874 research outputs found

    Automatic Bayesian Density Analysis

    Full text link
    Making sense of a dataset in an automatic and unsupervised fashion is a challenging problem in statistics and AI. Classical approaches for {exploratory data analysis} are usually not flexible enough to deal with the uncertainty inherent to real-world data: they are often restricted to fixed latent interaction models and homogeneous likelihoods; they are sensitive to missing, corrupt and anomalous data; moreover, their expressiveness generally comes at the price of intractable inference. As a result, supervision from statisticians is usually needed to find the right model for the data. However, since domain experts are not necessarily also experts in statistics, we propose Automatic Bayesian Density Analysis (ABDA) to make exploratory data analysis accessible at large. Specifically, ABDA allows for automatic and efficient missing value estimation, statistical data type and likelihood discovery, anomaly detection and dependency structure mining, on top of providing accurate density estimation. Extensive empirical evidence shows that ABDA is a suitable tool for automatic exploratory analysis of mixed continuous and discrete tabular data.Comment: In proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Representation Learning for Attributed Multiplex Heterogeneous Network

    Full text link
    Network embedding (or graph embedding) has been widely used in many real-world applications. However, existing methods mainly focus on networks with single-typed nodes/edges and cannot scale well to handle large networks. Many real-world networks consist of billions of nodes and edges of multiple types, and each node is associated with different attributes. In this paper, we formalize the problem of embedding learning for the Attributed Multiplex Heterogeneous Network and propose a unified framework to address this problem. The framework supports both transductive and inductive learning. We also give the theoretical analysis of the proposed framework, showing its connection with previous works and proving its better expressiveness. We conduct systematical evaluations for the proposed framework on four different genres of challenging datasets: Amazon, YouTube, Twitter, and Alibaba. Experimental results demonstrate that with the learned embeddings from the proposed framework, we can achieve statistically significant improvements (e.g., 5.99-28.23% lift by F1 scores; p<<0.01, t-test) over previous state-of-the-art methods for link prediction. The framework has also been successfully deployed on the recommendation system of a worldwide leading e-commerce company, Alibaba Group. Results of the offline A/B tests on product recommendation further confirm the effectiveness and efficiency of the framework in practice.Comment: Accepted to KDD 2019. Website: https://sites.google.com/view/gatn

    Incorporating Structured Sentences with Time-enhanced BERT for Fully-inductive Temporal Relation Prediction

    Full text link
    Temporal relation prediction in incomplete temporal knowledge graphs (TKGs) is a popular temporal knowledge graph completion (TKGC) problem in both transductive and inductive settings. Traditional embedding-based TKGC models (TKGE) rely on structured connections and can only handle a fixed set of entities, i.e., the transductive setting. In the inductive setting where test TKGs contain emerging entities, the latest methods are based on symbolic rules or pre-trained language models (PLMs). However, they suffer from being inflexible and not time-specific, respectively. In this work, we extend the fully-inductive setting, where entities in the training and test sets are totally disjoint, into TKGs and take a further step towards a more flexible and time-sensitive temporal relation prediction approach SST-BERT, incorporating Structured Sentences with Time-enhanced BERT. Our model can obtain the entity history and implicitly learn rules in the semantic space by encoding structured sentences, solving the problem of inflexibility. We propose to use a time masking MLM task to pre-train BERT in a corpus rich in temporal tokens specially generated for TKGs, enhancing the time sensitivity of SST-BERT. To compute the probability of occurrence of a target quadruple, we aggregate all its structured sentences from both temporal and semantic perspectives into a score. Experiments on the transductive datasets and newly generated fully-inductive benchmarks show that SST-BERT successfully improves over state-of-the-art baselines

    Leveraging literals for knowledge graph embeddings

    Get PDF
    Wissensgraphen (Knowledge Graphs, KGs) repräsentieren strukturierte Fakten, die sich aus Entitäten und den zwischen diesen bestehenden Relationen zusammensetzen. Um die Effizienz von KG-Anwendungen zu maximieren, ist es von Vorteil, KGs in einen niedrigdimensionalen Vektorraum zu transformieren. KGs folgen dem Paradigma einer offenen Welt (Open World Assumption, OWA), d. h. fehlende Information wird als potenziell möglich angesehen, wodurch ihre Verwendung in realen Anwendungsszenarien oft eingeschränkt wird. Link-Vorhersage (Link Prediction, LP) zur Vervollständigung von KGs kommt daher eine hohe Bedeutung zu. LP kann in zwei unterschiedlichen Modi durchgeführt werden, transduktiv und induktiv, wobei die erste Möglichkeit voraussetzt, dass alle Entitäten der Testdaten in den Trainingsdaten vorhanden sind, während die zweite Möglichkeit auch zuvor nicht bekannte Entitäten in den Testdaten zulässt. Die vorliegende Arbeit untersucht die Verwendung von Literalen in der transduktiven und induktiven LP, da KGs zahlreiche numerische und textuelle Literale enthalten, die eine wesentliche Semantik aufweisen. Zur Evaluierung dieser LP Methoden werden spezielle Benchmark-Datensätze eingeführt. Insbesondere wird eine neuartige KG Embedding (KGE) Methode, RAILD, vorgeschlagen, die Textliterale zusammen mit kontextuellen Graphinformationen für die LP nutzt. Das Ziel von RAILD ist es, die bestehende Forschungslücke beim Lernen von Embeddings für beim Training ungesehene Relationen zu schließen. Dafür wird eine Architektur vorgeschlagen, die Sprachmodelle (Language Models, LMs) mit Netzwerkembeddings kombiniert. Hierzu erfolgt ein Feintuning von leistungsstarken vortrainierten LMs wie BERT zum Zweck der LP, wobei textuelle Beschreibungen von Entitäten und Relationen genutzt werden. Darüber hinaus wird ein neuer Algorithmus, WeiDNeR, eingeführt, um ein Relationsnetzwerk zu generieren, das zum Erlernen graphbasierter Embeddings von Relationen unter Verwendung eines Netzwerkembeddingsmodells dient. Die Vektorrepräsentationen dieser Relationen werden für die LP kombiniert. Zudem wird ein weiteres neuartiges Embeddingmodell, LitKGE, vorgestellt, das numerische Literale für die transduktive LP verwendet. Es zielt darauf ab, numerische Merkmale für Entitäten durch Graphtraversierung zu erzeugen. Hierfür wird ein weiterer Algorithmus, WeiDNeR_Extended, eingeführt, der ein Netzwerk aus Objekt- und Datentypproperties erzeugt. Aus den aus diesem Netzwerk extrahierten Propertypfaden werden dann numerische Merkmale von Entitäten generiert. Des Weiteren wird der Einsatz eines mehrsprachigen LM zur Kodierung von Entitätenbeschreibungen in verschiedenen natürlichen Sprachen zum Zweck der LP untersucht. Für die Evaluierung der KGE-Modelle wurden die Benchmark-Datensätze LiterallyWikidata und Wikidata68K erstellt. Die vielversprechenden Ergebnisse, die mit den vorgestellten Modellen erzielt wurden, eröffnen interessante Fragestellungen für die zukünftige Forschung auf dem Gebiet der KGEs und ihrer Folgeanwendungen

    A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multimodal

    Full text link
    Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc. According to the graph types, existing KGR models can be roughly divided into three categories, i.e., static models, temporal models, and multi-modal models. Early works in this domain mainly focus on static KGR, and recent works try to leverage the temporal and multi-modal information, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the models are reviewed based on bi-level taxonomy, i.e., top-level (graph types) and base-level (techniques and scenarios). Besides, the performances, as well as datasets, are summarized and presented. Moreover, we point out the challenges and potential opportunities to enlighten the readers. The corresponding open-source repository is shared on GitHub https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore