850 research outputs found

    Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm

    Get PDF
    Maize opaque2 (o2) mutations are beneficial for endosperm nutritional quality but cause negative pleiotropic effects for reasons that are not fully understood. Direct targets of the bZIP transcriptional regulator encoded by o2 include pdk1 and pdk2 that specify pyruvate phosphate dikinase (PPDK). This enzyme reversibly converts AMP, pyrophosphate, and phosphoenolpyruvate to ATP, orthophosphate, and pyruvate and provides diverse functions in plants. This study addressed PPDK function in maize starchy endosperm where it is highly abundant during grain fill. pdk1 and pdk2 were inactivated individually by transposon insertions, and both genes were simultaneously targeted by endosperm-specific RNAi. pdk2 accounts for the large majority of endosperm PPDK, whereas pdk1 specifies the abundant mesophyll form. The pdk1- mutation is seedling-lethal, indicating that C4 photosynthesis is essential in maize. RNAi expression in transgenic endosperm eliminated detectable PPDK protein and enzyme activity. Transgenic kernels weighed the same on average as nontransgenic siblings, with normal endosperm starch and total N contents, indicating that PPDK is not required for net storage compound synthesis. An opaque phenotype resulted from complete PPDK knockout, including loss of vitreous endosperm character similar to the phenotype conditioned by o2-. Concentrations of multiple glycolytic intermediates were elevated in transgenic endosperm, energy charge was altered, and starch granules were more numerous but smaller on average than normal. The data indicate that PPDK modulates endosperm metabolism, potentially through reversible adjustments to energy charge, and reveal that o2- mutations can affect the opaque phenotype through regulation of PPDK in addition to their previously demonstrated effects on storage protein gene expression

    METABOLIC MODELING AND OMICS-INTEGRATIVE ANALYSIS OF SINGLE AND MULTI-ORGANISM SYSTEMS: DISCOVERY AND REDESIGN

    Get PDF
    Computations and modeling have emerged as indispensable tools that drive the process of understanding, discovery, and redesign of biological systems. With the accelerating pace of genome sequencing and annotation information generation, the development of computational pipelines for the rapid reconstruction of high-quality genome-scale metabolic networks has received significant attention. These models provide a rich tapestry for computational tools to quantitatively assess the metabolic phenotypes for various systems-level studies and to develop engineering interventions at the DNA, RNA, or enzymatic level by careful tuning in the biophysical modeling frameworks. in silico genome-scale metabolic modeling algorithms based on the concept of optimization, along with the incorporation of multi-level omics information, provides a diverse array of toolboxes for new discovery in the metabolism of living organisms (which includes single-cell microbes, plants, animals, and microbial ecosystems) and allows for the reprogramming of metabolism for desired output(s). Throughout my doctoral research, I used genome-scale metabolic models and omics-integrative analysis tools to study how microbes, plants, animal, and microbial ecosystems respond or adapt to diverse environmental cues, and how to leverage the knowledge gleaned from that to answer important biological questions. Each chapter in this dissertation will provide a detailed description of the methodology, results, and conclusions from one specific research project. The research works presented in this dissertation represent important foundational advance in Systems Biology and are crucial for sustainable development in food, pharmaceuticals and bioproduction of the future. Advisor: Rajib Sah

    Characterization of factors underlying the metabolic shifts in developing kernels of colored maize

    Get PDF
    Elucidation of the metabolic pathways determining pigmentation and their underlying regulatory mechanisms in maize kernels is of high importance in attempts to improve the nutritional composition of our food. In this study, we compared dynamics in the transcriptome and metabolome between colored SW93 and white SW48 by integrating RNA-Seq and non-targeted metabolomics. Our data revealed that expression of enzyme coding genes and levels of primary metabolites decreased gradually from 11 to 21 DAP, corresponding well with the physiological change of developing maize kernels from differentiation through reserve accumulation to maturation, which was cultivar independent. A remarkable up-regulation of anthocyanin and phlobaphene pathway distinguished SW93 from SW48, in which anthocyanin regulating transcriptional factors (R1 and C1), enzyme encoding genes involved in both pathways and corresponding metabolic intermediates were up-regulated concurrently in SW93 but not in SW48. The shift from the shikimate pathway of primary metabolism to the flavonoid pathway of secondary metabolism, however, appears to be under posttranscriptional regulation. This study revealed the link between primary metabolism and kernel coloration, which facilitate further study to explore fundamental questions regarding the evolution of seed metabolic capabilities as well as their potential applications in maize improvement regarding both staple and functional foods.Chaoyang Hu, Quanlin Li, Xuefang Shen, Sheng Quan, Hong Lin, Lei Duan, Yifa Wang, Qian Luo, Guorun Qu, Qing Han, Yuan Lu, Dabing Zhang, Zheng Yuan and Jianxin Sh

    Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds

    Get PDF
    Staple grains with low levels of provitamin A carotenoids contribute to the global prevalence of vitamin A deficiency and therefore are the main targets for provitamin A biofortification. However, carotenoid stability during both seed maturation and postharvest storage is a serious concern for the full benefits of carotenoid biofortified grains. In this study, we utilized Arabidopsis as a model to establish carotenoid biofortification strategies in seeds. We discovered that manipulation of carotenoid biosynthetic activity by seed-specific expression of Phytoene synthase (PSY) increases both provitamin A and total carotenoid levels but the increased carotenoids are prone to degradation during seed maturation and storage, consistent with previous studies of provitamin A biofortified grains. In contrast, stacking with Orange (ORHis), a gene that initiates chromoplast biogenesis, dramatically enhances provitamin A and total carotenoid content and stability. Up to 65- and 10-fold increases of β-carotene and total carotenoids, respectively, with provitamin A carotenoids composing over 63% were observed in the seeds containing ORHis and PSY. Co-expression of Homogentisate geranylgeranyl transferase (HGGT) with ORHis and PSY further increases carotenoid accumulation and stability during seed maturation and storage. Moreover, knocking-out of β-carotene hydroxylase 2 (BCH2) by CRISPR/Cas9 not only potentially facilitates β-carotene accumulation but also minimizes the negative effect of carotenoid over production on seed germination. Our findings provide new insights into various processes on carotenoid accumulation and stability in seeds and establish a multiplexed strategy to simultaneously target carotenoid biosynthesis, turnover, and stable storage for carotenoid biofortification in crop seeds

    UVR8 mediated spatial differences as a prerequisite for UV-B induced inflorescence phototropism

    Get PDF
    In Arabidopsis hypocotyls, phototropins are the dominant photoreceptors for the positive phototropism response towards unilateral ultraviolet-B (UV-B) radiation. We report a stark contrast of response mechanism with inflorescence stems with a central role for UV RESISTANCE LOCUS 8 (UVR8). The perception of UV-B occurs mainly in the epidermis and cortex with a lesser contribution of the endodermis. Unilateral UV-B exposure does not lead to a spatial difference in UVR8 protein levels but does cause differential UVR8 signal throughout the stem with at the irradiated side 1) increase of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), 2) an associated strong activation of flavonoid biosynthesis genes and flavonoid accumulation, 3) increased GA2oxidase expression, diminished gibberellin1 levels and accumulation of DELLA protein REPRESSOR OF GA1 (RGA) and, 4) increased expression of the auxin transport regulator, PINOID, contributing to local diminished auxin signalling. Our molecular findings are in support of the Blaauw theory (1919), suggesting that differential growth occurs trough unilateral photomorphogenic growth inhibition. Together the data indicate phototropin independent inflorescence phototropism through multiple locally UVR8-regulated hormone pathways

    Tree Peony Species Are a Novel Resource for Production of α-Linolenic Acid

    Get PDF
    Tree peony is known worldwide for its excellent ornamental and medical values, but recent reports that their seeds contain over 40% α-linolenic acid (ALA), an essential fatty acid for humans drew additional interest of biochemists. To understand the key factors that contribute to this rich accumulation of ALA, we carried out a comprehensive study of oil accumulation in developing seeds of nine wild tree peony species. The fatty acid content and composition was highly variable among the nine species; however, we selected a high- (P. rockii) and low-oil (P. lutea) accumulating species for a comparative transcriptome analysis. Similar to other oilseed transcriptomic studies, upregulation of select genes involved in plastidial fatty acid synthesis, and acyl editing, desaturation and triacylglycerol assembly in the endoplasmic reticulum was noted in seeds of P. rockii relative to P. lutea. Also, in association with the ALA content, transcript levels for fatty acid desaturases (SAD, FAD2 and FAD3), which encode for enzymes necessary for polyunsaturated fatty acid synthesis were higher in P. rockii compared to P. lutea. We further showed that the overexpression of PrFAD2 and PrFAD3 in Arabidopsis increased linoleic and α-linolenic acid content, respectively and modulated their final ratio in the seed oil. In conclusion, we identified the key steps that contribute to efficient ALA synthesis and validated the necessary desaturases in P. rockii that are responsible for not only increasing oil content but also modulating 18:2/18:3 ratio in seeds. Together, these results will aid to improve essential fatty acid content in seeds of tree peonies and other crops of agronomic interest

    The Zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The changes in storage reserve accumulation during maize (<it>Zea mays </it>L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive. The <it>Opaque-2 </it>(<it>O2</it>) gene, one of the best-characterized plant transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein metabolisms in maize endosperm development. Evidence also indicates that the <it>Opaque-7 </it>(<it>O7</it>) gene plays a role in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the <it>o2 </it>and <it>o7 </it>mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by transcriptome profiling, in order to investigate the functional interplay between these two genes in single and double mutants.</p> <p>Results</p> <p>We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant had a high Lys and reduced Glx and Leu content with respect to wild type. Gene expression profiling, based on a unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in several endosperm-related metabolic processes. Pleiotropic effects were less evident in the <it>o7 </it>mutant, but severe in the <it>o2 </it>and <it>o2o7 </it>backgrounds, with large changes in gene expression patterns, affecting a broad range of kernel-expressed genes.</p> <p>Conclusion</p> <p>Although, by necessity, this paper is descriptive and more work is required to define gene functions and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an intriguing insight into the mechanisms underlying endosperm metabolism.</p

    Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress

    Get PDF
    Grapevine (Vitis vinifera L.) is importantly cultivated worldwide for table grape and wine production. Its cultivation requires irrigation supply, especially in arid and semiarid areas. Water deficiency can affect berry and wine quality mostly depending on the extent of plant perceived stress, which is a cultivar-specific trait. We tested the physiological and molecular responses to water deficiency of two table grape cultivars, Italia and Autumn royal, and we highlighted their different adaptation. Microarray analyses revealed that Autumn royal reacts involving only 29 genes, related to plant stress response and ABA/hormone signal transduction, to modulate the response to water deficit. Instead, cultivar Italia orchestrates a very broad response (we found 1037 differentially expressed genes) that modifies the cell wall organization, carbohydrate metabolism, response to reactive oxygen species, hormones and osmotic stress. For the first time, we integrated transcriptomic data with cultivar-specific genomics and found that ABA-perception and –signalling are key factors mediating the varietal-specific behaviour of the early response to drought. We were thus able to isolate candidate genes for the genotype-dependent response to drought. These insights will allow the identification of reliable plant stress indicators and the definition of sustainable cultivar-specific protocols for water management

    Cassava genome from a wild ancestor to cultivated varieties

    Get PDF
    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology
    corecore