conclude that the best VAE is the
proposed TSC-VAE, a combination of the two-stage VAE proposed in [25] with
the conditional VAE.

We use the images generated by the TSC-VAE model proposed here to augment
the historical databases we have been using in the rest of the chapters in this thesis.
The goal is to propose a new DA method based on TSC-VAE generated images.
We compare the performance in the recognition step when the models are trained
with an augmented dataset with the DA methods presented in Chapter 5. We
conclude that the performance of the VAE DA-based method is similar to the other
techniques. For the sake of completeness, we also include a method based on
images generated by the cGAN model presented in [27]. The results are similar to
ours.

Finally, we do an experiment in which we measure the difference in the perfor-
mance when the recognizer is trained with the original dataset or if we substitute
the original images for images generated by the TSC-VAE and cGAN conditioned
to the original labels (line of text). We conclude that the performance is better
than when the text is taken from another source.



8 Conclusions

This thesis is focused on the handwriting text recognition problem of historical
databases. The manual annotation for these databases is usually expensive due to
the calligraphy and the language used centuries ago. Therefore, we usually have a
few samples annotated for training the state-of-the-art models that solve this task,
the neural networks models.

We face this problem of small historical databases motivated by the importance
the contents in those archives have for the knowledge of our history. In Chapter 1
we introduce this problem and how authors have solved it in the past. In that
chapter, we also overview the different HTR tasks, and we indicate that this thesis
is focused on the HTR of complete lines of texts. In Chapter 2, we present the
different tools that authors in the field are using for solving the problem when we
have many samples in modern datasets. In Chapter 3 we describe the databases
these authors usually use for evaluating the tools they propose, and we also
introduce the historical databases we use through the different experiments in this
thesis.

Our first contribution is in Chapter 4, where we investigate and propose the
correct way of applying transfer learning methods to HTR models built of CNN,
BLSTM layers, and CTC loss function. In Chapter 5, we introduce our second
contribution which is the application of two techniques of data augmentation with
the TL approach proposed in Chapter 4.

Our third contribution is presented in Chapter 6 where we focused on the
mislabeled samples in the historical databases. This analyzes how the mislabeled
samples affect the performance of the model and proposes the CLP algorithm to
detect and purge these samples from the training set.

The last contribution is given in Chapter 7 where we go further in the data
augmentation techniques by proposing a generative method to generate new pairs
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of images-labels of handwritten text. We propose a TSC-VAE for HTR. We also
compare with another method in the literature, a cGAN. We compare the data
augmentation techniques in Chapter 5 with this novel generative DA.

8.1 Summary of results

Compared to the state-of-the-art in the ICFHR 2018 Competition, it can be ob-
served that the DA-TL proposed in Chapter 5 and CLP proposed in Chapter 6
outperform all approaches within the CNN+LSTM+CTC class hence underlining
the importance of the issues discussed: DA is important. However, in the source
dataset, TL is to be considered, and mislabeling detection and correction are
important if the dataset exhibits errors.

Besides, the CLP introduces a residual 0.01 percentage points of loss if the
datasets have no errors in the labels, while the reduction is important if they have.
See the results for the Ricordi corpus, where a reduction of 6.58 percentage points
is achieved. The presence of errors in this database was detected by checking the
number of removed lines by the CLP.

It is interesting to mention that other variations of the algorithm have been
tried to improve the performance further. In this sense, we tried to evaluate the
CTC loss [40] to select a threshold ε . We found it complex to deal with because
it depends on several factors like the number of epochs in training or if batch
normalization has been applied.

In Chapter 7 we show that generative models can help to improve the perfor-
mance of HTR in small historical databases. It is shown that the images generated
with TSC-VAE and cGAN augment the training set appropriately, similar to the
manual designed DA techniques presented in Chapter 5. We also conclude that the
HTR pipeline is an excellent way to evaluate generative models in the literature.
Any improvement in some VAE models could be evaluated by training the model
with handwritten text images conditioned to a particular text and using CNN +
RNN + CTC recognizers to evaluate the performance.

8.2 Future lines

As future lines of research of this thesis we highlight the following:

• We conjecture that new loss approaches applied to the CTC algorithm could
improve the performance [82].
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• Another promising research line could be introducing TL-DA, and CLP in
other DNN models, such as the based on GCN [107], that has a pretty low
value for 0 pages, to further improve the CER.

• Besides, introducing LM in the proposed DA-TL and CLP approaches could
also be investigated.

• We can also improve the generative method proposed in Chapter 7 by
investigating better C-VAE models. Currently, generative models are a main
topic of research, and we aim to investigate how the new advances in that
topic could help to improve the handwriting text recognition of historical
databases performance.

• The most challenging future line of research is to merge the segmentation
and recognition task to build a whole document transcriptor system.





Appendix A
Bootstrapped confidence

intervals

A.1 Data augmentation analysis table

In Table A.1 we augment the Table 7.1. In this document we report, apart from
the mean value from 10 trainings, the bootstrapped confidence interval at 95%.

A.2 Transfer learning and data augmentation combination anal-
ysis table

In Table A.2 and Table A.3 we augment the Table 5.2 and Table 5.3 in Chapter 5.
In this document we report, apart from the mean value from 10 trainings, the
bootstrapped confidence interval at 95%.

A.3 Corrupted label purging algorithm results table

In Table A.4 and Table A.5 we augment the Table 6.1 and Table 6.2 . In this
document we report, apart from the mean value from 10 trainings, the bootstrapped
confidence interval at 95%.
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A.4 Correcting label misalingment results table

In Table A.6 we augment the Table A.6 . In this document we report, apart from
the mean value from 10 trainings, the bootstrapped confidence interval at 95%.
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Table A.4 Mean CER (%) evaluated in Konzilsprotokolle_C, Schiller, Ricordi,
Patzig and Schwerin target documents in the ICFHR2018 Competition
datasets for DA-TL, DA-TL+CLP with threshold ε = 50% and DA-
TL+CLP with threshold ε = 70%. DA-TL was applied with both a
training set of 4 pages and 12 pages. 10% of lines were corrupted
in R 6= 0, where R(%) of the characters of these lines were randomly
replaced by other random ones. The number of removed lines by the
CLP algorithm are included in parentheses in the last two columns. Best
achieved value in every row is in boldface.

Dataset Train set size R Baseline ε = 50% ε = 70%

Konzil

4 Pages
(116 lines)

0% 7.6 [7.54-7.66] 8.5 [8.45-8.54](-31) 7.9 [7.8-8.0](-7)
30% 8.7 [8.66-8.74] 8.3 [8.22-8.38] (-41) 7.82 [7.79-7.85] (-14)
50% 9.1 [9.05-9.15] 8.2 [8.13-8.27](-39) 7.9 [7.86-7.94] (-16)

12 Pages
(351 lines)

0% 4.6 [4.56-4.64] 5.3 [5.22-5.37](-1) 4.6 [4.56-4.64](-0)
30% 5.3 [5.26-5.34] 4.6 [4.58-4.62](-29) 5.0 [4.91-5.09](-25)
50% 5.5 [5.41-5.59] 4.8 [4.75-4.85] (-35) 5.0 [4.96-5.04] (-28)

Schiller

4 Pages
(84 lines)

0 % 13.27 [13.01-13.35] 14.72 [14.62-14.82](-12) 13.61 [13.52-13.70](-5)
30 % 15.19 [14.96-15.23] 14.81 [14.75-14.87](-17) 14.43 [14.34-14.52] (-10)
50 % 15.64 [15.49-15.72] 14.96 [14.0-15.02] (-22) 13.87 [13.82-13.92] (-12)

12 Pages
(244 lines)

0 % 9.42 [9.38-9.46] 9.76 [9.70-9.82] (-2) 9.42 [9.37-9.47] (-0)
30 % 11.31 [11.25-11.37] 10.41 [10.34-10.48] (-22) 10.62 [10.59-10.65] (-22)
50 % 12.75 [12.70-12.80] 10.61 [10.54-10.81] (-24) 10.51 [10.46-10.56] (-25)

Ricordi

4 Pages
(88 lines)

0 % 21.1 [20.2-22.0] 18.2 [17.6-18.8] (-16) 18.2 [17.6-18.2] (-16)
30 % 23.2 [22.8-23.6] 20.8 [19.7-21.9] (-32) 20.5 [19.9-21.1] (-27)
50 % 24.31 [22.3-26.29] 21.94 [20.5-23.38] (-44) 20.81 [19.6-22.0] (-27)

12 Pages
(295 lines)

0 % 9.7 [9.66-9.74] 9.4 [9.38-9.42] (-38) 9.4 [9.38-9.42] (-38)
30 % 10.8 [10.77-10.83] 9.23 [9.20-9.26] (-41) 9.49 [9.42-9.56] (-38)
50 % 10.47 [10.40-10.54] 9.53 [9.48-9.58] (-52) 9.75 [9.69-9.81] (-44)

Patzig

4 Pages
(156 lines)

0 % 18.32 [18.28-18.36] 18.93 [18.86-19.0] (-7) 18.32 [18.28-18.36] (-0)
30 % 21.41 [20.13-22.72] 21.6 [20.6-22.6] (-27) 21.1 [20.4-21.9] (-18)
50 % 21.84 [21.12-22.24] 22.12 [21.2-22.7] (-27) 21.31 [20.84-22.1](-18)

12 Pages
(473 lines)

0 % 11.5 [11.42-11.58] 11.96 [11.90-12.02] (-15) 11.54 [11.5-11.59] (-4)
30 % 12.28 [12.21-12.35] 12.23 [12.18-12.28] (-61) 11.98 [11.95-12.01] (-52)
50 % 12.8 [12.7-12.9] 12.67 [12.61-12.73] (-63) 12.35 [12.28-12.42] (-54)

Schwerin

4 Pages
(264 lines)

0 % 5.3 [5.28-5.32] 5.3 [5.28-5.32] (-0) 5.3 [5.28-5.32] (-0)
30 % 5.36 [5.32-5.40] 5.31 [5.25-5.37] (-14) 5.36 [5.32-5.40] (-0)
50 % 5.39 [5.35-5.44] 5.32 [5.25-5.39] (-26) 5.33 [5.27-5.39]] (-12)

12 Pages
(782 lines)

0 % 3.3 [3.28-3.32] 3.3 [3.28-3.32] (0) 3.3 [3.28-3.32] (0)
30 % 3.36 [3.32-3.4] 3.31 [3.28-3.34] (-14) 3.36 [3.33-3.39] (-0)
50 % 3.53 [3.50-3.56] 3.34 [3.31-3.37] (-75) 3.39 [3.36-3.42] (-22)
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Table A.5 Mean CER (%) evaluated in Washington and Parzival documents for
DA-TL, CLP with threshold ε = 50% and CLP with threshold ε = 70%.
DA-TL was applied with the IAM dataset as source and using 150 and
325 lines from the target. 10% of lines were corrupted for R 6= 0, where
R(%) of the characters of these lines were randomly replaced by other
random ones. The number of removed lines by the CLP algorithm are
included in parentheses in the last two columns.

Dataset Train set size R Baseline ε = 50% ε = 70%

Washington

150 lines
0 % 9.4 [9.36-9.44] 9.5 [9.45-9.55] (-6) 9.4 [9.36-9.44] (-2)
30 % 11.3 [11.22-11.38] 10.6 [10.54-10.66] (-20) 10.5 [10.41-10.59] (-14)
50 % 11.5 [11.43-11.57] 11.1 [11.01-11.19] (-31) 10.87 [10.85-10.89] (-19)

325 lines
0 % 5.3 [5.21-5.39] 5.3 [5.21-5.39] (-2) 5.3 [5.21-5.39] (-0)
30 % 6.1 [6.05-6.15] 5.7 [5.63-5.77] (-26) 6.1 [6.05-6.15] (-0)
50 % 6.3 [6.26-6.34] 5.8 [5.75-5.85] (-34) 6.3 [6.26-6.34] (-0)

Parzival

150 lines
0 % 5.8 [5.78-5.82] 5.8 [5.78-5.82] (-0) 5.8 [5.78-5.82] (-0)
30 % 6.4 [6.33-6.47] 6.0 [5.98 - 6.02] (-15) 6.2 [6.16-6.24] (-2)
50 % 6.6 [6.52-6.68] 6.2 [6.18-6.22] (-20) 6.1 [6.06-6.14] (-14)

325 lines
0 % 3.3 [3.27-3.33] 3.3 [3.27-3.33] (-0) 3.3 [3.27-3.33] (-0)
30 % 3.5 [3.47-3.53] 3.5 [3.47-3.53] (-0) 3.5 [3.47-3.53] (-0)
50 % 3.5 [3.47-3.53] 3.4 [3.37-3.43] (-35) 3.5 [3.47-3.53](-0)

Table A.6 Comparison between the CLP algorithm with line removal and the CLP
plus alignment of the GT after detection. The CER (%) is evaluated for
the Ricordi document with a training set of size 4 pages (88 lines) and
12 pages (295 lines).

Train set size Method Baseline ε = 50% ε = 70%
4 pages

(88 lines)
CLP 21.1 [20.5-21.9] 18.2 [17.6-18.8] 18.2 [17.6-18.8]
CLP + alignment 21.1 [20.5-21.9] 17.4 [17.25-17.55] 17.4 [17.25-17.55]

12 pages
(295 lines)

CLP 9.7 [9.66-9.74] 9.4 [9.38-9.42] 9.4 [9.38-9.42]
CLP + alignment 9.7 [9.66-9.74] 8.9 [8.82-8.98] 8.9 [8.82-8.98]
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