177 research outputs found

    FLAIM: A Multi-level Anonymization Framework for Computer and Network Logs

    Full text link
    FLAIM (Framework for Log Anonymization and Information Management) addresses two important needs not well addressed by current log anonymizers. First, it is extremely modular and not tied to the specific log being anonymized. Second, it supports multi-level anonymization, allowing system administrators to make fine-grained trade-offs between information loss and privacy/security concerns. In this paper, we examine anonymization solutions to date and note the above limitations in each. We further describe how FLAIM addresses these problems, and we describe FLAIM's architecture and features in detail.Comment: 16 pages, 4 figures, in submission to USENIX Lis

    A novel policy-driven reversible anonymisation scheme for XML-based services

    Get PDF
    Author's version of an article in the journal: Information Systems. Also available from the publisher at: http://dx.doi.org/10.1016/j.is.2014.05.007This paper proposes a reversible anonymisation scheme for XML messages that supports fine-grained enforcement of XACML-based privacy policies. Reversible anonymisation means that information in XML messages is anonymised, however the information required to reverse the anonymisation is cryptographically protected in the messages. The policy can control access down to octet ranges of individual elements or attributes in XML messages. The reversible anonymisation protocol effectively implements a multi-level privacy and security based approach, so that only authorised stakeholders can disclose confidential information up to the privacy or security level they are authorised for. The approach furthermore supports a shared secret based scheme, where stakeholders need to agree to disclose confidential information. Last, it supports time limited access to private or confidential information. This opens up for improved control of access to private or confidential information in XML messages used by a service oriented architecture. The solution provides horizontally scalable confidentiality protection for certain types of big data applications, like XML databases, secure logging and data retention repositories

    Oblivious Handshakes and Sharing of Secrets of Privacy-Preserving Matching and Authentication Protocols

    Get PDF
    The objective of this research is focused on two of the most important privacy-preserving techniques: privacy-preserving element matching protocols and privacy-preserving credential authentication protocols, where an element represents the information generated by users themselves and a credential represents a group membership assigned from an independent central authority (CA). The former is also known as private set intersection (PSI) protocol and the latter is also known as secret handshake (SH) protocol. In this dissertation, I present a general framework for design of efficient and secure PSI and SH protocols based on similar message exchange and computing procedures to confirm “commonality” of their exchanged information, while protecting the information from each other when the commonalty test fails. I propose to use the homomorphic randomization function (HRF) to meet the privacy-preserving requirements, i.e., common element/credential can be computed efficiently based on homomorphism of the function and uncommon element/credential are difficult to derive because of the randomization of the same function. Based on the general framework two new PSI protocols with linear computing and communication cost are proposed. The first protocol uses full homomorphic randomization function as the cryptographic basis and the second one uses partial homomorphic randomization function. Both of them achieve element confidentiality and private set intersection. A new SH protocol is also designed based on the framework, which achieves unlinkability with a reusable pair of credential and pseudonym and least number of bilinear mapping operations. I also propose to interlock the proposed PSI protocols and SH protocol to design new protocols with new security properties. When a PSI protocol is executed first and the matched elements are associated with the credentials in a following SH protocol, authenticity is guaranteed on matched elements. When a SH protocol is executed first and the verified credentials is used in a following PSI protocol, detection resistance and impersonation attack resistance are guaranteed on matching elements. The proposed PSI and SH protocols are implemented to provide privacy-preserving inquiry matching service (PPIM) for social networking applications and privacy-preserving correlation service (PAC) of network security alerts. PPIM allows online social consumers to find partners with matched inquiries and verified group memberships without exposing any information to unmatched parties. PAC allows independent network alert sources to find the common alerts without unveiling their local network information to each other

    Oblivious Handshakes and Sharing of Secrets of Privacy-Preserving Matching and Authentication Protocols

    Get PDF
    The objective of this research is focused on two of the most important privacy-preserving techniques: privacy-preserving element matching protocols and privacy-preserving credential authentication protocols, where an element represents the information generated by users themselves and a credential represents a group membership assigned from an independent central authority (CA). The former is also known as private set intersection (PSI) protocol and the latter is also known as secret handshake (SH) protocol. In this dissertation, I present a general framework for design of efficient and secure PSI and SH protocols based on similar message exchange and computing procedures to confirm “commonality” of their exchanged information, while protecting the information from each other when the commonalty test fails. I propose to use the homomorphic randomization function (HRF) to meet the privacy-preserving requirements, i.e., common element/credential can be computed efficiently based on homomorphism of the function and uncommon element/credential are difficult to derive because of the randomization of the same function. Based on the general framework two new PSI protocols with linear computing and communication cost are proposed. The first protocol uses full homomorphic randomization function as the cryptographic basis and the second one uses partial homomorphic randomization function. Both of them achieve element confidentiality and private set intersection. A new SH protocol is also designed based on the framework, which achieves unlinkability with a reusable pair of credential and pseudonym and least number of bilinear mapping operations. I also propose to interlock the proposed PSI protocols and SH protocol to design new protocols with new security properties. When a PSI protocol is executed first and the matched elements are associated with the credentials in a following SH protocol, authenticity is guaranteed on matched elements. When a SH protocol is executed first and the verified credentials is used in a following PSI protocol, detection resistance and impersonation attack resistance are guaranteed on matching elements. The proposed PSI and SH protocols are implemented to provide privacy-preserving inquiry matching service (PPIM) for social networking applications and privacy-preserving correlation service (PAC) of network security alerts. PPIM allows online social consumers to find partners with matched inquiries and verified group memberships without exposing any information to unmatched parties. PAC allows independent network alert sources to find the common alerts without unveiling their local network information to each other

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Privacy-preserving alert correlation and report retrieval

    Get PDF
    Intrusion Detection Systems (IDSs) have been widely deployed on both hosts and networks and serve as a second line of defense. Generally, an IDS flags malicious activates as IDS alerts and forwards them to security officers for further responses. The core issue of IDSs is to minimize both false positives and false negatives. Previous research shows that alert correlation is an effective solution. Moreover, alert correlation (in particular, under the cross-domain setting) can fuse distributed information together and thus be able to detect large-scale attacks that local analysis fails to handle. However, in practice the wide usage of alert correlation is hindered by the privacy concern. In this thesis, we propose the TEIRESIAS protocol, which can ensure the privacy-preserving property during the whole process of sharing and correlating alerts, when incorporated with anonymous communication systems. Furthermore, we also take the fairness issue into consideration when designing the procedure of retrieving the results of correlation. More specifically, a contributor can privately retrieve correlated reports in which she involved. The TEIRESIAS protocol is based mainly on searchable encryption, including both symmetric-key encryption with keyword search (SEKS) and public-key encryption with keyword search (PEKS). While designing TEIRESIAS, we identify a new statistical guessing attack against PEKS. To address this problem, we propose the PEKSrand scheme, which is an extension of PEKS and can mitigate both brute-force guessing attacks and statistical guessing attacks. The PEKSrand scheme can either be used independently or be combined with TEIRESIAS to further improve its privacy protection

    Security Enhanced Applications for Information Systems

    Get PDF
    Every day, more users access services and electronically transmit information which is usually disseminated over insecure networks and processed by websites and databases, which lack proper security protection mechanisms and tools. This may have an impact on both the users’ trust as well as the reputation of the system’s stakeholders. Designing and implementing security enhanced systems is of vital importance. Therefore, this book aims to present a number of innovative security enhanced applications. It is titled “Security Enhanced Applications for Information Systems” and includes 11 chapters. This book is a quality guide for teaching purposes as well as for young researchers since it presents leading innovative contributions on security enhanced applications on various Information Systems. It involves cases based on the standalone, network and Cloud environments

    Modulating application behaviour for closely coupled intrusion detection

    Get PDF
    Includes bibliographical references.This thesis presents a security measure that is closely coupled to applications. This distinguishes it from conventional security measures which tend to operate at the infrastructure level (network, operating system or virtual machine). Such lower level mechanisms exhibit a number of limitations, amongst others they are poorly suited to the monitoring of applications which operate on encrypted data or the enforcement of security policies involving abstractions introduced by applications. In order to address these problems, the thesis proposes externalising the security related analysis functions performed by applications. These otherwise remain hidden in applications and so are likely to be underdeveloped, inflexible or insular. It is argued that these deficiencies have resulted in an over-reliance on infrastructure security components

    Challenges in Cybersecurity and Privacy - the European Research Landscape

    Get PDF
    Cybersecurity and Privacy issues are becoming an important barrier for a trusted and dependable global digital society development. Cyber-criminals are continuously shifting their cyber-attacks specially against cyber-physical systems and IoT, since they present additional vulnerabilities due to their constrained capabilities, their unattended nature and the usage of potential untrustworthiness components. Likewise, identity-theft, fraud, personal data leakages, and other related cyber-crimes are continuously evolving, causing important damages and privacy problems for European citizens in both virtual and physical scenarios. In this context, new holistic approaches, methodologies, techniques and tools are needed to cope with those issues, and mitigate cyberattacks, by employing novel cyber-situational awareness frameworks, risk analysis and modeling, threat intelligent systems, cyber-threat information sharing methods, advanced big-data analysis techniques as well as exploiting the benefits from latest technologies such as SDN/NFV and Cloud systems. In addition, novel privacy-preserving techniques, and crypto-privacy mechanisms, identity and eID management systems, trust services, and recommendations are needed to protect citizens’ privacy while keeping usability levels. The European Commission is addressing the challenge through different means, including the Horizon 2020 Research and Innovation program, thereby financing innovative projects that can cope with the increasing cyberthreat landscape. This book introduces several cybersecurity and privacy research challenges and how they are being addressed in the scope of 15 European research projects. Each chapter is dedicated to a different funded European Research project, which aims to cope with digital security and privacy aspects, risks, threats and cybersecurity issues from a different perspective. Each chapter includes the project’s overviews and objectives, the particular challenges they are covering, research achievements on security and privacy, as well as the techniques, outcomes, and evaluations accomplished in the scope of the EU project. The book is the result of a collaborative effort among relative ongoing European Research projects in the field of privacy and security as well as related cybersecurity fields, and it is intended to explain how these projects meet the main cybersecurity and privacy challenges faced in Europe. Namely, the EU projects analyzed in the book are: ANASTACIA, SAINT, YAKSHA, FORTIKA, CYBECO, SISSDEN, CIPSEC, CS-AWARE. RED-Alert, Truessec.eu. ARIES, LIGHTest, CREDENTIAL, FutureTrust, LEPS. Challenges in Cybersecurity and Privacy - the European Research Landscape is ideal for personnel in computer/communication industries as well as academic staff and master/research students in computer science and communications networks interested in learning about cyber-security and privacy aspects

    Contributions to the privacy provisioning for federated identity management platforms

    Get PDF
    Identity information, personal data and user’s profiles are key assets for organizations and companies by becoming the use of identity management (IdM) infrastructures a prerequisite for most companies, since IdM systems allow them to perform their business transactions by sharing information and customizing services for several purposes in more efficient and effective ways. Due to the importance of the identity management paradigm, a lot of work has been done so far resulting in a set of standards and specifications. According to them, under the umbrella of the IdM paradigm a person’s digital identity can be shared, linked and reused across different domains by allowing users simple session management, etc. In this way, users’ information is widely collected and distributed to offer new added value services and to enhance availability. Whereas these new services have a positive impact on users’ life, they also bring privacy problems. To manage users’ personal data, while protecting their privacy, IdM systems are the ideal target where to deploy privacy solutions, since they handle users’ attribute exchange. Nevertheless, current IdM models and specifications do not sufficiently address comprehensive privacy mechanisms or guidelines, which enable users to better control over the use, divulging and revocation of their online identities. These are essential aspects, specially in sensitive environments where incorrect and unsecured management of user’s data may lead to attacks, privacy breaches, identity misuse or frauds. Nowadays there are several approaches to IdM that have benefits and shortcomings, from the privacy perspective. In this thesis, the main goal is contributing to the privacy provisioning for federated identity management platforms. And for this purpose, we propose a generic architecture that extends current federation IdM systems. We have mainly focused our contributions on health care environments, given their particularly sensitive nature. The two main pillars of the proposed architecture, are the introduction of a selective privacy-enhanced user profile management model and flexibility in revocation consent by incorporating an event-based hybrid IdM approach, which enables to replace time constraints and explicit revocation by activating and deactivating authorization rights according to events. The combination of both models enables to deal with both online and offline scenarios, as well as to empower the user role, by letting her to bring together identity information from different sources. Regarding user’s consent revocation, we propose an implicit revocation consent mechanism based on events, that empowers a new concept, the sleepyhead credentials, which is issued only once and would be used any time. Moreover, we integrate this concept in IdM systems supporting a delegation protocol and we contribute with the definition of mathematical model to determine event arrivals to the IdM system and how they are managed to the corresponding entities, as well as its integration with the most widely deployed specification, i.e., Security Assertion Markup Language (SAML). In regard to user profile management, we define a privacy-awareness user profile management model to provide efficient selective information disclosure. With this contribution a service provider would be able to accesses the specific personal information without being able to inspect any other details and keeping user control of her data by controlling who can access. The structure that we consider for the user profile storage is based on extensions of Merkle trees allowing for hash combining that would minimize the need of individual verification of elements along a path. An algorithm for sorting the tree as we envision frequently accessed attributes to be closer to the root (minimizing the access’ time) is also provided. Formal validation of the above mentioned ideas has been carried out through simulations and the development of prototypes. Besides, dissemination activities were performed in projects, journals and conferences.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: María Celeste Campo Vázquez.- Secretario: María Francisca Hinarejos Campos.- Vocal: Óscar Esparza Martí
    • …
    corecore