

OBLIVIOUS HANDSHAKES AND SHARING OF SECRETS OF PRIVACY-

PRESERVING MATCHING AND AUTHENTICATION PROTOCOLS

A Dissertation

by

PU DUAN

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2011

Major Subject: Computer Science

OBLIVIOUS HANDSHAKES AND SHARING OF SECRETS OF PRIVACY-

PRESERVING MATCHING AND AUTHENTICATION PROTOCOLS

A Dissertation

by

PU DUAN

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jyh-Charn Liu

Committee Members, Guofei Gu

 Anxiao Jiang

 Bojan Popov

Head of Department, Valerie E. Taylor

May 2011

Major Subject: Computer Science

iii

ABSTRACT

Oblivious Handshakes and Sharing of Secrets of Privacy-Preserving Matching and

Authentication Protocols. (May 2011)

Pu Duan, B.S., Xi’an Jiaotong University, China

Chair of Advisory Committee: Dr. Jyh-Charn Liu

The objective of this research is focused on two of the most important privacy-

preserving techniques: privacy-preserving element matching protocols and privacy-

preserving credential authentication protocols, where an element represents the

information generated by users themselves and a credential represents a group

membership assigned from an independent central authority (CA). The former is also

known as private set intersection (PSI) protocol and the latter is also known as secret

handshake (SH) protocol. In this dissertation, I present a general framework for design

of efficient and secure PSI and SH protocols based on similar message exchange and

computing procedures to confirm “commonality” of their exchanged information, while

protecting the information from each other when the commonalty test fails. I propose to

use the homomorphic randomization function (HRF) to meet the privacy-preserving

requirements, i.e., a common element/credential can be computed efficiently based on

homomorphism of the function, and an uncommon element/credential is difficult to

derive because of the randomization of the same function.

iv

Based on the general framework, two new PSI protocols with linear computing

and communication cost are proposed. The first protocol uses full homomorphic

randomization function as the cryptographic basis, and the second one uses partial

homomorphic randomization function. Both of them achieve element confidentiality and

private set intersection. A new SH protocol is also designed based on the framework,

which achieves unlinkability with a reusable pair of credential and pseudonym and the

fewest number of bilinear mapping operations. I also propose to interlock the proposed

PSI protocols and SH protocol to design new protocols with new security properties.

When a PSI protocol is executed first and the matched elements are associated with the

credentials in a following SH protocol, authenticity is guaranteed on matched elements.

When a SH protocol is executed first and the verified credentials is used in a following

PSI protocol, detection resistance and impersonation attack resistance are guaranteed on

matching elements.

The proposed PSI and SH protocols are implemented to provide privacy-

preserving inquiry matching service (PPIM) for social networking applications and

privacy-preserving correlation service (PAC) of network security alerts. PPIM allows

online social consumers to find partners with matched inquiries and verified group

memberships, without exposing any information to unmatched parties. PAC allows

independent network alert sources to find the common alerts without unveiling their

local network information to each other.

v

DEDICATION

To my wife and parents

vi

ACKNOWLEDGEMENTS

First, I would like to sincerely thank my advisor, Dr. Jyh-Charn Liu, for his

support, guidance, trust and encouragement. He means more than an advisor to me. He

helped me become mature, both personally and professionally. He encouraged me to

follow my true heart and pursue the academic goal I always desired. I would like to

thank Dr. Guofei Gu, Dr. Bojan Popov, and Dr. Anxiao Jiang for spending their valuable

time and effort in serving on my committee. They gave me very helpful suggestions on

improving the quality of my research.

I would also like to thank my labmates in the Real-time Distributed Systems Lab

at TAMU. I am greatly in debt to Huajun Ying, Cheng Chung Tan, Weiqin Ma, Sanmin

Liu, Peng Tao, Pu Shi and Hao Wang, for their help in various projects. I would like to

thank Tak Cheung Lam, Hong Lu, Ming Zhang and Hai Xu for their generosity in

sharing many ideas with me.

Last, I appreciate my beloved wife, my parents and my grandfather. Without

their love, patience, and support, I would not have finished my Ph.D. study.

vii

NOMENCLATURE

ECC Elliptic Curve Cryptograpy

HRF Homomorphic Randomization Function

PSI Private Set Intersection

PAC Privacy-Preserving Alert Correlation

PPIM Privacy-Preserving Inquiry Matching

SH Secret Handshake

viii

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION .. v

ACKNOWLEDGEMENTS ... vi

NOMENCLATURE .. vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES ... x

LIST OF TABLES ... xi

I. INTRODUCTION ... 1

II. A GENERAL FRAMEWORK OF PSI AND SH PROTOCOLS 7

A. Introduction to Privacy-Preserving Protocols ... 7

B. Notations of Privacy-Preserving Protocols ... 9

C. General Definitions and Adversary Model ... 13

D. A General Privacy-Preserving Framework ... 19

III. PRIVATE SET INTERSECTION(PSI) PROTOCOLS ... 25

A. Introduction ... 25

B. A PSI Protocol Based on Full Homomorphism .. 27

C. A PSI Protocol Based on Partial Homomorphism 36

IV. SECRET HANDSHAKE (SH) PROTOCOLS ... 45

A. Introduction ... 45

B. An Unlinkable SH Protocol with Reusable Credential 47

V. INTERLOCKED PRIVACY-PRESERVING PROTOCOLS 59

A. Introduction ... 59

B. A Secret Handshake Protocol with Matching Elements 59

C. A PSI Protocol with Verified Credentials ... 64

ix

Page

VI. APPLICATIONS ON PRIVACY-PRESERVING PROTOCOLS 70

A. Social Privacy-Preserving Inquiry Matching Application 70

B. Privacy-Preserving Correlation of Network Security Alerts 86

VII. SUMMARY .. 103

REFERENCES .. 107

APPENDIX A. CRYPTOGRAPHIC PRIMITIVES ... 116

APPENDIX B. EVALUATION OF PPIM .. 123

 APPENIDIX C. EVALUATION OF PAC .. 129

VITA ... 137

x

LIST OF FIGURES

FIGURE Page

1 A General framework of PSI and SH protocols .. 15

2 General adversary and attack model for privacy-preserving protocols 17

3 The flowchart of the proposed PSI protocol ... 30

4 The flowchart of the proposed SH protocol .. 50

5 A secret handshake protocol with matching elements .. 61

6 A typical SNS architecture .. 71

7 Current privacy protections for SNS ... 74

8 Architecture of the PPIM service .. 77

9 ECC-based PSI protocol in PPIM ... 82

10 ECC-Based SH protocol in PPIM ... 83

11 (a) The PAC system architecture (b) Major modules of a PAC client 92

12 The PatientMatch prototype. (a) The client tool, (b) PPIM architecture 124

13 (a) Processing time, and (b) Bandwidth for Protocol II of PAC 130

14 An example of common attacker discovered by PAC .. 132

15 Illustration on discovery of the neighborhood on an infection chain 134

16 Attack patterns of CodeRed I & CodeRed II in the testbed 135

xi

LIST OF TABLES

TABLE Page

1 Definitions of general terms .. 10

2 Notations of general parameters .. 11

3 Notations of privacy-preserving credential authentication protocols...................... 12

4 Notations of privacy-preserving element matching protocols 13

5 Comparison between PSI protocols .. 33

6 Comparison between SH protocols ... 53

7 Average running time of the ECC-based PSI protocol ... 126

8 Average running time of the PSI protocol... 127

9 Running time (rounded) between three machines (unit: sec) 128

10 Average running time of the PPLCS protocol... 131

1

I. INTRODUCTION

Privacy concerns have become one of the most important security issues in many

Internet applications, e.g., privacy leaks in social networking services [1][2][3][4][5],

malicious vulnerability exploitation through public networking alerts sharing services

[6][7][8][9], and identity attacks on a genomic database [10][11], etc. The dilemma of

enjoying more convenient networking services vs. risking the compromise of more

private information raises a key problem for researchers: How to provide practical and

secure Internet services while protecting consumer privacy? To solve this problem,

numerous privacy-preserving applications have been proposed in the literature

[6][10][12][13][14][15][16][17][18][19][20]. Despite their different degrees of success,

it is well recognized that most existing solutions face challenges of poor system

scalability, high computing costs, and inadequate security protections [21][22][23].

Most of the above applications rely heavily on various cryptographic techniques

to fulfill the designated functionality while preserving user privacy. Two of the most

important techniques are privacy-preserving element matching protocols and privacy-

preserving credential authentication protocols. They are designed to provide protection

for user’s two main kind of information: element as information that are generated by

users themselves and credential as information that are assigned from dependent central

authority (CA). The former, also known as private set intersection (PSI) protocol [24],

aims to compute the intersection of elements provided by two parties without exposing

This dissertation follows the style of IEEE Transactions on Networking.

2

other information. Elements not in the intersection are kept secret. The latter, also

known as secret handshake (SH) protocol [25], aims to verify/authenticate credentials of

two parties. In this dissertation a credential represents the membership of a group. A SH

protocol requires that two parties can confirm matching of affiliations if they have the

same credentials (group memberships); otherwise, the affiliation of one party cannot be

derived from the other party. These two subjects are widely studied, because improving

associated computing and communication costs will have profound implications on a

broad range of privacy-preserving applications like privacy-preserving genomic

computation [10][18], privacy-preserving network alert correlation [6][12][14], and

private email service [26].

In this dissertation, a general framework was proposed for design of efficient and

secure privacy-preserving element matching and credential authentication protocols.

Based on a thorough analysis of a broad range of algorithms, we concluded that they

follow similar message exchange and computing procedures, and use similar techniques

to confirm “commonality” of their exchanged information, while protecting the

information from each other when the commonalty test fails. A homomorphic

randomization function (HRF) was proposed to meet the conflicting requirement, i.e.,

common element/credential can be computed efficiently based on homomorphism of the

function and uncommon element/credential are difficult to derive based on the

randomization of the same function. A common ground of the two major fields was also

introduced to streamline their system models and cryptographic bases, so that we can

design more efficient algorithms for both types of applications. The holistic modeling of

3

different privacy preserving protocols on the same crypto bases greatly simplifies the

design of new and more efficient privacy-preserving protocols. That said, either a PSI or

a SH protocol can be designed in three common phases: Protocol Initialization phase,

Secret Mapping phase and Result Computing Phase. For a PSI or SH protocol executed

between Alice and Bob, in the first phase Alice’s secrets are processed by using the HRF

to meet the security requirement. Then in the second phase Bob’s secrets are combined

with the Alice’s randomized secrets by using the HRF, too. At last in the third phase the

combined secrets are computed by Alice to find out the matched ones.

Based on the proposed general framework and homomorphic randomization

function two new private set intersection protocols with linear computational and

communication complexity were proposed for element matching. In our design Alice

(Bob) directly takes elements as secret numbers and associates them with chosen large

random numbers such that elements cannot be derived. Since the random numbers are

generated through a homomorphic function, Alice (Bob) can modify Bob’s (Alice’s)

associated values for privacy-preserving matching. While the first PSI protocol is based

on full homomorphic randomization function, the second protocol is based on partial

homomorphic randomization function, which is more secure against active attacks like

falsification. The proposed solutions improve existing PSI protocols by reducing time

complexity from O(n
2
) (n is the number of elements) [24] or O(nL) (L is the average bit

length of an element) [27] to O(n) in honest-but-curious adversarial model.

Based on the framework and homomorphic randomization function a new

unlinkable secret handshake protocol with reusable credential was proposed for

4

credential authentication. In our design user’s assigned pseudonyms are randomized by

the homomorphic randomization function to provide reusability of credentials. The

random number minimizes the correlation among authentication messages even they are

produced by reuse of the same credential. The proposed solution improves existing

unlinkable SH protocols by reducing communication complexity from infinite one-time-

use credentials [25] to constant number of credentials and time complexity from 6

bilinear mapping operations [28] to 2 bilinear mapping operations.

The proposed protocols were also interlocked to provide authenticity on

matching elements. In our first design a private set intersection protocol is executed first

and matched elements are computed. Then a secret handshake protocol is executed for

privacy-preserving authentication of both credentials and the matching elements. Our

design associates the matching elements with group secret through the HRF and

provides authenticity on the matching elements. In our second design a secret handshake

protocol is executed first and assigned credentials are verified. Then a private set

intersection is executed for privacy-preserving matching of both elements and the

verified credentials. Our design utilizes the pairwise session key generated after a

successful secret handshake and guarantees detection and impersonation attack

resistance on the matching elements.

The proposed protocols were implemented to provide privacy-preserving inquiry

matching service for social networking applications (e.g., Facebook [29]) and privacy-

preserving correlation service of network security alerts. In the privacy-preserving social

application we designed a privacy preserving inquiry matching (PPIM) system based on

5

an end-user privacy control model. Online social service consumers first use non-

privileged information to discover PPIM candidates on existing social networking

services (SNS). The discovery results are then passed to a PPIM relay server by SNS, so

that interested parties can engaged in PPIM transactions through exchange of encrypted

inquiries between pairs. Using the proposed PSI protocol for matching of (encrypted)

inquires, and the unlinkable secret handshaking protocol for membership verification,

only the owner and her peer with a matched inquiry can know the real transaction

content, but not any other users, including SNS providers. Experimental results show

that the proposed scheme has scalable, reasonable computing costs, roughly 0.12-0.13

per request consisting of 10 records for the encryption strength equivalent to 1024-bit

RSA. In the privacy-preserving alert correlation application we designed a privacy-

preserving alert correlation (PAC) system to correlate network security alerts between

semi-honest users, i.e., users who will correlate authentic alerts generated from their

networks, but they may want to learn about others’ alerts using passive attacks. Two

different protocols based on the homomorphism of the elliptic curve cryptosystem (ECC)

were implemented for PAC. The first protocol is the proposed partial homomorphism

based PSI protocol, which is implemented for privacy-preserving matching of attributes

of known formats in PAC, e.g., IP addresses, port numbers, etc. Expanding from the

matching protocol, the second protocol is designed for privacy-preserving computation

of the longest common sub-string (LCS) between two input strings. A major challenge is

solved in the second protocol to protect locations of unmatched string elements while

correctly identify the LCS. The LCS can be used for generating common contents of

6

captured malware/intrusion payloads. We implemented a set of working prototypes of

PAC to demonstrate privacy-preserving detection of attack patterns (e.g., attack chain)

and attack contents (e.g., common worm signature) using alerts generated from Snort

[30], Autograph [31], and a trace collected from a real-world honeynet. The experiments

show that crypto-based correlation of large number of highly privacy sensitive alert data

can be done at reasonable costs, e.g., 2 minutes for matching of two sets of 10k records.

7

II. A GENERAL FRAMEWORK OF PSI AND SH PROTOCOLS

In this section we propose a general framework to represent the interrelationship

between privacy-preserving element matching protocols and privacy-preserving

credential authentication protocols, where an element refers to a string generated by a

user, and a credential refers to a ciphertext generated by an authority and issued to a user

for subsequent off-line, mutual authentication of the membership of a group. The unified

framework is used to illustrate the common structure for both the matching protocols

and authentication protocols. We also analyze their relationship and illustrate how to

utilize different mathematical functions to design different matching and authentication

protocols under the same framework.

A. INTRODUCTION TO PRIVACY-PRESERVING PROTOCOLS

Private set interaction (PSI) protocols and secret handshaking (SH) protocols are

two major families of privacy preserving matching protocols. In both protocols Bob and

Alice exchange encoded messages to jointly compute certain type of commonality from

the messages. For PSI, Bob and Alice can find out the intersection of their two sets of

elements, without unveiling to each other the rest of unmatched elements. For SH, Bob

and Alice can find out if they both belong to the same group using credentials that they

received from central authorities (CA). Because of their different requirements in

management of secrets (certain types of private data), these two types of protocols are

usually studied independently. Direct management issues for secrets include generation,

encryption-decryption, disclosure, and reuse of secrets. Moreover, indirect management

8

issues, especially inference of using certain secrets for different transactions, i.e., aka

linkability of transactions, are also considered important for certain applications.

In PSI a principal has total freedom in generation of new sets of elements for

matching, yet in SH a principal must submit his/her identity to the CA, so that the CA

can generate random numbers as his/her pseudonyms, and associates the pseudonyms

with a value that represents the secret of the requested group to produce her credential.

Here the users can only use her credential to perform authentication function and cannot

derive the group secret from the assigned credential. Since both credentials and group

memberships represent the same kind of information used to prove a user’s affiliation, in

the dissertation we will not differentiate between them. The objective of element

matching between two parties is to find out the intersection of their input sets of

elements (i.e., matched elements) without allowing one party to know the other party’s

unmatched elements. The objective of credential authentication between two parties is to

verify whether or not their credentials have identical group secret, which is only known

owned by a central authority. The privacy preserving property requires that the

affiliation of one party cannot be derived from the other party, if they do not have the

same group secret; otherwise, if they do, they can confirm matching of affiliations. In

addition, it is not feasible to tell whether two executions of the handshake protocol were

performed by the same party or not, even if both of them were successful.

Based on a high level analysis of a broad range of algorithms

[24][25][26][27][28][32][33][34][35][36][37][38][39], one can conclude that they follow

similar message exchange and computing procedures. They also use similar techniques

9

to confirm “commonality” of their exchanged information, while protecting the

information from each other when the commonalty test fails, as their common security

requirements. The objective of this research is to explore the common ground of the two

major fields to streamline their system models and cryptographic bases, so that we can

design more efficient algorithms for both types of applications. More specifically, we

propose to use homomorphic randomization function to meet the common conflicting

requirement, i.e., common element/credential can be computed efficiently based on

homomorphism of the function and uncommon element/credential are difficult to derive

based on the randomization of the same function. As it will become clear later, holistic

modeling of different privacy preserving protocols on the same crypto bases simplifies

the design of new and more efficient privacy-preserving protocols. That said, either a

PSI or a SH protocol can be designed in three common phases: Protocol Initialization

phase, Secret Mapping phase and Result Computing Phase.

B. NOTATIONS OF PRIVACY-PRESERVING PROTOCOLS

Before going into the details of privacy-preserving protocols, we introduce the

notation in Tables 1, 2, 3 and 4. In this research we assume that two parties Alice and

Bob interact with each other to execute privacy-preserving element matching protocols

and credential authentication protocols. In the follows we first present a definition list of

all terms required in our privacy-preserving protocols.

10

Table 1 Definitions of general terms.
Group Any number of parties considered as a unit with a common secret

Group Secret A large number that represents the membership of a group

Identity A party’s real name that is used to acquire credentials and pseudonyms

Pseudonym An arbitrary string that represents the identity of a group member from CA

Credential A large number that consists of a group secret and a pseudonym, which is used to

prove genuineness of a group membership associated with the specific pseudonym

Central Authority The authority who assigns credentials and pseudonyms to parties

Element An arbitrary string generated by a party that belongd to a given set

Element Set A collection of elements classed together

Intersection The set of elements that two element sets have in common

11

Table 2 Notations of general parameters.

Central Authority (CA) An authority who assigns credentials and pseudonyms to parties

Alice and Bob Two legitimate parties who execute the protocols

Eve Passive adversary

Mallory, Mallet, Trudy Active adversaries

i, j, k, n, m, w Six positive integers that represent numbers of elements, group secrets,

pseudonyms, etc

τ Security parameter

q A large prime number

G1 An additive cyclic group of prime order q

PB Base element (generator) of G1

G2 A multiplicative cyclic group of prime order q

H1 A collision-free hash function that maps a string to an element in G1

H2 A collision-free hash function that maps a string with arbitrary length to

a string with fixed length

e A bilinear map

sA, sB Alice’s and Bob’s secrets, respectively

rA1, rA2, rA3 Alice’s chosen random numbers

rB1, rB2, rA3 Bob’s chosen random numbers

12

Table 3 Notations of privacy-preserving credential authentication protocols.

G = (g1, …, gw) CA’s set of group secrets

gi, gj i-th and j-th secret in G

gA, gB the group secret of Alice’s and Bob’s single group membership

IDA = (idA1, …, idAn),

IDB = (idB1, …, idBm)

Alice’s and Bob’s assigned pseudonym set, respectively

idAi, idBj i-th and j-th assigned pseudonyms of IDA and IDB, respectively

idA, idB Alice’s and Bob’s single pseudonym

CREDA = (credA1, …, credAn),

CREDB= (credB1, …, credBm),

Alice’s and Bob’s assigned credential sets, respectively

credAi, credBj i-th and j-th credentials of CREDA and CREDB, respectively

credA, credB Alice’s and Bob’s single credential , respectively

credAi = f(idAi, gA),

credBj = f(idBj, gB)

f presents the function that associates a group secret with a pseudonym

rIDA = (rdA1, …, rdAn),

rIDB = (rdB1, …, rdBm)

Alice’s and Bob’s homomorphicly randomized pseudonym sets,

respectively

rdAi, rdBj i-th and j-th homomorphicly randomized pseudonyms in rIDA and rIDB

rdA, rdB Alice’s and Bob’s single homomorphicly randomized pseudonym

vA, vB Alice’s and Bob’s credential verification values, respectively

vA(B), vB(A) Alice’s verification value computed by Bob and Bob’s verification

value computed by Alice, respectively

VAB Alice and Bob common value after a successful handshake

13

Table 4 Notations of privacy-preserving element matching protocols.

X = (x1, …, xn) Alice’s input elements

Y = (y1, …, ym) Bob’s input elements

X∩Y = (xy1,…,xyw) Intersection of Alice’s and Bob’s input sets

xi, yj i-th and j-th elements of X and Y, respectively

kEA, kDA Alice matching keys for encryption and decryption, respectively

kEB, kDB Bob matching keys for encryption and decryption, respectively

E(X) = (cx1, …, cxn)

E(Y) = (cy1, …, cym)

Alice’s and Bob’s encrypted element sets, respectively

cxi = cxi_f, cxi_b Front part and back part of Alice’s i-th encrypted element

cyj = cyj_f, cyj_b Front part and back part of Alice’s j-th encrypted element

M(E(X)) = (mx1, …, mxn)

M(E(Y)) = (my1, …, mym)

Alice’s modified encrypted element set and Bob’s modified encrypted

element set, respectively

mxi = mxi_f, mxi_b Front part and back part of Alice’s i-th modified encrypted element

myj = myj_f, myj_b Front part and back part of Alice’s j-th modified encrypted element

C. GENERAL DEFINITIONS AND ADVERSARY MODEL

Fig. 1 presents a general illustration of the building elements of both PSI and SH

protocols. Here, a central authority (CA) assigns a credential (e.g., VIP membership of a

bank) separately to each of the parties, Alice and Bob. After the registration process, the

CA is no longer involved in interactions between Alice and Bob. Parties who have the

same credential are considered in a same group. Privacy-preserving authentication of

credentials between parties can be done by SH protocols. If an authentication succeeds

(i.e., they are in a same group), both of them know this fact. Otherwise, no information

14

about each other’s identity and affiliation (who assigns the credential) can be unveiled.

Alice and Bob also have their own elements, and they can perform privacy-preserving

matching of their elements based on a PSI protocol, without any involvement of the CA.

After the execution of a PSI protocol, Alice and Bob can only know the intersection of

their element sets. Alice cannot determine Bob’s elements that are not in the intersection

set, and vice versa. In the follows we first present the formal definition of PSI and SH

protocols.

Definition II.1 Private Set Intersection Protocol. Alice has her element set X= (x1, …,

xn) and Bob has his element set Y = (y1, …, ym). After the execution of a PSI protocol,

Alice (or Bob or both) knows X ∩ Y. Alice cannot know Y’, where ∀ yj ∈ Y’, yj ∈ Y and

yj ∉ X. Bob cannot know X’, where ∀ xi ∈ X’, xi ∈ X and xi ∉ Y. A simple case of the

protocol is as follows: suppose Alice has element x and Bob has element y, they want to

find whether x = y. If yes, they know the fact. If not, Alice does not know y and Bob

does not know x. More specifically, PSI protocols need to satisfy the following

requirements:

Requirements of PSI Protocols include (1) (x1, …, xn)and (y1, …, ym) should be

exchanged in some “format”, (2) If xi = yj, Alice and Bob can find out the fact.

Otherwise, nothing is disclosed, (3) Messages transmitted during the matching process

do not reveal any sensitive information.

15

Fig. 1. A general framework of PSI and SH protocols.

Definition II.2 Secret Handshake Protocol. Alice has a pair consisting of a pseudonym

and a credential, idA and credA, assigned from a central authority. Bob has his idB and

credB assigned from a central authority. After the execution of an SH protocol, Alice and

Bob know that credA and credB indicate common same group membership (i.e., credA

and credB contain a same group secret) if SH succeeds; otherwise, Alice (Bob) cannot

know anything about credB(credA). In addition, if Alice has two executions of a SH

protocol with Bob, he cannot know that he interacted with one same party. More

specifically, SH protocols need to satisfy the following requirements:

Requirements of SH Protocols include (1) idA (idB) should not be linked to Alice

(Bob), (2) If Alice and Bob are in a same group, they can compute two identical

verification values independently such that they know credA “=”credB, (3) If Alice and

Bob are not in a same group, Alice (Bob) cannot derive any information (i.e., affiliation)

from the verification value sent from Bob (Alice).

16

By looking through the formal definitions of both PSI and SH protocols, we

point out that they share two requirements: (1) if and only if Alice and Bob have

matching elements (credentials), the equality of the matching elements (credentials)

must be computable by both principals. (2) Outsiders cannot infer any of the

matching/authentication results. Bob cannot know unmatched elements/credentials of

Alice, and vice versa.

In Fig. 2 we present the general adversary and attack model for privacy-

preserving element matching and credential authentication protocol. In our model we

assume that Alice (legitimate party) interacts with Bob (legitimate party) to execute both

secret handshake protocols and private set intersection protocols. For simplicity we

assume that both Alice and Bob belongs to one specific group, respectively. The SH

protocols are for privacy-preserving authentication between Alice’s credential set

CREDA = f(IDA, gA) = (credA1, …, credAn) = (f(idA1, gA),…, f(idAn, gA)) and Bob’s

credential set CREDB = f(IDB, gB) = (credB1, …, credBm) = (f(idB1, gB),…, f(idBm, gB)).

Here IDA = (idA1, …, idAn) (IDB = (idB1, …, idBm)) represents Alice’s (Bob’s) assigned

pseudonym set, gA(gB) represents the secret of the single group Alice (Bob) belongs to

and f represents the function that associates a group secret with a pseudonym. The PSI

protocols are for privacy-preserving matching of Alice’s element set X = (x1, x2, …, xn)

and Bob’s element set Y = (y1, y2, …, ym).

17

P
S
I

execution_1

Fig. 2. General adversary and attack model for privacy-preserving protocols.

In the model there are two kinds of adversaries: active adversaries Mallory,

Mallet and Trudy and passive adversary Eve. Here for simplicity Trudy also launches

passive attacks and Eve also launches active attacks.

For secret handshake protocols there are three kinds of attacks: linkability

detection, group membership detection and group membership impersonation. Among

them linkability detection and group membership impersonation are active attacks since

adversaries need to interact with parties to launch the attacks. Group membership

18

detection is a passive attack since adversaries can utilize eavesdropping or interception

techniques to get the transmitted messages and then analyze the information to launch

the attack. In the follows we describe the detail of the attack scenarios.

Definition II. 3 Linkability Detection. Mallory executes a SH protocol with Alice in

SH execution_1 and Mallet also executes a SH protocol with Alice in SH execution_2.

In SH execution_1 Alice sent her pseudonym idA1 to Mallory for computing the

verification value and in SH execution_2 Alice sent her pseudonym idA2 to Mallet. After

the executions (successful or not) Mallory and Mallet collude and try to figure out

whether idA1 and idA2 belong to a same party, i.e., Alice.

Definition II. 4 Group Membership Impersonation. Trudy executes a SH protocol

with Bob in SH execution_3 and try to make it successful. That said, Trudy tries to

convince Bob that he is also a owner of the group secret gB, i.e., he owns a credential in

credential set f(IDT, gB), where IDT is his own pseudonym set.

Definition II. 5 Group Membership Detection. Trudy chooses a target group secret gB’

and tries to find out whether Bob’s group secret is gB’, i.e., whether gB = gB’.

For private set intersection protocols there are two kinds of attacks: element

detection and set intersection attack. Among them element detection is a passive attack

since adversaries can utilize eavesdropping or interception techniques to get the

transmitted messages and then analyze the information by launching dictionary attacks.

Set intersection attack is an active attack since adversaries need to interact with parties to

launch the attacks. In the follows we describe the detail of the attack scenarios.

19

Definition II. 6 Element Detection. Eve tries to find out the values of X and/or Y by

launching any passive attack on Alice’s and Bob’s transmitted messages in their PSI

execution.

Definition II. 7 Set Intersection Attack. Eve executes a PSI protocol with Alice in PSI

execution_1. She computed the intersection of their elements X ∩ Y’, where Y’

represents the set of her own elements. Eve tries to find out Alice’s elements that are not

in X ∩ Y’.

D. A GENERAL PRIVACY-PRESERVING FRAMEWORK

To satisfy the requirements of PSI and SH protocols and defend against the

attacks mentioned above, first Alice needs to initialize a matching/authentication process

by sending her parameters to Bob. Here we assume that Alice is the sender who

initializes the matching/authentication protocol and Bob is the receiver who responds to

Alice’s request. The first phase is called Protocol Initialization. After Bob received the

request, he needs to find a way to map his secrets (i.e., elements in PSI and credential in

SH) to another type of hidden values such that two requirements are satisfied: (1) his

hidden values can be used to match or authenticate his elements/credentials, (2) it is

computationally infeasible to derive his real secrets from the hidden values. This is the

key part of any PSI or SH protocols. Usually we use mathematic function with

homomorphism to achieve the two conflicting goals simultaneously. This phase is called

Secret Mapping. After the mapped secrets are sent back to Alice, she needs to compare

the received hidden values with her own secrets. This phase is called Result Computing,

which should satisfy two requirements: (1) Alice could compute the equality between

20

their secrets if they have matched elements/credentials, (2) otherwise, it is

computationally infeasible for Alice to deduce Bob’s secrets from his hidden values.

Now we propose a formal statement to illustrate the general design approach for both

PSI and SH protocols.

Statement II.1 To satisfy the general requirements of both PSI and SH protocols, we

propose a general approach with three common phases: Protocol Initialization phase,

Secret Mapping phase and Result Computing phase. The general approach for Alice

(sender) and Bob (receiver) is as follows: (1) Alice initializes the

matching/authentication protocol by sending her parameters to Bob in Protocol

Initialization phase, (2) Bob received the parameters and maps his secrets to hidden

values and sends the mapped values back to Alice in Secret Mapping phase, (3) Alice

received the mapped values and compute whether they have matched

elements/credentials in Result Computing phase. The difference between a PSI protocol

and a SH protocol is that a party can manipulate the secret (i.e., self-generated elements)

in PSI protocol and cannot do so (i.e., assigned credentials) in SH protocol.

Now we present the detail of the three phases. For simplicity, we still assume that

Alice is sender who initializes a matching/authentication protocol and Bob is the

receiver who responds to Alice’s request. The process is similar when Bob is the sender

and Alice is the receiver.

Phase I Protocol Initialization

Alice sends several parameters to Bob to initialize a matching/authentication

protocol. These parameters include:

21

PB: the base element of a chosen group G1, where a homomorphic operation * is defined

and the inverse operation of * on G1 is hard (e.g., DLP or ECDLP)

sA: Alice’s secret, which can be her elements, identity, pseudonym, etc.

cA: the comparison key used to balance the equation for both PSI protocols and SH

protocols. In PSI protocols cA is a random number used to guarantee that only Alice can

compute the matching result. In SH protocol cA is a group secret of Alice’s group

membership (credential).

rA: a random number used to guarantee that only Alice’s secret/group secret cannot be

deduced by Bob.

R: a homomorphic randomization function that associates a secret with randomly

chosen numbers in certain format.

If Alice chooses to use the homomorphic randomization function and associate rA

with her secret sA and send the mapped value to Bob, the general equation of this phase

for PSI protocols is R(rA, cA, sA) = (rA×sA×cA)*PB, were * represents the homomorphic

operation on G1 and × is the regular multiplication operation. For SH protocols the

equation of this phase is R(rA, cA, sA) = (rA×sA)*PB.

In this phase we propose to use R, a homomorphic randomization function, to

allow Alice to associate the random numbers rA with her secret sA so that sA cannot be

deduced from the randomized value. The randomization of R provides unlinkability for

SH protocols and defense against dictionary attack for PSI protocols. In addition, the

homomorphism of R guarantees that Bob can further modify Alice’s encrypted secrets,

even if he does not know the chosen random number rA and sA.

22

Phase II. Secret Mapping

After receiving Alice’s parameters, Bob will map his secrets to hidden values by

using a secret mapping function. This phase includes the parameters and function as

follows:

sB: Bob’s secret, which can be her elements, identity, pseudonym, etc.

cB: the comparison key used to balance the equation for both PSI protocols and SH

protocols. In PSI protocols cB is a random number used to guarantee that only Alice can

compute the matching result. In SH protocol cB is a group secret of Alice’s group

membership (credential).

rB: a random number used to guarantee that Bob’s secret/group secret cannot be deduced

by Alice.

M: a secret mapping function used to map sB (or cB) to a hidden value such that Alice

can match/verify sB (or cB), and Alice cannot deduce sB (or cB) if matching/authentication

fails. The equation of the secret mapping function for PSI protocls is M(R(rA, cA, sA), rB,

cB, sB) = (rA×rB×cA×sA)*PB, (rA×rB×sB)*PB. The equation of the secret mapping function

for SH protocol is M(R(rA, cA, sA), rB, cB, sB) = [(rA×sA)*PB]⊗[(rB×cB×sB)*PB],

(rB×sB)*PB.

In this phase PSI and SH have different requirements for M. For PSI protocol,

since Alice (Bob) can compute and manipulate her (his) elements, the secret mapping

function only consists of homomorphic operations represented by *. For SH protocols,

since Alice (Bob) cannot compute or manipulate the group secret associate with her/his

credentials, the secret mapping function also consists of a bilinear mapping function

23

represented by ⊗. The theoretical basis is still same in Phase II for both PSI protocols

and SH protocols. That said, in both kind of protocols Bob uses his random number rB to

protect his secret sB and cB, while he also associates his rB with Alice’s transmitted

messages through homomorphic operation or bilinear mapping for further possible

comparison.

Phase III. Result Computing

After receiving Bob’s hidden values, Alice will compute the

matching/authentication result by using a result computing function. It includes:

C: a result computing function used to compute the matching/authentication result. It

enables Alice to compute the result by comparing sA and sB, or cA and cB, and at the same

time it prevents Alice from deducing sB or cB from the ciphertext directly. The equation

of the result computing function for PSI protocols is: C(M(R(rA, cA, sA), rB, cB, sB)) ⇒

(rA×rB×cA×sA)*PB =? (rA×rB×cA×sB)*PB, where if sA = sB, the equation is satisfied. The

equation for the result computing funciton for SH is C(M(R(rA, cA, sA), rB, cB, sB)) ⇒

[(rA×sA)*PB]⊗[(rB×CB×sB)*PB] =? [(rA×cA× sA)*PB]⊗[(rB×sB)*PB], where if cA = cB,

the equation is satisfied.

In this phase Alice uses the result computing function to find out the matched

elements in PSI protocol or verified credentials in SH protocols. Basically Alice needs to

put her comparison key on one side of the equation to balance it except of the comparing

secrets, i.e., Alice associates her comparison key cA with Bob’s encrypted ciphertexts in

both PSI protocols and SH protocol. The difference between PSI protocols and SH

protocols is that the comparing secrets in the former are sA and sB and the comparing

24

secrets in the latter are cA and cB. For PSI protocol, both left side and right side have the

same parameters except of the compared secrets sA and sB so that if sA = sB the equation

is satisfied. For SH protocols, both left side and right side have the same parameters

except of the comparison secrets cA and cB so that if cA = cB the equation is satisfied.

During the computation, Alice cannot know anything about Bob’s secret sB and cB if the

matching or verification fails because the randomization of HRF.

25

III. PRIVATE SET INTERSECTION (PSI) PROTOCOLS

A. INTRODUCTION

Numerous protocols have been proposed to achieve private set intersection. The

first two-party private set matching protocol [24] was proposed based on homomorphic

encryption scheme and polynomial equation evaluation. Let us assume that Alice and

Bob both have a set of n attribute records for matching (equivalent to the term element

used in [24]). In [24], Alice needs to map each record to one root of a polynomial

equation, encrypts the coefficients of the equation through a homomorphic encryption

scheme and sends the ciphertexts to Bob. Bob then can evaluate the polynomial based on

the encrypted coefficients and his own records. Then the evaluated polynomial is sent

back to Alice such that she can determine the matching outcome. The process needs

O(n
2
) homomorphic encryptions (e.g., point multiplication in ECC) for Bob to evaluate

the equation [24][26]. That is, for each input x (record), Bob needs to evaluate the whole

n-term polynomial equation a0 + a1⊗x + a2⊗x
2
 +... + an⊗x

n
 through n times operation

of ⊗, which denotes the operation of a homomorphic encryption.

The matching protocol in [24] was extended in [32] to support multiple parties

and more set operations, e.g., union, cardinality of intersection, and multiplicity test. [33]

further extended the polynomial-based approach by introducing a trusted third party that

certified the inputs of both parties to prevent malicious active attacks, e.g., falsification.

Another kind of private set intersection approach [27] was proposed based on oblivious

pseudo-random function evaluation, which was more efficient than the polynomial

evaluation based approaches. This approach is only secure for a relaxed adversary model.

26

In [34] an improved scheme based on pseudo-random function evaluation was proposed

in the standard security model, in which users needed to commit their inputs before

performing private set intersection. The most recent work reported in [35] also presented

a linear crypto time, DDH based scheme for private set intersection that is secure against

malicious adversaries.

A privacy-enhanced matchmaking protocol [36] was proposed to support forward

privacy of user’s identities, and matching wishes, etc. It was based on the password-

authenticated key exchange protocols [37]. A threshold homomorphic cryptosystem

based privacy-preserving matching protocol was proposed in [38] for set intersection and

set matching with reduced computing complexity. It was based on the combination of

secret sharing and homomorphic encryption. Bilinear map was also used to design

privacy-preserving set intersection protocol in [39]. Another privacy-preserving union

protocol was proposed in [40] for criminal investigations.

Secure multi-party computation (SMC) was first proposed in [41]. The idea of

SMC was to enable a set of untrusting parties to compute certain function based on their

own private inputs without revealing their private information except the common result

of the function. The Fairplay two-party computation system proposed in [42]

implemented generic secure function evaluation and solved several secure computation

problems, e.g., Millionaires problem. Theoretically SMC is a general model proposed

for privacy-preserving computation of any function, including computing of the

intersection. However, due to their high computing and memory costs, they were not

adopted for computing of intersection [23][24].

27

B. A PSI PROTOCOL BASED ON FULL HOMOMORPHISM

A privacy-preserving element matching protocol based on full homomorphism is

proposed in this section. The protocol is built on ECC [43][44]. Different with previous

work [24][27][32][35], we propose to use a homomorphic randomization function in the

Phase Initialization phase to achieve privacy-preserving matching of elements. More

specifically, Alice (Bob) directly takes elements as secret numbers and associates them

with chosen large random numbers such that elements cannot be derived. In addition,

since the random numbers are generated through a homomorphic function, Alice (Bob)

can modify Bob’s (Alice’s) associated values for privacy-preserving matching. In

comparison with [35], our scheme achieves the same computing complexity and

communication complexity based on a totally different design and mathematical

primitives, i.e., the homomorphism of ECC.

First we need to generate some public parameters, (q, G1 Zq, H2, PB): q is a large

prime number, G1 denotes an additive cyclic group of prime order q, Zq is a group with

prime order q, H2 is a hash function that maps a string with arbitrary length to a string

with fixed length, PB represents the base point (generator) of G1. Here G1 is selected in

such a way that DLP [45] is assumed to be hard on it. In our design we choose G1 as a

group of points on a chosen elliptic curve, where DLP is in the form of ECDLP [45].

Definition III.1 Homomorphic Randomization Function in PSI. Suppose Alice has

elements X = (x1, x2, …, xn). Alice uses hash function H2 to compute (H2(x1), H2(x2) ,…,

H2(xn)) and chooses a large random number rA1 ∈ Zq. Alice multiplies (H2(x1), H2(x2) ,…,

H2(xn) with rA1 and the base point PB and obtains (rAH2(x1)PB, rAH2(x2)PB ,…, rAH2(xn)PB

28

∈ G1. Bob also chooses his large random number rB1 ∈ Zq and multiplies it with Alice’s

randomized values (rArBH2(a1)PB, rArBH2(a2)PB ,…, rArBH2(an)PB ∈ G1.

To avoid the time-consuming polynomial evaluation, we directly use large

random numbers to multiply elements to generate randomized elements and associate

those with a fixed ECC point to guarantee their security property based on the ECDLP

[45]. For example, given an element ai and its computed E(xi) = xirA1PB, where rA1 is a

large random number and PB is a chosen ECC point, an attacker cannot use dictionary

attack to confirm that xi has been used to generate E(xi). Then Alice sends her

randomized elements to Bob such that Bob could associate (based on the

homomorphism of HRF) his own elements to the received messages and send the

mapped elements back to Alice. Then Alice can check the equality of their elements

after computing the mapped elements. That is, Alice sends E(xi) to Bob, then Bob replies

with his own randomized element E(yj) with E(xi). The key idea is to create the

conditions such that, all other parameters in both E(yj) and E(xi) can be canceled and/or

equalized by the computing procedures, except the elements xi and yj. Thus, when Alice

checks the equality of E(yj) and E(xi)’, E(yj) = E(xi)’ if the two elements are indeed the

same, otherwise E(yj) ≠ E(xi)’ and Alice cannot know yj. Bob can make the same

matching through a similar procedure. Since all elements are processed in linearly

encrypted format, this approach only requires a linear number of crypto operations. The

flowchart of the proposed PSI protocol is depicted in Fig. 3.

Suppose Alice has her input element set X = {x1, …, xn} and Bob has his input

element set Y = {y1, …, ym}. Some public parameters, (q, G1, H1, PB), are used in the

29

design. Here q is a large prime number, G1 is chosen as the group of points on a chosen

elliptic curve with prime order q, H1 is a hash function that maps a string of arbitrary

length to a string of fixed-length, PB is the base point of G1.

To start a round of matching between Alice and Bob, first they need to generate

their own secret parameters. Alice computes an elliptic curve point kEA on the curve for

encryption purposes using a secret number kDA and the base point PB: kEA = kDAPB (i.e.,

the standard point multiplication in ECC), where kDA ∈ Zq and kEA ∈ G1. Due to the well

known ECDLP, kDA cannot be deduced, given kEA and PB. To guarantee that adversaries

cannot find any element by trying every possibility (if the information space of elements

is not very large) in a dictionary attack, Alice also needs to generate two large random

integers rA1, rA2, ∈ Zq for information hiding (i.e., mapping element values to elements

on a larger group). For example, an element xi cannot be deduced from (rA1xi)PB by any

passive attack because rA1 and rA2 are large enough to guarantee the ECDLP. Following

a similar argument, Bob also needs to generate kEB, kEB = kDBPB, and rB1, rB2, ∈ Zq. Then

Alice uses E to generate the ciphertexts E(A) = [E(x1), E(x2) ,…, E(xn)] on the (hashed)

input elements X, where each element E(xi) consists of two elliptic curve points as its

“front” point and “back” point. The “front” points are produced by associating Alice’s

chosen random numbers with base point PB. The “back” points are produced by

associating both the random numbers and Alice’s records with her computed point kEA,

where Alice’s elements cannot be deduced because of ECDLP. Alice then sends E(X) to

Bob. After receiving E(X) Bob uses M and his own elements B to produce M[B, E(X)],

i.e., modification of E(X). The modification function M allows Bob to (1) associate both

30

his own elements B and one chosen random number with the "front" points of E(X), and

(2) associate the same random number with the "back" points of E(A). Again, Bob’s

elements cannot be computed from the modified “back” points because of ECDLP. Then

Bob sends his M[B, E(A)] back to Alice, who can use D to decrypt-and-then-evaluate the

“front” and “back” points. After the decryption (i.e., eliminating the difference between

the “front” points and “back” points caused by Alice’s own secret number and random

number) if a pair of “front” point and “back” point are equal, Alice and Bob have an

identical/matched element. Otherwise, their elements are different. Bob has symmetric

operations as Alice and therefore will not be further repeated here.

Fig. 3. The flowchart of the proposed PSI protocol.

31

Phase I Protocol Initialization

In the follows we only describe Alice’s matching procedure since Bob’s is

similar. Suppose Alice has input element set X = (x1, x2, …, xn) and Bob has input

element set Y = (y1, y2, …, ym), respectively, where n and m are two chosen positive

integers. First Alice generates her pairwise matching keys (kEA, kDA). kEA is used for

encryption and kDA is used for decryption. Then Alice takes the input elements X = (x1,

x2, …, xn) and uses her kEA to encrypt them to get the ciphertexts EA(X). The ciphertexts

are then sent to Bob. After receiving EA(X), Bob modifies Alice’s ciphertexts and gets

MB(EA(X) = MB(Y, EA(X)), where Y is Bob’s input elements and M() denotes a

modification function with both Y and EA(X) as the inputs. Bob then sends the modified

ciphertexts back to Alice. After receiving the modified encrypted elements, Alice uses

the decryption function to decrypt the modified ciphertexts as DA(MB(EA(X)). Common

elements between X and Y will be discovered after the decryption.

In the follows we present the detail of the matching protocol. First Alice

generates her pair of matching keys (kEA, kDA) based on the base element PB ∈ G1: kEA =

kDAPB, where kDA ∈ Zq and kEA ∈ G1. Bob also generates his key pair in a similar way,

i.e., kEB = kDBPB. Before exchange their elements for matching, Alice generates two

large random integers rA1, rA2 ∈ Zq. Bob also generates his random integers rB1, rB2 ∈ Zq.

Alice then transfers her elements to large integers H2(X) = [H2(x1), H2(x2)… H2(xn)] and

generate her ciphertexts by using the homomorphic function as EA(X) = [EA(x1),

EA(x2), …, EA(xn)], where ∀ i ∈ [1, n], EA(xi) = (EAf, EA(xi)b)= (rA1PB, rA1H2(ai)kEA). Bob

generates his ciphertexts in a similar way EB(Y) = [EB(y1), EB(y2), …, EB(ym)], where ∀ j

32

∈ [1, m], EB(yj) = (EBf, EB(yj)b)= (rB1PB, rB1H2(bj)kEB). The detail of the privacy-

preserving elements matching protocol is presented as follows:

Phase II and Phase III: Element Mapping and Result Computing

(1) Alice → Bob: EA(X)

(2) Bob → Alice: EB(Y)

(3) Alice: choose rA2 ∈ Zq, compute MA(EB(Y)) by using the homomorphic randomization

function MA(EB(Y)) = [MA(EB(y1)),…, MA(EB(ym))] = [MA(EBf)1,…, MA(EBf)n)],

[MA(EB(y1)b), …, MA(EB(ym)b)], ∀ i ∈ [1, n], MA(EBf)i = rA2H2(ai)EBf = rA2rB1H2(ai)PB;

∀ j ∈ [1, m], MA(EB(yj)b) = rA2EB(yj)b) = rA2rB1H2(bj)kEB

(4) Bob: choose rB2 ∈ Zq, compute MB(EA(X)) by using the homomorphic randomization

function MB(EA(X)) = [MB(EA(x1)),…, MB(EA(xn))] = [MB(EAf)1,…, MB(EAf)m)],

[MB(EA(x1)b), …, MB(EA(xn)b)], ∀ j ∈ [1, m], MB(EAf)j= rB2H2(bj)EAf = rB2rA1H2(bj)PB;

∀ i ∈ [1, n], MB(EA(xi)b) = rB2EA(xi)b) = rB2rA1H2(ai)kEA

(5) Alice → Bob: MA(EB(Y))

(6) Bob → Alice: MB(EA(X))

(7) Alice: for j = 1 to m, compute

kDAMB(EAf)j, for i = 1 to n, j = 1 to m, test whether

kDAMB(EAf)j = MB(EA(xi)b). If yes, put the corresponding element into X∩Y as the

intersection set derived by Alice;

(8) Bob: for i = 1 to n, compute

kDBMA(EBf)i, for i = 1 to n, j = 1 to m, test whether

kDBMA(EBf)i = MA(EB(yj)b). If yes, put the corresponding element into X∩Y as the

intersection set derived by Bob;

33

Protocol I significantly reduces the computing costs. If n = m, both Alice and

Bob need (4n + 6) (i.e., O(n)) point multiplications to compute the intersection: 1

multiplication to generate the key pair, (n + 2) multiplications to generate the ciphertexts,

(2n + 2) multiplications to execute modification on received ciphertexts, (n + 1)

multiplications to execute decryption to decrypt the modified ciphertexts.

Table 5 presents the comparison of computing costs of Protocol I and the PSI

protocols proposed in [24][27]. Here n denote the number of elements of both Alice and

Bob, and L is the bit length of each input element (assume all elements have the same

length). Through Table 5 we can find that compared to [24][27] Protocol I has linear

computation costs based on same security model and different cryptography

fundamentals.

Table 5. Comparison between PSI protocols.

 [24] [27] Protocol I Protocol II

Computation Cost O(n
2
) O(nL) O(n) O(n)

Communication

Cost

O(n) O(nL) O(n) O(n)

Security Analysis Secure to passive

attack

Secure to passive

attack

Secure to passive

attack

Secure to

passive attack

Cryptography

Fundamental

Oblivious

polynomial

evaluation (OPE)

Oblivious

evaluation of

pseudorandom

function (OPRF)

ECC-based full

homomorphism

and ECDLP

ECC-based

partial

homomorphism

and ECDLP

34

We consider any passive attack that aims at compromising confidentiality of

sensitive information by analyzing transmitted messages, e.g., dictionary attack to

transmitted messages. We consider both outside adversaries and inside adversaries in our

research as follows.

Outside adversary: a malicious user that is an outsider of a matching process. An

outside adversary does not participate in the matching process and knows nothing about

the transmitted messages.

Inside adversary: a malicious user that participates in a matching process. The

adversarial insider may have some matched elements with the targeted victim and try to

discover other unmatched elements the victim has.

Based on the adversary model and attack model introduced above, we claim that

our privacy-preserving correlation technique provides the following security properties:

Private Set Intersection and Elements Confidentiality.

Theorem III.1 Element Confidentiality

In Protocol 2 a polynomial-time passive adversary cannot learn what element a party

owns. In other words, any polynomial-time adversary, either outside adversary or inside

adversary, only has negligible probability to know which element a party owns without

compromising legitimate owners of the targeted elements.

Proof: Suppose there is an adversary Eve who aims at finding out the contents of some

targeted element x. Eve may communicate with legitimate owners of the targeted

element x, corrupt some valid users and obtain their elements. Here we use U
T
 to denote

the set of users who own the targeted element. Eve picks a target user u
T∈ U

T
, and wants

35

to find out the element by communicating with u
T
. Now we define the Element Detection

Game for a randomized, polynomial-time passive adversary A as follows:

Step 1: The adversary Eve communicates with owners of the targeted element based on

its own choice. Eve may compromise certain user U
C
 ⊆ U and obtain their element,

where U
C
 denotes the set of compromised users and U denotes the whole user set.

Step 2: Eve selects a target user u
T
 ∉ U

C
 and u

T∈ U
T
, where users in U

T
 own the targeted

element x.

Step 3: Eve generates x’ by communicating with u
T
.

We say that Eve wins the Element Detection Game when x’ = x. Now we define the

following probabilities P = Pr[Eve wins Element Detection Game]. When Eve does not

compromise any valid owner of the targeted element x, the above probability becomes:

P’ (U
C∩U

T
)=∅ = Pr[Eve wins Element Detection Game | (U

C∩ U
T
) = ∅]. Now we can

define Element Confidentiality of our protocol. Suppose Eve never compromises a valid

owner of the target x. In other words, (U
C∩U

T
) =∅. Our protocol is said to have

Element Confidentiality if P’(U
C∩U

T
)=∅ is negligible for any passive adversary Eve. To

prove that our protocol has the property, we first present the following theorem that has

been proved in [24]: C’s Privacy is preserved and S’s Privacy is preserved. Now we

compare our protocol with [24] and present the following corollary: If private set

matching model proposed in [24] has preserved user’s privacy, then our matching

protocol holds Element Confidentiality. The difference between our protocol and the PSI

protocol proposed in [24] is that our protocol generates elliptic curve point as the user’s

input ciphertexts and uses EA(X) and EB(Y) as user’s ciphertexts instead of the equation

36

ciphertexts in [24]. Because all ciphertexts are manipulated with single-use random

number rA1/rB1 and rA2/rB2 through full ECC-based homomorphism, i.e., EA(xi) = (EAf,

EA(xi)b)= (rA1PB, rA1H2(ai)kEA) and EB(yj) = (EBf, EB(yj)b)= (rB1PB, rB1H2(bj)kEB), by the

assumptions that DLP is hard in G1, the ciphertexts hold the same security property as

the ciphertexts do in [24]. Thus our protocol holds Element Confidentiality.

Theorem III.2 Private Set Intersection

In Protocol 2 matching parties only discover matched elements in the intersection set of

their input elements. In other words, one party only has negligible probability to

compute the other party’s unmatched elements.

Proof: the proof is similar to that of Theorem III.1 and omitted here.

C. A PSI PROTOCOL BASED ON PARTIAL HOMOMORPHISM

We note that the design of Protocol I is based upon the security framework of the

private set intersection (PSI) protocol first proposed in [24], but we have developed a

much more efficient algorithm for private computing of the set intersection. We used the

full homomorphic randomization function to achieve the goal of privacy-preserving

element matching. However, it is vulnerable to active attack. For example, H2(x)PB can

be modified to H2(x’)H2(x)PB by adversaries. In this section we present a linear private

set intersection protocol that is based on partial homomorphic randomization function.

First we need to generate some public parameters, (q, G1 Zq, H2, PB): q is a large

prime number, G1 denotes an additive cyclic group of prime order q, Zq is a group with

prime order q, H2 is a hash function that maps a string with arbitrary length to a string

37

with fixed length, PB represents the base point (generator) of G1. Here G1 is selected in

such a way that DLP [45] is assumed to be hard on it.

Definition III.2 Partial Homomorphic Randomization Function in PSI. Suppose

Alice has elements X = (x1, x2, …, xn). Alice uses hash function H2 to compute (H2(x1),

H2(x2) ,…, H2(xn)) and chooses two large random numbers rA1, rA2 ∈ Zq. Alice multiplies

(H2(x1), H2(x2) ,…, H2(xn) with rA1 and rA2 and the base point PB to obtain: ∀ i ∈ [1, n],

E(xi)f = rA1rA2
-1

PB ∈ G1 and E(xi)b = [rA1H2(xi) + rA2]kEA ∈ G1. Bob also chooses his

elements Y = (y1, y2, …, ym) and a large random number rB3∈ Zq and multiplies it with

Alice’s randomized values to obtain: ∀ j∈ [1, m], M(yj)f = H2[rB3H2(yj)E(xi)f + rB3PB]

and ∀ i∈ [1, n], M(xi)b = rB3E(xi)b.

This protocol consists of three major functions: an encryption function E, a

decryption function D and a modification function M. Let X= (x1, …, Xn) and Y = (y1, …,

ym) respectively represent the set of elements owned by Alice and Bob. First Alice and

Bob need to generate their own secret parameters. Alice computes an elliptic curve point

kEA on the chosen elliptic curve for encryption purposes using a secret number kDA and

the base point PB: kEA = kDAP (i.e., the standard point multiplication in ECC), where kDA

∈ Zq and kEA ∈ G1. Due to the well known ECDLP, kDA cannot be deduced, given kEA

and PB. To guarantee that adversaries cannot find any element by trying every possibility

(the information space of alert attributes is usually not very large) in a dictionary attack,

Alice also needs to generate three large random integers rA1, rA2, rA3 ∈ Zq for information

hiding (i.e., mapping record values to elements on a larger group). For example, a

element xi cannot be deduced from (rA1xi + rA2)P by any passive attack because rA1 and

38

rA2 are large enough to guarantee the ECDLP. Following a similar argument, Bob also

needs to generate kEB, kEB = kDBPB, and rB1, rB2, rB3 ∈ Zq.

Now we introduce the basic procedures of the matching scheme from Alice’s

side. First Alice uses E to generate the ciphertexts E(X) = [E(x1), E(x2) ,…, E(xn)] on

the (hashed) input elements E, where each element E(xi) consists of two elliptic curve

points as its “front” point and “back” point. The “front” points are produced by

associating Alice’s chosen random numbers with base point PB. The “back” points are

produced by associating both the random numbers and Alice’s elements with her

computed point kEA, where Alice’s records cannot be deduced because of ECDLP.

Alice then sends E(X) to Bob. After receiving E(X) Bob uses M and his own elements B

to produce M[Y, E(X)], i.e., modification of E(X). The modification function M allows

Bob to (1) associate both his own elements Y and one chosen random number with the

"front" points of E(X), and (2) associate the same random number with the "back"

points of E(X). Again, Bob’s elements cannot be computed from the modified “back”

points because of ECDLP. Then Bob sends his M[Y, E(X)] back to Alice, who can use

D to decrypt-and-then-evaluate the “front” and “back” points. After the decryption (i.e.,

eliminating the difference between the “front” points and “back” points caused by

Alice’s own secret number and random number) if a pair of “front” point and “back”

point are equal, Alice and Bob have an identical/matched element. Otherwise, their

records are different. Bob has symmetric operations as Alice and therefore will not be

further repeated here. Details of the protocol are discussed as follows.

39

Protocol II. Linear Private Set Intersection Protocol Based on Partial

Homomorphic Randomization Function

(1) Alice: generate E(X) = [E(x1), E(x2) ,…, E(xn)], ∀ i ∈ [1, n], E(xi) = [E(xi)f , E(xi)b],

where E(xi)f = rA1 rA2
-1

PB, and E(xi)b = [rA1H2(xi) + rA2]kEA

(2) Bob: generate E(Y) == [E(y1), E(y2),…, E(ym)], ∀ j ∈ [1, m], E(yj) = [E(yj)f , E(yj)b],

where E(yj)f = rB1 rB2
-1

PB, and E(yj)b = [rB1H2(yj) + rB2]kEB

(3) Alice ↔ Bob: Alice sends E(X) to Bob and Bob sends E(Y) to Alice

(4) Alice: compute M[X, E(Y)]. M[X, E(Y)] = [M(x1)f , M(x2)f ,…, M(xn)f], [M(y1)b ,

M(y2)b ,…, M(ym)b]. ∀ i∈ [1, n], M(xi)f = H1[rA3H2(xi)(rB1rB2
-1

)PB + rA3PB] =

H2[(rA3rB1rB2
-1

H2(xi) + rA3)PB]. ∀ j∈ [1, m], M(yj)b = rA3[(rB1H2(yj) + rB2)kEB] =

[rA3rB1H2(yj) + rA3rB2]kEB

(5) Bob: compute M[Y, E(X)]. M[Y, E(X)] = [M(y1)f , M(y2)f ,…, M(ym)f], [M(x1)b ,

M(x2)b ,…, M(xn)b]. ∀ j∈ [1, m], M(yj)f = H2[rB3H1(yj)(rA1rA2
-1

)PB + rB3PB] =

H2[(rB3rA1rA2
-1

H2(yj) + rB3)PB]. ∀ i∈ [1, n], M(xi)b = rB3[(rA1H2(xi) + rA2)kEA] =

[rB3rA1H2(xi) + rB3rA2]kEA

(6) Alice ↔ Bob: Alice sends M[X, E(Y)] to Bob, and Bob sends M[Y, E(X)] to Alice

(7) Alice: compute D{M[Y, E(X)]}: for i = 1 to n, compute H1[kDA
-1

rA2
-1

M(xi)b]. For i =

1, 2, … n, j = 1, 2, … m, test whether H2[kDA
-1

rA2
-1

M(xi)b] = M(yj)f, if yes, xi is a

matched record in the intersection.

(8) Bob: compute D{M[X, E(Y)]}: for j = 1 to m, compute H1[kDB
-1

rB2
-1

M(yj)b]. For i = 1,

2, … n, j = 1, 2, … m, test whether H2[kDB
-1

rB2
-1

M(yj)b] = M(xi)f. If yes, yj is a

matched record in the intersection

40

We use the multiplications of large random numbers with ECC points to protect

user’s elements from dictionary attacks, i.e., H2(xi) cannot be deduced from E(xi)b =

[rA1H2(xi) + rA2]kEA. In addition, we also use H2 on M[X, E(Y)] and M[Y, E(X)] such that

Alice (or Bob) cannot further manipulate the received ciphtertexts as ECC points.

Otherwise, inside adversaries, e.g., Alice, could launch dictionary attack to try every

possible values for elements to get an equivalent equation between H2[kA
-1

rA2
-1

M(xi)b]

and M(yj)f.

If n = m, both Alice and Bob need (4n + 6) (i.e., O(n)) point multiplications to

compute the intersection: one multiplication to associate secret number with the base

point, (n + 2) multiplications to generate the ciphertexts (step 1 or step 2), (2n + 2)

multiplications to execute M on received ciphertexts (step 5 or step 6), (n + 1)

multiplications to execute D on the modified ciphertexts (step 9 or step 10) for

decryption.

One possible attack to Protocol II is that an attacker pretends to have the full set

of elements, and sends the elements to another user for matching. An easy detection of

such an attack is that when a user receives an extremely large amount of encrypted

elements for matching, he can choose to not continue the matching process and does not

send his modified elements back to the requester.

Protocol II significantly reduces the computing costs. If n = m, both Alice and

Bob need (4n + 6) (i.e., O(n)) point multiplications to compute the intersection: 1

multiplication to generate the key pair, (n + 2) multiplications to generate the ciphertexts,

41

(2n + 2) multiplications to execute modification on received ciphertexts, (n + 1)

multiplications to execute decryption to decrypt the modified ciphertexts.

Table 5 above presents the comparison of computing costs of Protocol II and the

PSI protocols proposed in [24][27] and Protocol I. Here n denote the number of elements

of both Alice and Bob, and L is the bit length of each input element (assume all elements

have the same length). Through Table 5 we can find that compared to [24][27] Protocol

II has linear computation costs based on same security model and different cryptography

fundamentals. In addition, compared with Protocol I, Protocol II is based on partial

homomorphism, which is more secure against some kind of active attacks.

In this section we show that Protocol II is more secure against active attacks like

falsification. First we can see that Protocol I is vulnerable to active attack. For example,

H2(x)PB can be modified to H2(x’)H2(x)PB by adversaries. If H2(x’)H2(x)PB happens

represent another element, i.e., H2(x’)H2(x) = H2(y), the participating party will believe

that there is a party who owns y. It is a falsification attack. Protocol II is not vulnerable

to this attack since all elements are encrypted in format like E(xi) = [E(xi)f , E(xi)b],

where E(xi)f = rA1rA2
-1

PB, and E(xi)b = [rA1H2(xi) + rA2]kEA. It is hard for an adversary to

manipulate rA1rA2
-1

PB or [rA1H2(xi) + rA2]kEA since he does not know both rA1, rA2 and kEA.

For example, if an adversary adds a chosen element to the ciphertext like H2(x’)[rA1H2(xi)

+ rA2]kEA, the participating parties cannot verify the modified ciphertext since it is not

under the correct format. Thus, Protocol II is more secure against active attacks.

In Protocol II we also consider any passive attack that aims at compromising

confidentiality of sensitive information by analyzing transmitted messages, e.g.,

42

dictionary attack to transmitted messages. We consider both outside adversaries and

inside adversaries in our research as follows. The main discussions of the adversaries are

same as that for Protocol I and are omitted here.

Based on the adversary model and attack model introduced above, we claim that

our privacy-preserving correlation technique provides the following security properties:

Private Set Intersection and Elements Confidentiality.

Theorem III.3. Element Confidentiality

In Protocol II a polynomial-time passive adversary cannot learn what element a party

owns. In other words, any polynomial-time adversary, either outside adversary or inside

adversary, only has negligible probability to know which element a party owns without

compromising legitimate owners of the targeted elements.

Proof: Suppose there is an adversary Eve who aims at finding out the contents of some

targeted element x. Eve may communicate with legitimate owners of the targeted

element x, corrupt some valid users and obtain their elements. Here we use U
T
 to denote

the set of users who own the targeted element. Eve picks a target user u
T∈ U

T
, and wants

to find out the element by communicating with u
T
. Now we define the Element Detection

Game for a randomized, polynomial-time passive adversary A as follows:

Step 1: The adversary Eve communicates with owners of the targeted element based on

its own choice. Eve may compromise certain user U
C
 ⊆ U and obtain their element,

where U
C
 denotes the set of compromised users and U denotes the whole user set.

Step 2: Eve selects a target user u
T
 ∉ U

C
 and u

T∈ U
T
, where users in U

T
 own the targeted

element x.

43

Step 3: Eve generates x’ by communicating with u
T
. We say that Eve wins the Element

Detection Game when x’ = x. Now we define the following probabilities P = Pr[Eve

wins Element Detection Game]. When Eve does not compromise any valid owner of the

targeted element x, the above probability becomes P’ (U
C∩U

T
)=∅ = Pr[Eve wins Element

Detection Game | (U
C∩ U

T
) = ∅]. Now we can define Element Confidentiality of our

protocol. Suppose Eve never compromises a valid owner of the target x. In other words,

(U
C∩U

T
) =∅. Our protocol is said to have Element Confidentiality if P’(U

C∩U
T

)=∅ is

negligible for any passive adversary Eve. To prove that our protocol has the property, we

first present the following theorem that has been proved in [24]: C’s Privacy is preserved

and S’s Privacy is preserved. Now we compare our protocol with [24] and present the

following theorem corollary: If private set matching model proposed in [24] has

preserved user’s privacy, then our matching protocol holds Element Confidentiality. The

difference between our protocol and the PSI protocol proposed in [24] is that our

protocol generates elliptic curve point as the user’s input ciphertexts and uses EA(X) and

EB(Y) as user’s ciphertexts instead of the equation ciphertexts in [24]. Because all

ciphertexts are manipulated with single-use random number rA1/rB1 and rA2/rB2 through

ECC-based partial homomorphism, i.e., E(xi) = [E(xi)f , E(xi)b], where E(xi)f = rA1rA2
-1

PB,

and E(xi)b = [rA1H2(xi) + rA2]kEA and E(yj) = [E(yj)f , E(yj)b], where E(yj)f = rB1 rB2
-1

PB,

and E(yj)b = [rB1H2(yj) + rB2]kEB, by the assumptions that DLP is hard in G1, the

ciphertexts hold the same security property as the ciphertexts do in [24]. Thus our

protocol holds Element Confidentiality.

44

Theorem III.4. Private Set Intersection

In Protocol 2 matching parties only discover matched elements in the intersection set of

their input elements. In other words, one party only has negligible probability to

compute the other party’s unmatched elements.

Proof: the proof is similar to that of Theorem III.3 and omitted here.

45

IV. SECRET HANDSHAKE (SH) PROTOCOLS

A. INTRODUCTION

The original secret handshake protocol [25] was proposed to achieve privacy-

preserving credential authentication between two parties. The main disadvantage of their

protocol is that credentials assigned from the CA are single-use and each party needs to

withdraw a large number of credentials to keep their identities unlinkable. The reason of

this weak point is that pseudonyms and group secret are combined to consist of

credentials and are separated for use in privacy-preserving authentication process [25].

More specifically, every credential assigned from the CA has two components, a

pseudonym and a group secret, associated together. Since the group secret cannot be

separated from the credential (i.e., a regular party cannot know the value of the group

secret), pseudonyms are exchanged in plaintext for authentication of the credentials.

This actually breaks a user’s unlinkability and may even compromise the group

membership detection resistance since adversaries can always track a repeatedly used

pseudonym to get to know who the user is and which group he belongs to, i.e., using

pseudonyms separately compromises the security of the group secret. In the follows we

propose a formal theorem to illustrate the vulnerability:

Theorem IV.1 Linkability with Reusable Credential

A privacy-preserving authentication protocol that uses one plaintext pseudonym for

multiple authentication sessions does not hold anonymity or group membership

detection resistance.

46

Proof: Suppose Alice requests a CA to join the group gA. The CA grants the group

membership to Alice by issuing a credential credAi = f(gA, idAi), where gA represents the

group secret and idAi represents Alice’s assigned pseudonym. Alice cannot deduce gA

from f(gA, idAi). There are two adversaries Mallory and Mallet who want to know

whether they are interacting with same party and which affiliation this party belongs to.

Assume that Mallory and Mallet are not members in group gA. Now we define an

identity detection game as follows.

(1) Mallory sends a message to Alice and Mallet sends a message to Alice. Each of them

sends the message to request for an authentication session.

(2) Alice responds with his assigned pseudonym idAi to both Mallory and Mallet.

(3) Mallory communicates with Mallet and they both know that they are interacting with

a same user with pseudonym idAi in two executions of the authentication protocol.

(4) Alice is linkable.

Now we assume that Mallet is also a member of group gA and we define a group

membership detection game as follows.

(1) Mallory sends a message to Alice and Mallet sends a message to Alice. Each of them

sends the message to request for an authentication session.

(2) Alice responds with his assigned pseudonym idAi to both Mallory and Mallet.

(3) Mallory completes an execution of the authentication protocol with Alice and knows

nothing about Alice. Mallet also completes an execution of the authentication

protocol with Alice and knows that Alice is also a member of gA.

47

(4) Mallet communicates with Mallory and they both know that they are interacting with

a group member of gA with pseudonym idAi.

(5) Alice is linkable and confidentiality of her group membership is compromised.

There is more related work proposed in this area. An unlinkable SH scheme with

reusable credentials is proposed by Ateniese et al. [28], which has stronger security

properties than ours since it is proved to be secure in the standard model. On the other

hand, our scheme needs less computing time, based on the random oracle mode.

Experimental results [28] show that their scheme needs 0.78 seconds on average to

complete an unlinkable handshake, including the key generation and credential

verification. They also adopted the abstract model in [24] to achieve approximate

attribute-based matching using each round of authentication as a matching exercise. As

such, their algorithm is more close to a CA based privacy management model, because

the CA knows all user attributes in order to issue credentials for users to engage in

matching.

 A recent related work in [46] was the first one that achieves unlinkability without

relying on single-use certificates and it supports revocation. But their work does not

support interlocked authentication and matching for unequal sets of attributes and in

their scheme a user’s sensitive information must be revealed to a CA.

B. AN UNLINKABLE SH PROTOCOL WITH REUSABLE CREDENTIAL

 In this section, we present our secret handshake protocol with reusable

credentials. Our main idea is to use the homomorphic randomization function in the

Protocol Randomization phase to randomize user’s assigned pseudonyms to provide

48

reusability of credentials. More specifically, we let a user generate a secret random

number in execution of the secret handshake. The user multiplies the random number to

an elliptic curve point that represents the user’s pseudonym. The random number

minimizes the correlation among authentication messages even they are produced by

reuse of the same credential. First we present the parameters that are required in the

secret handshake protocol as (q, G1, G2, e, H1, H2): q is a large prime number, G1 denotes

an additive cyclic group of prime order q, G2 denotes a multiplicative cyclic group of the

same order q, H1 is a collision-free hash function that maps a string with arbitrary length

to an element in G1, H2 is a collision-free hash function that maps a string with arbitrary

length to a string with fixed length, and e denotes a bilinear map. G1 and G2 are selected

in such a way that DLP [45] is assumed to be hard in both of them. The bilinear map e in

our protocol is a pairing that satisfies the following conditions:

Definition VI.1 Bilinear Pairing. A pairing is a bilinear map e: G1 × G1 → G2 if, for

any P, Q ∈ G1 and any a, b ∈ Z
*

q we have e(a⋅P, b⋅Q) = e(a⋅P, Q)
b
 = e(P, b⋅Q)

a
 = e(P,

Q)
a⋅b

 and e(P,Q) = e(Q, P)

 To provide efficient computation of the bilinear map, we choose G1, G2 and e as

a set of points on an elliptic curve, a multiplicative cyclic group over integers and Tate

pairing, respectively. There is a special discrete logarithm problem, Elliptic Curve

Discrete Logarithm Problem (ECDLP) [43] [44], defined as the basis of elliptic curve

cryptosystem (ECC) [43][44]. Based on the parameters chosen above, another

assumption we need is the BDH Assumption described as follows:

49

Definition VI.2 Bilinear Diffie-Hellman (BDH) Assumption [45]. Given P, aP, bP, cP

for random a, b, c ∈ Z*q and P ∈ G1, it is not possible to compute e(P, P)
abc

 with a non-

negligible probability, i.e., it is hard to compute e(P, P)
abc

In the follows we present the detail of the use of the homomorphic randomization

in our proposed secret handshake protocol.

Definition VI.3 Homomorphic Randomization Function in SH. Suppose user Alice

joins a group gA by obtaining a pair of pseudonym idAi and credential credAi = f(gA, idAi)

= gA⋅H1(idAi). Here gA ∈ G2 represents the group secret, idAi is an arbitrary string that

represents Alice’s assigned pseudonym, H1 is a function that maps a string to an element

in G1 and f is the addition operation defined in G1. Alice selects a large random integer

rA1 ∈ G2, and uses the addition operation defined in G1 to compute rdAi = rA1H1(idAi) (i.e.,

rA1 times of addition on gAH1(idAi)).

In my design there is a central authority (CA) that assigns credentials to two

principals, Alice and Bob. Alice has her identity IDA and Bob has his identity IDB. The

CA is also responsible for generating the parameters (q, G1, G2, e, H1, H2), where q

denotes a large prime number, G1 denotes the group of points on a chosen elliptic curve

with prime order q, G2 denotes a multiplicative cyclic group of order q, e denotes a

bilinear map: G1 × G1 → G2, H1 maps a string with arbitrary length to an element in G1,

H2 maps a string with arbitrary length to a string with fixed length. The CA also

generates a set of group secrets (g1,…, gn), ∀ gi ∈ Z
*
q, gi represents the membership of a

group. The main idea of the SH protocol is to let a principal generate a secret large

random integer in every secret handshake. The principal multiplies the random number

50

to an elliptic curve point that represents his identity. The random number minimizes the

correlation among authentication messages even they are produced by reusing the same

credential. The flowchart of the proposed SH protocol is presented in Fig. 4.

Alice: CA, IDA, rA1, rA2

random number rA2
 randomized pseudonym RA

Alice: CA, RB, rA2, rB2

Randomization
RA = rA1H1(IDA)

Bob: CB, IDB, rB1, rB2

Bob

Computation
VAB = H2(e(CA, RB)||rA2||rB2||0)

Verification
V’BA = H2(e(CA, RB)||rA2||rB2||1) =VBA?

IF yes, SH succeeds

Otherwise, no information can be inferred

exchange randomized

pseudonyms and

random numbers

exchange computed

verification value

Alice

Alice Bob

Bob: CB, RA, rB2, rA2

Computation
VBA = H2(e(CB, RA)||rA2||rB21)

Alice: VBA Bob: VAB

Central Authority

ps
eu
do
ny
m
IDA

cr
ed
en
tia
l

CA
= g

A
*ID

A

Randomization
RB = rB1H1(IDB)

credential

C
B = g

B*ID
B

pseudonym ID
B

random number rB2
 randomized pseudonym RB

IF yes, SH succeeds

Otherwise, no information can be inferred

Verification
V’AB = H2(e(CB, RA)||rA2||rB2||0) =VAB?

Fig. 4. The flowchart of the proposed SH protocol.

As described in the proposed framework, our proposed secret handshake protocol

has three phases: Protocol Initialization, Group Secret Mapping and Authentication

Computing. In the follows we present the detail of the three phases.

51

Protocol III. Unlinkable Secret Handshake Protocol with Reusable Credential

Phase I Protocol Initialization

The CA determines the pairing parameters (q, G1, G2, e, H1, H2) and group

secrets GS = (g1,…, gw), where ∀ gi ∈ G2. The CA publishes the pairing parameters

while keeping the group secrets in private. Alice requests the CA to join the group with

group secret gA ∈ (g1,…, gw). The CA verifies Alice’s qualification to decide whether

Alice can join the group. If yes, the CA grants the group membership to Alice by issuing

her a pair of pseudonym idAi and credential credAi = gAH1(idAi) ∈ G1, as described above.

The credential is a secret of Alice to prove her membership in group gA to another user

in the same group. Alice cannot deduce gA from gAH1(idAi) and H1(idAi) by the

assumption that DLP is hard in G1. It is important for preventing forgery of credentials.

Bob also obtained his pair of pseudonym idBj and credential credBj = gBH1(idBj) in a

similar process. Users Alice and Bob use their credentials, credAi = gAH1(idAi) and credBj

= gBH1(idBj), to generate authentication messages to one another. Alice randomly

generates two large random numbers, rA1 and rA2. Alice computes rdAi = rA1H1(idAi), as

described in the homomorphic randomization function above. That said, rA1 is used to

minimize the correlations of authentication messages produced by the same pair of

pseudonym and credential. Since using a credential multiple times will not create

messages that can link to the user identity, our credential is reusable. rA2 prevents replay

attacks as described in [6]. Bob also randomly generates two large numbers, rB1 and rB2,

for the same purpose. Detailed interactions of group secret mapping phase and

authentication computing phase are described as follows:

52

Phase II Secret Mapping and Phase III Result Computing

(1) Alice →Bob: rA2, rdAi = rA1H1(idAi)

(2) Bob: Compute VB = H2(e(rdAi, rB1credBj) || rA2 || rB2 || 0). Here Bob implements the

secret mapping function to map his own credential credBj = gBH1(idBj) from an

element in G1 to an element in G2 through bilinear map e.

(3) Bob →Alice: rB2, rdBj = rB1H1(idBj), VB

(4) Alice: Compute VB(A) = H2(e(rdBj, rA1credAi) || rA2 || rB2 || 0). If VB(A) = VB, then Alice

knows Bob belongs to the same group, i.e., gA = gB. Otherwise, Bob belongs to a

different group, i.e., gA ≠ gB or Bob belongs to no group. Here Alice implements the

result computing function to find out whether H2(e(rdBj, rA1credAi) || nA1 || nB1 || 0) =

H2(H2(e(rdAi, rB1credBj) || nA1 || nB1 || 0).

(5) Alice →Bob: VA = H2(e(rdBj, rA1credAi) || rA2 || rB2 || 1)

(6) Bob: Compute VA(B) = H2(e(rdAi, rB1credBj) || rA2 || rB2 || 1). If VA(B) = VA, Bob knows

that Alice belongs to the same group. Otherwise, Alice belongs to a different group,

i.e., gA ≠ gB or Alice belongs to no group.

The protocol succeeds when VB(A) = VB and VA(B) = VA in steps (d) and (f). Based

on the BDH assumption [7], it succeeds if, and only if, gA = gB. Otherwise, if it fails,

Alice and Bob only know gA ≠ gB. Users other than Alice and Bob cannot know whether

gA = gB or not, because they cannot compute VA or VB without credAi and credBj. A

sketch of proof for VB(A) = VB when gA = gB is shown in (1). The rest of proof for VA(B) =

VA can be derived similarly.

VB(A) = H2(e(rdBj, rA1credAi) || rA2 || rB2 || 0)

53

 = H2(e(rB1H1(idBj), rA1gA⋅H1(idAi)) || rA2 || rB2 || 0)

 = H2(e(H1(idBj), H1(idAi))
rA1rB1gA

 || rA2 || rB2 || 0)

 = H2(e(rA1H1(idAi), rB1gBH1(idBj)) || rA2 || rB2 || 0) (if gA = gB)

 = H2(e(rdAi, rB1credBj) || rA2 || rB2 || 0)

 = VB (3. 1)

Table 6 show the comparison of computation costs and communication costs

between Protocol II and the SH protocols proposed in [25][28]. Here n denotes the

number of runs of a SH protocol and d denotes the threshold of the number of

overlapped elements defined by Alice and Bob. My solution has less computation cost

compared to [28] and less communication costs compared to [25], under different

security model.

Table 6. Comparison between SH protocols.

 [25] [28] Protocol III

Computation Cost O(1) O(2d + 1) O(1)

Communication

Cost

O(n) O(2d + 1) O(1)

Security Analysis Secure to passive

and active attack

Secure to and active

passive attack

 Secure to and active

passive attack

Cryptography

Fundamental

Random oracle

model

Standard model ECC-based

homomorphism and

random oracle model

54

In the proposed secret handshake protocol we consider any passive attack that

aims at compromising confidentiality of sensitive information by analyzing transmitted

messages, e.g., dictionary attack to transmitted messages. We consider both outside

adversaries and inside adversaries as follows.

Outside adversary: a malicious party that is an outsider of an authentication

process. An outside adversary does not participate in the authentication process and

knows nothing about the transmitted messages.

Inside adversary: a malicious party that participates in an authentication process.

The adversarial insider may have some matched group secrets with the targeted victim

and try to discover other unmatched group secrets the victim has.

Based on the adversary model and attack model introduced above, we claim that

our privacy-preserving correlation technique provides the following main security

properties: unlinkability with reusable credential, group membership authenticity, group

membership detection resistance. In Theorem IV.2 we first prove that a secret handshake

that uses homormorphic randomization function provides unlinkability with reusable

credential.

Theorem IV.2: Unlinkability on Homomorphic Randomization with Reusable

Credential

A privacy-preserving authentication protocol that uses homomorphic randomization

function in protocol initialization phase guarantees unlinkability with reusable credential.

Proof: Suppose Alice requests to join a group with group secret gA ∈ G2. The CA grants

the group membership to Alice by issuing a credential gA⋅H1(idAi) ∈ G1, where idAi

55

represents Alice’s assigned pseudonym associated with gA. Alice cannot deduce gA from

gA⋅H1(idAi). There are two adversaries, Mallory and Mallet, who want to know whether

they are interacting with same party and which group this party belongs to. Assume that

Mallory is not a member in group gA and Mallet is. Mallory sends a message to Alice to

request an execution of Protocol III. Mallet also sends the request. Alice executes the

protocol with both Mallory and Mallet. In the execution with Mallory Alice uses rdAi =

rA1⋅H1⋅(idAi) as her pseudonym, where rA1 is a randomly chosen number in group G2. In

the execution with Mallet Alice uses rdAi’ = rA1’⋅H1⋅(idAi) as her pseudonym, where rA1’

is another randomly chosen number in group G2. All other parts of the executions are

same as what has been described in Protocol III. Mallet may also communicate with

other legitimate owners of group secret gA. Here we use U
A
 to denote the set of users

who own the group secret gA. Now we define a Linkability Detection Game as follows.

Step 1: Mallory and Mallet communicate with Alice based on their own choices. From

Mallory’s viewpoint, he is interacting with party A1; from Mallet’s viewpoint, he is

interacting with party A2.

Step 2: Mallet selects other parties U
A
 and corrupt them.

Step 3: After the executions of the secret handshake protocol Mallory and Mallet want to

find out whether A1 = A2. If yes, they know that they are interacting with a same party

and since Mallet knows that A2 has group secret gA, Mallory also knows.

We say that Mallory and Mallet win the Linkability Detection Game if they find out that

A1 = A2. Now we define the following probabilities: P = Pr[Mallory and Mallet win

Linkability Detection Game] – 0.5. Here we say that our protocol holds unlinkability

56

with reusable credential if P is negligible for any polynomial-time adversaries Mallory

and Mallet. In our protocol Alice generates random numbers rA1 and rA1’ to manipulate

his assigned pseudonym idAi and get elliptic curve points rdAi = rA1⋅H1(idAi) and rdAi’ =

rA1’⋅H1(idAi) as his randomized pseudonyms for Mallory and Mallet, respectively. Here

rdAi and rdAi’ are generated to map Alice’s pseudonym idAi to random ECC points

through the homomorphic randomization function. By the assumptions that DLP is hard

in G1, no polynomial-time adversary cannot deduce rA1 and rA1’ from rdAi = rA1⋅H1(idAi)

and rdAi’ = rA1’⋅H1(idAi) and thus cannot know rdAi and rdAi’ are generated based on the

same pseudonym idAi. That said, their guess about whether A1 = A2 is no better than a

random guess. Thus, our protocol holds unlinability with reusable credential.

Theorem IV.3: Group Membership Authenticity

In Protocol III any polynomial-time adversary only has negligible probability of

cheating as a valid owner of some group membership without corrupting another valid

owner of the targeted group secret, i.e., the adversary cannot impersonate owners of

some targeted group secret.

Proof: suppose there is an adversary Trudy who aims at impersonating the owner of a

group secret gA. Trudy may communicate with legitimate owners of the targeted gA,

corrupt some valid users and obtain their secrets. Here we use U
T
 to denote the set of

users who own the targeted gA. Trudy picks a target user u
T∈ U

T
, and wants to convince

u
T
 that Trudy is also an owner of the targeted gA, i.e., Trudy ∈ U

T
. We define the Group

Membership Owner Impersonation Game for a randomized, polynomial-time adversary

Trudy as follows.

57

Step 1: The adversary Trudy communicates with owners of the targeted gA based on its

own choice. Trudy may compromise users U
C
 ⊆ U and obtain their secrets, where U

C

denotes the set of compromised users and U denotes the whole user set.

Step 2: Trudy selects a target user u
T
 ∉ U

C
 and u

T∈ U
T
, where users in U

T
 own the

targeted gA.

Step 3: Trudy wants to convince u
T
 that Trudy owns the gA, i.e., Trudy ∈ U

T
.

We say that Trudy wins the Group Membership Owner Impersonation Game if it

convinces u
T
 that it is an owner of gA. Now we define the following probabilities: P =

Pr[Trudy wins Group Membership Owner Impersonation Game]. When Trudy does not

compromise any valid owner of gA, the above probability becomes: P’(U
C∩U

T
)=∅ =

Pr[Trudy wins Group Membership Owner Impersonation Game | (U
C∩ U

T
)=∅]. Here

we say that our protocol holds Group Membership Authenticity if P’(U
C∩U

T
)=∅ is

negligible for any polynomial-time adversary Trudy. We first present the following

theorem that has been proved in [25]: C’s Authenticity is preserved and S’s Authenticity

is preserved. In this work we define P’U
C∩U

T
)=∅ as the probability when an adversary

Trudy wins the Group Membership Owner Impersonation Game without compromising

any valid owner of gA in U
T
. Now we compare our protocol with the abstract model [25]

and present the following corollary: Our secret handshake protocol holds Group

Membership Authenticity. The difference between our protocol and the abstract model

[25] is that our protocol generates elliptic curve point as the user’s randomized identities.

Here rdAi/rdBj are generated to map Alice’s/Bob’s pseudonyms to random ECC points.

Since all pseudonyms are manipulated with single-use random number rA1/rB1 as random

58

oracles and DLP is hard in G1, group secret and user’s pseudonyms are not deducible

from the randomized values. In addition, our protocol holds the original BDH

assumption that any polynomial-time adversary cannot derive the authentication value

and group secret from the transmitted messages. As a result, Group Membership

Authenticity holds in our secret handshake protocol.

Theorem IV.4: Group Membership Detection Resistance

In Protocol III any polynomial-time adversary only has negligible probability of

detecting a targeted party’s group secret without corrupting another valid owner with the

same group secret. In other words, given an arbitrary group secret, the adversary’s guess

about whether it is same as a targeted party’s group secret is no better than a random

guess.

Proof: the proof is similar to Theorem IV.3 and omitted here.

59

V. INTERLOCKED PRIVACY-PRESERVING PROTOCOLS

A. INTRODUCTION

In this section we present two new privacy-preserving protocols by interlocking

the proposed PSI protocol and the proposed SH protocol. In the first interlocked protocol

a PSI protocol is executed first and the matched elements are obtained. Then the

matched elements are associated with an assigned credential in a following SH protocol.

Authenticity is provided on matched elements in this protocol since they are associated

with the credential by using the homomorphism property in SH protocol. In the second

interlocked protocol a SH protocol is executed first and credentials with same group

secret are verified if the handshake succeeds. Then a common value is generated based

on the verified credentials. This value is used in a following PSI protocol as common

homomorphic random number. Detection resistance and impersonation resistance are

provided in this protocol since adversaries cannot launched the detection and

impersonation attack if they cannot compromise the executed SH protocol and know the

common value.

B. A SECRET HANDSHAKE PROTOCOL WITH MATCHING ELEMENTS

In this section, we present our secret handshake protocol with matching elements.

It means that we execute a private set intersection protocol first and compute the

matching elements, and then we execute a secret handshake for privacy-preserving

authentication of both credentials and matching elements. We use the credentials that

have the matching elements associated with the group secret. First we present the

parameters that are required in the protocol as (q, G1, G2, e, H1, H2): q is a large prime

60

number, G1 denotes an additive cyclic group of prime order q, G2 denotes a

multiplicative cyclic group of the same order q, H1 is a collision-free hash function that

maps a string with arbitrary length to an element in G1, H2 is a collision-free hash

function that maps a string with arbitrary length to a string with fixed length, and e

denotes a bilinear map. G1 and G2 are selected in such a way that DLP is assumed to be

hard in both of them.

Definition V.1 Homomorphic Randomization Function in SH Protocol with

Matching Elements. Suppose user Alice joins a group gA by obtaining a credential

gAH1(idA), where gA ∈ G2 represents the group secret and idA ∈ G1 represents Alice’s

assigned pseudonym. Suppose Alice also has some matching elements with another user

Bob as (xy1, xy2, …, xyw). Alice selects a large random integer rA1 ∈ G2, and uses the

addition operation defined in G1 to compute rA1⋅ H2(xy1||xy2||…||xyw)⋅gA⋅H1(idA).

As described in Fig. 5, there are 10 steps between Alice and Bob to execute the

authentication protocol with matching elements. We illustrate the process on Alice’s side

since Bob’s side is similar. After Alice withdrew her credential from the central

authority, she executes the matching protocol with Bob and computes the intersection of

their input sets. If the number of common elements is beyond a threshold, she continues

interact with Bob by executing the authentication protocol. During the execution she

associates the intersection with the group secret issued from the CA. Then after secret

handshake if it succeeds, then Bob has the same group membership with and the

intersection and Alice can continue any further interaction. Otherwise, either Bob does

61

not own the same group membership or he is an adversary launching man-in-the-middle

attack.

Fig. 5. A secret handshake protocol with matching elements.

Protocol IV. A Secret Handshake Protocol with Matching Elements

Our proposed protocol has three phases: Protocol Initialization, Group Secret

Mapping and Authentication Computing. In the follows we present the detail of the three

phases.

Phase I Protocol Initialization

The CA prepares the system parameters (q, G1, G2, e, H1, H2) and a series of

group secrets [g1, g2, …]. The group secrets are known by the CA only. Other

parameters are published to users. Alice requests the CA to join the group gA. The CA

verifies Alice’s user identity to decide whether Alice can join the group. If yes, the CA

62

grants the group membership to Alice by computing the credentials credA = gA⋅H1(idA).

Alice can use this credential to prove that it belongs to group gA to other users in the

same group. Suppose Alice and Bob have matching elements (xy1, xy2, …, xyw). If w is

larger than a threshold determined by Alice, she chooses one large random number rA1 ∈

G2 and calls the homomorphic randomization function to compute rA1H2(xy1|| xy2||…||

xyn)gAH1(idA) directly. Similarly, Bob has his credential credB = gB⋅H1(idB) and computes

rB1H2(xy1|| xy2||…||xyn)⋅gB⋅H1(idB). Alice and Bob randomly generate two non-zero

integers, rA2 and rB2, to prevent replay attack. Detailed interactions of our secret

handshake protocol are described as follows.

Phase II Secret Mapping and Phase III Result Computing

(1) Alice →Bob: rA2, rdA = rA1⋅H1(idA)

(2) Bob: Compute VB = H2(UB||rA2||rB2||0), UB = e(rdA, rB1H2(xy1||xy2||…||xyw)gBH1(idB)).

Here Bob implements the secret mapping function to map his own credential credB =

gB⋅H1(idB) from an element in G1 to an element in G2 through bilinear map e.

(3) Bob →Alice: rB2, rdB = rB1H1(idB), VB

(4) Alice: VB(A) = H2(U’B||rA2||rB2||0), U’B = e(rdB, rA1H2(xy1||xy2||…||xyw)gAH1(idA)). If

VB = VB(A), then Alice knows Bob belongs to the same group, i.e., gA = gB, and

verifies Bob’s matching elements H2(xy1||xy2||…||xyw). Otherwise, Bob belongs to a

different group, i.e., gA ≠ gB or Bob does not own the matching elements. Here Alice

implements the result computing function to find out whether H2(U’B ||rA2||rB2||0) =

H2(UB ||rA2||rB2||0).

(5) Alice →Bob: VA = H2(U’B || rA2 || rB2 || 1)

63

(6) Bob: Compute VA(B) = H2(UB || rA2 || rB2 || 1). If VA = VA(B), Bob knows that Alice

belongs to the same group, i.e., gA = gB, and verifies Alice’s matching elements

H2(xy1||xy2||…||xyw). Otherwise, Alice belongs to a different group, i.e., gA ≠ gB or

Alice does not own the matching elements.

Theorem V.1. Authenticity on Matching Elements in SH Protocol with Matching

Elements

A privacy-preserving authentication protocol that uses homomorphic randomization

function in protocol initialization phase and associates matching elements with assigned

credentials guarantees authenticity on the matching elements.

Proof: Suppose Alice and Bob execute a PSI protocol and obtain their matching element

as (xy1, xy2, …, xyw). Suppose there is an adversary Trudy, who executes a classic man-

in-the-middle attack to Alice and Bob. Trudy intercepts the messages transmitted

between Alice and Bob and acts as Alice to Bob and Bob to Alice. Since in the proposed

PSI protocol Alice (Bob) modifies Bob’s (Alice’s) ciphertexts by mapping his (her) own

elements into hidden values and associating the values with the ciphertexts, the

transmitted messages contain both Alice’s and Bob’s mapped elements. As a result,

Trudy can successfully prove to Alice (Bob) that he has the matching elements as Bob

(Alice) does. In our new secret handshake protocol, Alice (Bob) computes verification

value as rA1H2(xy1||xy2||…||xyw)gAH1(idA) (rB1H2(xy1||xy2||…||xyn)gBH1(idB)) by

associating the matching elements with assigned credentials. Since in our secret

handshake protocol no sensitive information are contained in the transmitted values and

rA2 and rB2 are included to generate single-use verification value, Trudy cannot

64

successfully launch man-in-the-middle attack as long as he cannot deduce

H2(xy1||xy2||…||xyn) from rA1H2(xy1||xy2||…||xyw)gAH1(idA) or

rB1H2(xy1||xy2||…||xyn)gBH1(idB)). As a result, Trudy cannot verify himself as the owner

of (xy1, xy2, …, xyw) and our protocol guarantees authenticity of matching elements on

homomorphic randomization.

C. A PSI PROTOCOL WITH VERIFIED CREDENTIALS

In this section, we present our private set intersection protocol with verified

credentials. It means that we execute a secret handshake protocol first and verify the

assigned credentials, and then we execute a private set intersection for privacy-

preserving matching of elements. First we present the parameters that are required in the

protocol as (q, G1, G2, e, H1, H2). Here q is a large prime number, G1 denotes an additive

cyclic group of prime order q, G2 denotes a multiplicative cyclic group of the same order

q, H1 is a collision-free hash function that maps a string with arbitrary length to an

element in G1, H2 is a collision-free hash function that maps a string with arbitrary

length to a string with fixed length, and e denotes a bilinear map. G1 and G2 are selected

in such a way that DLP is assumed to be hard in both of them.

The main idea to execute an authentication protocol following a matching

protocol for Alice and Bob is to use the SH protocol to verify each other’s group

membership first and then utilize the verification outcome to protect the execution of the

matching protocol in two ways. If the secret handshake fails, Alice (Bob) can terminate

the interaction with Bob (Alice) since they do not belong to the same group. If the

handshake succeeds, Alice and Bob can manipulate the common verification value to

65

generate pairwise session keys to build a secure communication channel for further

execution of matching protocols. In addition, they can associate the verification value

with their matching process to defend against impersonation attack. In the follows we

present the detail.

Definition V.2 Homomorphic Randomization Function in PSI Protocol with

Verified Credentials. Suppose Alice joins group gA by obtaining a credential gAH1(idA),

where gA ∈ G2 represents the group secret and idA represents Alice’s assigned

pseudonym. After Alice executed a SH protocol with Bob, they can compute some

common verification VAB if the handshake succeeds. Suppose Alice will also execute a

PSI protocol with Bob. Alice associates the verification value H2(VAB||0) as a large

random number with her encrypted elements. She puts H2(VAB||0) only in back points of

her ciphertext.

Protocol V. A Private Set Intersection Protocol with Verified Credential

Our proposed protocol has three phases: Protocol Initialization, Element

Mapping and Matching Result Computing. In the follows we present the detail of the

three phases.

Phase I. Protocol Initialization

The CA prepares the system parameters (q, G1, G2, e, H1, H2) and a series of

group secrets [g1, g2,…]. The group secrets are known by the CA only. Other parameters

are published to users. Alice requests the CA to join the group gA. The CA verifies

Alice’s user identity to decide whether Alice can join the group. If yes, the CA grants the

group membership to Alice by computing the credentials [gA⋅H1(idA)]. Alice can use this

66

credential to prove that it belongs to group gA to other users in the same group. Similarly

Bob also has his credential [gB⋅H1(idB)]. Alice and Bob execute a SH handshake protocol

to verify whether gA = gB, i.e., whether they have the same group membership. If no,

Alice (Bob) can choose to terminate the interaction with Bob (Alice). If yes, they can use

the common verification value to generate a pairwise session key as VAB =

H2(UA||rA2||rB2||2) = H2(UB||rA2||rB2||2). Then Alice and Bob can use a symmetric key

cryptosystem like AES to build a secure channel between them with VAB as the

encryption and decryption key. That said, all the transmitted messages presented below

are encrypted and decrypted using VAB as the key.

Suppose Alice has element set X = (x1, x2, …, xn) and Bob has element set Y = (y1,

y2, …, ym) where n and m are two chosen integers. In the follows we only describe

Alice’s matching procedure since Bob’s is similar. First Alice generates her pairwise

matching keys (kEA, kDA). kEA is used for encryption and the latter one is used for

decryption. Then Alice takes the input elements X and uses her kEA to encrypt them to

get the ciphertexts EA(X). The ciphertexts are then sent to Bob. After receiving EA(X),

Bob modifies Alice’s ciphertexts and gets MB(EA(X) = MB(Y, EA(X)) where Y is Bob’s

input elements and M() denotes a modification function with both Y and EA(X) as inputs.

Bob then sends the modified ciphertexts back to Alice. After receiving the modified

encrypted elements, Alice uses the decryption function to decrypt the modified

ciphertexts as DA(MB(EA(X)). Common elements between X and Y will be discovered

after the decryption.

67

In the follows we present the detail of the first phase. First Alice generates her

pair of matching keys (kEA, kDA) based on the base element PB ∈ G1: kEA = kDA × PB,

where kDA ∈ Zq and kEA ∈ G1. Bob also generates his key pair in a similar way, i.e., kEB =

kDB × PB. Before exchange their elements for matching, Alice generates two large

random integers rA1, rA2 ∈ Zq. Bob also generates his random integers rB1, rB2 ∈ Zq. In

addition, Alice computes H2(VAB||0) as another parameter for the matching process. First

Alice needs to transfer her elements to large integers, i.e., H2(X) = [H2(x1), H2(x2)…

H2(xn)]. She then uses the encryption key kEA and H2(VAB||0) to generate her ciphertexts

as EA(X) = [EA(x1), EA(x2), …, EA(xn)], where ∀ i ∈ [1, n], EA(xi) = (EAf, EA(xi)b)= (rA1PB,

rA1H2(ai)H2(VAB||0)kEA). Bob also generates his ciphertexts in a similar way. He

computes H2(VAB||1) as his parameter in the matching process. He then generates his

ciphertexts in a similar way EB(Y) = [EB(y1), EB(y2), …, EB(ym)], where ∀ j ∈ [1, m],

EB(yj) = (EBf, EB(yj)b)= (rB1PB,rB1H2(bj)H2(VAB||1)kEB). The detail of the privacy-

preserving elements matching protocol is presented as follows:

Phase II Secret Mapping and Phase III Result Computing

(1) Alice → Bob: EA(X)

(2) Bob → Alice: EB(Y)

(3) Alice: compute H2(VAB||1) and choose rA2 ∈ Zq, then compute MA(EB(Y)) by using the

homomorphic randomization function MA(EB(Y)) = [MA(EB(y1)),…, MA(EB(ym))] =

[MA(EBf)1,…, MA(EBf)n)], [MA(EB(y1)b), …, MA(EB(ym)b)], ∀ i ∈ [1, n], MA(EBf)i =

rA2H2(ai)H2(VAB||1)EBf = rA2rB1H2(ai)H2(VAB||1)PB; ∀ j ∈ [1, m], MA(EB(yj)b) =

rA2EB(yj)b= rA2rB1H2(bj) H2(VAB||1)kEB

68

(4) Bob: compute H2(VAB||0) and choose rB2 ∈ Zq, then compute MB(EA(X)) by using the

homomorphic randomization function MB(EA(X)) = [MB(EA(x1)),…, MB(EA(xn))] =

[MB(EAf)1,…, MB(EAf)m)], [MB(EA(x1)b), …, MB(EA(xn)b)], ∀ j ∈ [1, m], MB(EAf)j=

rB2H2(bj)H2(VAB||0)EAf = rB2rA1H2(bj)H2(VAB||0)PB; ∀ i ∈ [1, n], MB(EA(xi)b) =

rB2EA(xi)b) = rB2rA1H2(ai) H2(VAB||0)kEA

(5) Alice → Bob: MA(EB(Y))

(6) Bob → Alice: MB(EA(X))

(7) Alice: for j = 1 to m, compute

kDAMB(EAf)j, for i = 1 to n, j = 1 to m, test whether

kDAMB(EAf)j = MB(EA(xi)b). If yes, put the corresponding element into X∩Y as the

intersection set derived by Alice;

(8) Bob: for i = 1 to n, compute

kDBMA(EBf)i, for i = 1 to n, j = 1 to m, test whether

kDBMA(EBf)i = MA(EB(yj)b). If yes, put the corresponding element into X∩Y as the

intersection set derived by Bob;

Theorem V.2. Detection Resistance and Impersonation Resistance on Matching

Elements in PSI Protocol with Verified Credential

A privacy-preserving element matching protocol that uses homomorphic randomization

function in protocol initialization phase and associates verified credential with matching

elements guarantees impersonation attack resistance on the matching elements.

Proof: Suppose Alice and Bob execute a SH protocol, and the handshake succeeds.

Alice and Bob can use the value to generate a secret pairwise session key VAB =

H2(UA||rA2||rB2||2) = H2(UB||rA2||rB2||2), and use the key to build a secure

communication channel by encrypting and decrypting all transmitted messages. The first

69

part of Theorem V.2 is obvious since only Alice and Bob know the session key and no

passive attack can be successfully launched on messages transmitted in the secure

channel. Suppose there is an adversary Trudy, who executes an impersonation attack by

launching attacks like replay attack to Alice and/or Bob. Trudy intercepts the messages

transmitted between Alice and Bob. Trudy then acts as a legitimate party by sending

Bob’s initialization message to Alice or Alice’s initialization message to Bob. Since in

the original PSI protocol Alice (Bob) modifies Bob’s (Alice’s) ciphertexts by mapping

his (her) own elements into hidden values and associating the values with the ciphertexts,

the transmitted messages contain both Alice’s and Bob’s mapped elements. As a result,

Trudy can successfully prove to Alice (Bob) that he has the matching elements. In our

new protocol, Alice (Bob) computes ciphertexts of matching elements as

EA(xi)=(EAf,EA(xi)b)=(rA1PB,rA1H2(ai)H2(VAB||0)kEA) (EB(yj)=(EBf,EB(yj)b)=

(rB1PB,rB1H2(bj)H2(VAB||1)kEB)) by putting the common verification value in the latter

ciphertexts. Since in our secret handshake protocol no sensitive information are

contained in the transmitted values and rA2 and rB2 are included to generate single-use

verification value, Trudy cannot successfully launch replay attack as long as he cannot

know the VA or VB or VAB. As a result, our protocol guarantees detection resistance and

impersonation attack resistance on matching elements.

70

VI. APPLICATIONS ON PRIVACY-PRESERVING PROTOCOLS

In Section VI the proposed PSI and SH protocols are implemented to build

privacy-preserving inquiry matching (PPIM) for social network applications and

privacy-preserving alert correlation (PAC) independent network alert sources.

A. SOCIAL PRIVACY-PRESERVING INQUIRY MATCHING APPLICATION

Social networking services (SNS), e.g., Facebook [29], Opensocial [47],

Match.com [48], LinkedIn [49] etc., are rapidly expanding from their casual usage of

making social contacts to more serious applications of building professional contacts,

e.g., PartnerUp [50], Sermo.com [51], INmobile.org [52], etc. The rich collection of

personal and contact information in SNS systems makes them the prime target of

adversary. As the industry gradually yet surely pushes SNS to the next level of high-

value applications, it is critical to examine the privacy management issues in order to

protect consumer privacy without sacrificing the convenience of existing systems.

A typical system architecture for most SNS is depicted in Fig. 6, where an SNS

vendor makes its web portal available for free or paid services, i.e., posting and

browsing of photos, trivia, personal, or business information. Consumers can use the

discovery/search service in SNS to locate potential contacts using typical search cues,

such as personal interests, names, or locations, etc., and the SNS providers may also

make contact suggestions based on consumer profiles. Users can follow search outcomes

to make new contacts based on a simple handshaking protocol, “friend invitation and

approval”. A business related SNS usually has more rigorous control on user registration,

e.g., Sermo.com [51] for physicians and INmobile.org [52] for senior professionals of

71

the wireless industry. While this type of SNS vendors usually employ registration

screening, pseudonyms and message encryption to protect user privacy, there is no

broadly adopted privacy preserving matching techniques to protect the inquires being

used in matching processes.

Fig. 6. A typical SNS architecture.

Privacy breaching can happen in many different ways, and it is hard to contain

them completely. By agreeing to the service policies, consumers knowingly or

unknowingly permit the SNS providers to make supposedly sanitized/aggregated data

[53][54] available to third party application developers [55], or the general data market

[54]. However, in practice, the adversary can still recover sensitive information from the

sanitized data, e.g., professional aggregators [56][57][58], de-anonymizer tool [59] for

employers [60], decoding of social connection based on P2P techniques [61]. More

72

seriously, third party vendors may not have as high standards on consumer privacy

protection as the leading vendors [62][63][64]. As an increasing number of privacy

breaching incidents begin to emerge, either by exploiting system vulnerabilities

[65][66][67][68], or accidental or intentional release of personal data [69][70][71], we

claim that the overall security strength of existing SNS is not adequate to support current

social networking applications. Many designs have been proposed, e.g.,

[2][5][40][62][72][73][74][75][76] to address those issues. Most of them are to allow

user to control their own private information and deploy the security policy based on

their own requirement, as illustrated in Fig. 7. The problem is that they are primarily

focused on the last step, e.g., how to allow a user to control the content/profiles shared

with his matched friends so that they do not leak unnecessary information [5][77]. Given

the fact that SNS providers usually control the phases of user registration and user

discovery, the privacy protection for the middle step is largely ignored, i.e., how to find

matched and/or authenticated friends in a privacy-preserving manner. Without this, users

may already leak their sensitive information before they can control their shared/public

social data.

In this section we proposed a new system, privacy-preserving inquiry matching

(PPIM), to address the problem. In PPIM, attributes of matching inquiries are

considered highly privileged information to the owners, e.g., new drugs [51], product

pricing [52], personal health/finance status [78], etc. Often, group affiliation is also

considered privileged information [54]. As such, a principal may only allow peers to

establish connection when he/she (1) has the same inquires attributes, (2) registered to

73

the same group, or (3) both of above. Conceptually, one could treat matching of

attributes and verification of membership affiliation problems as two independent

problems, and they can be solved using the existing private set intersection (PSI)

protocol [24] and the secret handshaking (SH) algorithm [25], respectively. Or, a user

can verify the membership with others first before proceeding to matching of privileged

attributes. However, the PSI algorithm alone is vulnerable to man-in-the-middle attack

[79] and replay attack [80], because the adversary can first passively relay packets

between two users until they made successful making, and then become active to

impersonate either/both of them to hijack subsequent communications. Moreover, the

original SH algorithm may not be scalable for large systems because a user needs to

request and store a large number of single-use pseudonyms to maintain anonymity and

unlinkability, which is crucial for protecting group affiliation information.

74

Fig. 7. Current privacy protections for SNS.

We propose to use the proposed interlocked protocol to enhance PSI and SH

algorithms so that they can more effectively serve the needs of PPIM applications. There

are three steps to use the interlocked protocol on PPIM. The first step is to implement

the PSI algorithm using the elliptic curve cryptography (ECC) cryptosystem, in order to

lower its computing costs. The second step is to use the proposed unlinkable secret

handshake protocol so that consumers just need to register once from a particular Group

Administrator (GA) to engage in PPIM activities. The third step is to interlock the PSI

and SH by proper selection of the elliptic curve parameters and functions, and making

75

the outputs produced in PSI as a part of the computing inputs to SH. Two principals

engaged in a PPIM transaction could first run the PSI protocol, and then feed the

matched results (in a derived form) to the SH protocol for authentication. Or, they could

first run SH protocol to authenticate each other, and then use a common “session key”

derived from the SH to make it a part of the attributes, so that the adversary cannot

engage in the PSI protocol without the common key. By bundling SH with PSI, the

proposed PPIM protocol can defend against the man-in-the-middle attack [79] and

replay attack [80]. Running PSI first and then SH, vs., SH first and then PSI some subtle

differences in their security implications, but both are equally doable. We will focus on

the PSI-SH, but the theoretical basis is also applicable to the SH-PSI design. Another

advantage of our design is that two users can generate a pairwise session key after a

successful PSI-SH execution. This way, the PPIM system can directly cooperate with

systems like flyByNight [5] or Persona [77] without the need of a complex key

distribution infrastructure.

A common concern for any on-line applications is the notion of Sybil attack

[66][81], in which an adversary uses ghost accounts to gain unduly benefits, e.g., starting

a hype, gaining control of a virtual group, etc. Many techniques have been proposed in

the literature to detect such misbehaviors [82][83][84]. We assume that trade groups for

high-value applications have stringent registration processes similar to those in [51][52]

to eliminate ghost accounts in PPIM user community. The rigorous matching and

authentication procedures make it much easier for GA to sanction against their

misbehaved group members based on reputation or similar punitive systems.

76

The architecture of the proposed PPIM scheme and its relationship with respect

to existing SNS systems is depicted in Fig. 8. The only additional infrastructure

requirement for the PPIM service is a PPIM relay server, which can be a part of existing

SNS, or an independent system. It serves the simple purpose of listing potential

matching candidates, and relaying of PPIM related messages between two matching

candidates. In plaintext, a PPIM inquiry Q consists of a set of attributes T and

credentials C, Q=(T,C), where T= [t0, t1, …, tn], and C= [c0, c1, …, cm], where ci is issued

by GAi. The contents of T and C, including their sizes, are determined based on personal

choices or some best practice of the trade. An element ti in T represents one of the n

items to be matched with others, and the user can choose any subset of T for a PPIM

transaction. Each element ci in C represents a point on a chosen elliptic curve generated

from a number of expressions. Some derivatives of selected elements in C will be sent to

other users during different PPIM transactions. Each user also has a unique identity, ID,

in a group, from each registered GA. The ID will be solely used as a piece of private

data to run the SH protocol, and it should not be confused with common user accounts.

In PPIM we propose to adopt existing SNS as the platform for strangers to make

their first contacts, i.e., discovery of candidates using non-privileged information

[29][47][49], peer recommendation [52], or pseudonyms [54], etc. From the list of

candidates produced from the discovery process, users can proceed to the next level of

(privacy-preserving) matching based on our proposed scheme. The PPIM relay server is

interfaced to SNS, so that when users wish to proceed with PPIM matching, their public

profiles can be posted. Once two users agree to enter a PPIM transaction to match their

77

inquiries, all messages exchanged between them are essentially ciphertexts. We use the

interactions between three users Alice, Bob, and Mallory to illustrate the overall system

concept. Conceptually, any two users Alice and Bob exchange encrypted attributes

through the PPIM relay server for the matching of },...,,{ 10

a

n

aaa
tttT =

and
 },...,,{ '10

b

n

bbb
tttT = ,

and then verify if they have made the same PSI matching results, and also have one or

more common affiliations (governed by the same GA). At end of a transaction, Alice

and Bob can either affirmatively identify their matched attributes, with verified common

membership; or neither of them will gain any hint about the attributes nor the

membership of the counterpart. The transaction is immune from passive man-in-the-

middle attack.

Fig. 8. Architecture of the PPIM service.

Overall, when Alice is engaged in a PPIM transaction, it needs to submit three

types of messages (in addition to some other messages), [))((
a

aa TME ;)(a

ia cw ;)(a

ia cv] for

78

PSI and SH protocols.))((
a

aa TME is the ciphertext of)(a
TM generated by Alice, where

M(T
a
) is the results of mapping of T

a
 based on a mapping function M.

Alice, Bob and Mallory exchange all PSI related messages through the PPIM

server. We will use Alice to carry the rest of discussions, because identical arguments,

except for the variables involved, are applicable to all users. Assuming that Alice first

sends out))((
a

aa TME to Bob and Mallory. Then, Bob sends its own))((
b

bb TME and returns

the modified inquiry)))(((a

aab TMEF back to Alice.)))(((a

aab TMEF is computed by Bob using

a known homomorphic encryption method with T
b
 as its input. Similarly, Mallory also

sends))((
m

mm TME and)))(((a

mmm TMEF to Alice. Then, Alice can use the received messages

to perform its PSI computing locally. Bob and Mallory can perform similar PSI

computing after they receive their modified inquires.

For Alice to perform SH protocol with both Bob and Mallory, the related

message exchanges are derived from the PSI matching outcomes, and the credentials of

Alice. To verify that Alice and Bob are in the same group, Alice needs to prove that

)(a

ia cv =)(b

j

a

b cv , which denote verification values generated by Alice and Bob,

respectively.)(a

ia cv is generated by a generation function G based on bilinear pairing

[45][85].)(b

j

a

b cv is computed by the verification function V of Bob, based on)(a

ia cw and

Bob’s own credential b

jc .)(a

ia cw (generated by Alice) is 2-tuple: (1) a single-use number

na, and (2) the hashed, and then randomized a

iID , which is issued by GAi as Alice’s

ID in groupi.

79

Let },...,,{ 10

a

m

aaa
cccC = and },...,,{ '10

b

m

bbb
cccC = for denote credentials for Alice and Bob,

respectively. We summarize the five security properties (P1 to P5) of PPIM scheme

based on the scenario that Alice does PPIM transaction with Bob. For (Alice, Bob), all

others are considered outsiders.

Attribute Confidentiality: Alice and Bob can find whether T
a
 ∩ T

b
 ≥ δa, δb where

δa, δb are threshold values chosen by Alice and Bob, respectively. For all attributes a

it ∈

T
a
 and a

it ∉ T
a
 ∩ T

b
, a

it is not revealed to Bob. Similarly, for all b

jt ∉ T
a
 ∩ T

b
, b

jt is not

revealed to Alice. T
a
 and T

b
 is not revealed to outsiders.

Attribute Authenticity: Alice and Bob can find whether or not C
a
 ∩ C

b
 ≥ δa’, δb’

where δa’, δb’ are threshold values chosen by Alice and Bob, respectively, where “ a

ic

= b

jc ” means that they are issued by the same GA. For all credentials a

ic ∈ C
a
 and a

ic ∉ C
a

∩ C
b
, a

ic is not revealed to Bob. Similarly, for all credentials

b

jc ∉ C
a
 ∩ C

b
, b

jc is not

revealed to Alice. C
a
 and C

b
 is not revealed to outsiders.

Message Privacy: No message exchanged between Alice and Bob can be

deciphered by outsiders.

Relationship Privacy: Outsiders cannot know whether or not Alice and Bob have

a positive or negative match.

Unlinkability: No message can be linked to a

iID , b

jID .

The interlocked PSI protocol is the Protocol I proposed in Section III.B. To make

it more efficient in PPIM, we made the following changes: first off, a supersingular

elliptic curve [85] ς is used for both PSI and SH to reduce the complexity of curve

80

selection. In actual implementation of M, we modified the original hash function in [86]

with decreased parameter size so that attributes chosen from a relatively small space can

be fit into the relatively smaller number of points on ς. We still adopted the classic hash

function SHA-1 [87] as H2. In addition, our system architecture is an end-user controlled

privacy management model that does not require providing anyone privileged inquiry

information, except those who can successfully complete PPIM transactions with the

information owner.

The SH is the Protocol III proposed in Section IV. B. The SH is built upon the

bilinear Diffie-Hellman (BDH) intractability assumption. By choosing the Tate pairing

for SH design, it satisfies the bilinearity and degeneracy of BDH. Selection of the

paring-based functions and parameters follows the discussions in [45].

Fig. 9 presents the flowchart of our ECC-based PSI scheme. When Alice and

Bob exchange messages, they need to generate their public keys (PUBa and PUBb) and

private keys (PRIa and PRIb) from the base element Q ∈ G1, where G1 denotes an

additive cyclic group of prime order q (which is a large prime number). Here we choose

the group of points on a pairing-friendly curve ς to be G1, in which DLP is known as

ECDLP [45]. It is required that PUBa = PRIa × Q, where PRIa ∈ Fq and PUBa ∈ G1 (F

denotes a finite filed). Similarly, PUBb = PRIb × Q. PRIa is chosen by Alice, and PRIb

by Bob. After Alice picks a
T , she uses a global mapping function M to generate

},...,,{)(110

a

n

aaa

a sssTM += , which is encrypted to),...,(),({))((10

a

a

a

a

a

aa sEsETME =)}(1

a

na sE +
using

PUBa and an encryption function E. Alice sends))((a

aa TME to Bob. After receiving it,

81

Bob uses a modification function F to modify))((
a

aa TME
into

)}(),...,(),({)))((('10

b

n

a

b

ba

b

ba

b

a

aab tFtFtFTMEF =
with))((

a

aa TME
and some of his own attribute data in

b
T as the inputs to F. Here, F needs to satisfy the homomorphic encryption property.

Next, Bob sends)))(((
a

aab TMEF
back to Alice, who can then decipher the

received)))(((a

aab TMEF by using a decryption function D and her private key PRIa. The

deciphered outcomes represent identical hashed values of original attributes, and they

can be readily used to produce),(ba
TTIS , the intersection of T

a
 and T

b
.

Then, Alice chooses δa as a threshold and checks whether or not the number of

elements in IS(T
a
, T

b
), NUM(IS(T

a
, T

b
)), is larger than δa. If yes,),(ba

TTIS is used as the

input to the SH engine for credential authentication. Bob goes through a fairly similar

process to match attributes submitted by Alice. The protocol satisfies the security

properties P1, P3 and P4. Here we can only briefly highlight them as follows. For P1,

Bob cannot deduce a
T because of the hardness of ECDLP in G1, i.e. Bob cannot deduce

ra from raPUBa (in step 2) and thus cannot get a

is from
aa

a

i PUBrs + . Similarly, Alice

cannot deduce b
T . Alice cannot deduce extra elements not in IS(T

a
, T

b
) because those

elements are hidden by the multiplication of rb to ∑
+

=

1

0

2)()(
n

i

il

ib

j EtH in F. Bob also cannot deduce

any extra elements not in SIB for similar reasons. For P3, all messages transmitted are in

encrypted format. Due to ECDLP is hard in G1, message privacy is maintained. For P4,

thresholds δa and δb are chosen by Alice and Bob respectively and whether the matching

results satisfies each user’s requirement, e.g., NUM(IS(T
a
, T

b
)) ≥ δa, is only known to

82

them. The detail of the interlocked PSI protocol was presented in Section III. B and is

omitted here.

},...,,{ 10

a

n

aaa
tttT =

},...,,{)(110

a

n

aaa

a sssTM +=

)}(),...,({))((10

a

na

a

a

a

aa sEsETME +=

},...,,{ '10

b

n

bbb
tttT =

},...,,{)(1'10

b

n

bbb

b sssTM +=

)}(),...,({))((1'0

b

nb

b

b

b

bb sEsETME +=

))((
b

bb TME))((a

aa TME

)}(),...,({)))(((0

a

n

b

a

ab

a

b

bba tFtFTMEF =)}(),...,({)))((('0

b

n

a

b

ba

b

a

bab tFtFTMEF =

)),((
?

ba

a TTISNUM≥δ

),(ba
TTIS

)),((
?

ab

b TTISNUM≥δ

),(ab
TTIS

)}(),...,({)))((('0

b

n

a

b

ba

b

a

bab tFtFTMEF =)}(),...,({)))(((0

a

n

b

a

ab

a

b

bba tFtFTMEF =

Fig. 9. ECC-based PSI protocol in PPIM.

The SH protocol is illustrated in Fig. 10. A matched pair of Alice and Bob both

have a common attribute set contained in IS(T
a
, T

b
) and IS (T

b
, T

a
), but neither of them

can tell if the PSI transaction was done with Mallory, i.e., the “man in the middle”

adversary. If Mallory is actively engaged with other parties to complete PSI transactions

without subsequent authentication, she could focus on collecting attributes as a form of

intelligence gathering using numerous bogus accounts.

83

a
ic

aT bT
a

ic

b

j
c

aTbT
b

jc

)(
a

ia cw)(b

jb cw

)(b

jb cw)(
a

ia cw

)(a

ia cv)(b

jb cv

)(b

jb cv
)(a

ia cv

)()(
?

b

jb

a

i

b

a cvcv =)()(
?

a

ia

b

j

a

b cvcv =

abk

aT bT aTbT

bak

a

iID

a
iID

b

jID

b
j

ID

)()(b

jb

a

i

b

a cvcv =)()(a

ia

b

j

a

b cvcv =

Fig. 10. ECC-Based SH protocol in PPIM.

If Mallory is only eavesdropping, she cannot decipher the attributes, and

therefore does not know IS(T
a
, T

b
), nor IS (T

b
, T

a
), but she could become active at end of

the PSI protocol and to impersonate both Alice/Bob for subsequent communications.

The SH is designed to eliminate such a possibility by using IS(T
a
, T

b
) (for Alice) and IS

(T
b
, T

a
) (for Bob) as inputs to the SH protocol to prove that (1) they both are affiliated

with the same group, and (2) they have the same intersection. Furthermore, at

completion of the SH step, they can derive a common value which can then be used to

produce a session key for their subsequent private communications. If group

84

membership is not a critical concern, the SH can be used as a “confirmation protocol”,

where the PSI outcome is directly used as the “credential issued by GA” to prove the

equality of IS(T
a
, T

b
) and IS (T

b
, T

a
) affirmatively. Neither Bob nor Alice will unveil

IS(T
a
, T

b
) or IS (T

b
, T

a
) to each other if the SH produces a negative outcome. The

detailed of the interlocked SH protocol was presented in Section IV. B and is omitted

here.

Computing cost is an important issue which directly affects consumers’

acceptance of new technologies. We will first briefly summarize the computing

complexity of the propose scheme, and then will present experimental results of our

prototypes. Knowing that they have much higher computing costs than other operations

[86], we use the number of the point multiplications T(P) and mappings T(M) to estimate

the performance of PPIM. For two users both with n attributes, it takes (n + 1) mapping

operations to transform n attributes to their corresponding elliptic curve points. It takes

(n + 2) point multiplications to encrypt them. It takes [(n + 1)
2
 + 1] point

multiplications and (n + 1) mappings to modify n ciphertexts. It needs (n + 1) point

multiplications to decrypt the modified ciphertexts to get the matching outcomes. The

total cost of the PSI protocol is O(PSI) ≈ 2(n + 1)T(M) + [(n + 1)
2
 + 2n + 4]T(P) ≈

O(n)T(M) + O(n
2
)T(P). The only major computing cost of SH is computing of Tate

paring, and our secret handshake for the authentication of one credential needs 2

computations of pairing. The communication cost, or the total message size is

proportional to number of the input attributes, or O(n).

85

We consider the following attacks in the open networking environment: (1)

active attacks that aim at compromising the authenticity of a user’s private information,

e.g. impersonation; (2) passive attacks that aim at compromising confidentiality of a

user’s private information, e.g. eavesdropping. We also consider two kinds of

adversaries: outsider adversaries and inside adversaries. An outsider adversary does not

know any of the roles in matching, nor does it have any knowledge about the user’s

private information. An inside adversary is a malicious user that participates in the PSI

and SH protocols with some other user. We claim that our PPIM holds the security

properties (P1 to P5) given the adversary model and attack model.

The PPIM solution focuses on preserving privacy for social matching process.

That is, it is not intended to solve every security problems. Some attacks to our proposed

system are possible. Here, we discuss some of these possible attacks and corresponding

solutions. (1) Denial-of-Service attack: in this attack, a malicious user may launch

arbitrary huge number of matching requests to other users, so that other users’

computation and communication resources may be misused, like the effect of any DoS

attack. A practical solution to this attack is to set a limit on the number of matching

request from a single user to another one in a time window. (2) Absolute-Matching

Attack: an attacker A may input all possible values of attributes into another user B’s

requesting ciphertexts such that user B will always find matching attributes and consider

A as a matching partner. One of the simple solutions is that our PPIM imposes a limit on

the number of modified ciphertexts returned by A according to B’s number of encrypted

86

attributes, e.g., the number of encrypted attributes and the number of returned modified

ciphertexts must be same or their difference is within a small range.

To demonstrate the utility of the PPIM service, we developed a patient support

community called “PatientMatch”, using Facebook as the SNS. The objective of the

PatientMatch prototype is to form a supporting group among qualified constituents

(patients, social workers, etc), for a particular type of health conditions (chronic illness,

substance abuse, etc) to simulate the type of services provided in [78], but keep other

people out of the group. Detail of the evaluation of PPIM is presented in Appendix B.

B. PRIVACY-PRESERVING CORRELATION OF NETWORK SECURITY ALERTS

Alert correlation refers to the process of identifying the true nature of an attack

by discovering common (matched) attacking information from alerts generated from

security tools deployed at different networks. Most basic alert attributes, e.g., IP

addresses, packet payloads (which may contain user accounts, pin numbers), etc. are

considered sensitive information [8][21]. Unrestricted sharing of (local) alerts may lead

to malicious mining of network vulnerabilities [6][8][88], litigation, or even stealing of

business secrets. In the mean time, matched alerts should be unveiled to involved parties

to determine global attack information, but other unmatched local information should be

protected. With the rapid growth in scales, speed, and sophistication of network attacks,

there is a pressing need to develop useable tools for collaborative network administrators

to correlate their local alerts to discover common attacks while protecting their privacy,

i.e., privacy-preserving alert correlation schemes.

87

The majority of previous privacy-preserving alert correlation schemes

[6][12][13][14]perform alert correlation using sanitized (e.g., hash, content

generalization, etc) less sensitive data (e.g., source IPs), after sensitive alert data are

removed. This approach often misses out the most critical information for recovery of

developing situations yet is still vulnerable to dictionary attack [7], which is considered

an important privacy threat for alert correlation [7][22]. Some alert correlation services

are available for public access [89][90]. In these services, a central server collects alerts

and publishes correlation results. Again, for privacy protection, users need to first

remove sensitive information from their alerts before submitting them to the server.

Moreover, in this architecture the adversary can use the server to launch probe-response

attack and mapping attack [6][7], in order to identify the defense ability/vulnerability of

targeted networks.

Private set intersection (PSI) (e.g., [24][32]), and secure multi-party computation

(SMC) (e.g.,[41][42]) are two major types of crypto algorithms that allow users to use

any sensitive data for privacy-preserving alert correlation. Through these algorithms

users can know either (1) they have the same contents, or (2) they have unmatched

contents without gaining any other information from other users. Numerous algorithms

have been proposed for PSI and SMC, yet the cost of most of them is still considered too

high (e.g., O(n2) crypto operations for PSI [24][32]) to be practical for large scale alert

correlation applications [23][91].

How to guarantee privacy protection and make accurate alert correlation at low

computing cost remains a major open problem [7][22]. As such, the design criteria of an

88

alert correlation tool should have (1) guaranteed protection of privileged data, (2)

accurate reflection of attack states from as many types of alert attributes as possible, (3)

acceptable computing costs, (4)compatible with the distributed administration

architecture of the Internet, and (5) ease of creating new applications.

We propose two cryptographic protocols for a privacy-preserving alert

correlation (PAC) system to meet these five challenges. The first proposed is the linear

PSI protocol (Protocol II) proposed in Section III. C. It is designed for privacy-

preserving computing of the intersection of two sets of records for formatted attributes,

i.e., attributes (IP addresses, port numbers, etc.) in unified formats. We will call the

records that belong to a particular attribute “attribute records”. For instance, Alice may

want to inquire Bob “Which of these (source) IPs in my alerts also appear in your

alerts?” Through Protocol II, both Alice and Bob can confirm the set of common IPs,

and no other information related to the unmatched ones can be inferred from any of the

exchanged messages. Existing PSI schemes would either use polynomial evaluation

[24][32], or the bit-by-bit oblivious transfer (OT) [27] to find the intersection. On the

other hand, Protocol II can perform matching through comparison of encrypted attribute

records. A distinct feature of Protocol II is its linear computing cost for crypto

operations (homomorphic encryption/decryption) with respect to the number of input

records.

As the first of its kind, we also propose a new protocol (Protocol VI) that

supports privacy-preserving computing of the longest common sub-string (LCS) of two

records of a particular string attribute (e.g., captured payloads). The length for any

89

record of a string attribute is bounded but arbitrary. Computing of the LCS of multiple

suspected payloads can generate common contents (e.g., matched detection signatures of

malwares) while remove local network information (unmatched contents). In Protocol

VI, a variable-length string is first split into a set of concatenated, fixed length blocks.

The LCS of the two strings is privately computed using the combination of Protocol II

and location protection functions (crypto randomization and ciphertexts shuffling) on

these blocks.

Both schemes are immune from passive attacks (e.g., dictionary attack) due to

the well known elliptic curve discrete logarithm problem (ECDLP) [45] (design

criterion 1). Accurate correlation results can be directly obtained for many types of

attributes (design criterion 2). The proposed protocols have linear crypto computing

complexity O(n). It takes 1 second (2 minutes) for our scheme to match between two

sets of 100 (10k) records on a 2GHz Intel Xeon-based computer (design criterion 3). In

comparison, it took required 213 seconds [23][26] for the original PSI algorithm [24],

whose crypto computing complexity is (O(n
2
)), to match between two sets of 100

records on a 3 GHz Intel Xeon-based computer. To meet the design criteria 4 and 5, at

the network level PAC is based on a loosely coupled distributed architecture consisting

of a PAC communicator and multiple PAC clients. Being a pair-wise matching

architecture, PAC does not suffer from probe-response attacks and mapping attacks of

the centralized correlation architecture.

PAC is the first of its kind that directly obtains true state information of attacks

from the alert correlation process with guaranteed privacy protection against semi-honest

90

adversary. It has among the lowest computing costs for this level of privacy protection.

No published privacy-preserving alert correlation solution has achieved the same level of

correlation accuracy, privacy protection, and computing costs simultaneously.

Protocol II follows the homomorphism based private set matching model initially

proposed in [24], but it has one order lower of computing complexity, i.e., O(n), for

crypto operations, than the polynomial evaluation technique in [24], i.e., O(n
2
). Our

Protocol VI is the first privacy-preserving LCS computing scheme with guaranteed

privacy protection against semi-honest adversary.

PAC is designed for two well-behaved users (e.g., network administrators) to

find (1) the intersection of two sets of attribute records, (2) the LCS of two records of

any string attribute. Privacy preservation is guaranteed in PAC, i.e., all unmatched

elements remain secret. All the records used in correlation process are assumed to be

genuine, and verification of the authenticity of alert data is beyond the scope of this

research. PAC is designed to resist passive attacks launched by honest-but-curious (i.e.,

semi-honest) adversary, but it is not designed to defend against active attacks, e.g.,

forging of alert records, traffic interception, etc.

Matching of alert records across networks can produce useful wide-area attack

information. For instance, correlation of IP addresses can help discovering attack

topologies. Matching of source IPs in alerts (on different networks) can help discovery

of a common attacker. In this case, networks generating these alerts may be targets of a

same attack. On the other hand, we can detect a common attack victim by matching of

the destination IP addresses originated from different networks. Alert correlation can

91

also help detection of attack chains (e.g., stepping-stone attacks), which refer to

coordinated use of multiple hosts across different networks to hide trails of attacks.

Traditionally, it often requires extensive coordination of network administrators across

networks to manually filter and exchange data to capture the stealthy traffic. On the

other hand, with the help of PAC network administrators can match source and

destination IPs of detection alerts to discover the adjacent nodes of an attack chain,

without the concern of unveiling any other unrelated (local) information. Fragment

information can then be aggregated to reveal the global topology of the attack chain.

LCS based matching can be used for discovery of common content of raw

packets, worms/bots signatures already generated by tools (e.g., Autograph [92]) within

local networks, etc. Computation of the LCS from signatures across two networks gives

more accurate, more global worms/bots signature by elimination of substrings likely

related to local information.

The architecture of a PAC system is illustrated in Fig. 11(a). The PAC

communicator serves as a community portal for participants to identify correlation

partners using common tools such as instant messenger, email, posting, etc. Once two

users agree to correlate their alerts, they can use the communicator to first settle the

syntax, types, formats, and other information for the alert contents to be correlated. Then,

all private computing functions are performed on client tools that run on the host

machines of users.

The PAC client is consisted of three major modules: an alert parser, a privacy-

preserving matching engine (PPME) and an alert correlator (AC), see Fig. 11(b). The

92

alert parser extracts and format alert records from raw alerts generated from any local

alerting tools. The PPME takes the attribute records as inputs and interact with other

PPMEs to match them. Let LA(LB) denote alerts owned by Alice (Bob), generated from

her(his) local alerting systems. They are fed to the alert parser to extract a set of attribute

records A = (a1, a2, …, an) (B = (b1, b2, …, bm)). Let C={c1, c2, … ck} denote the

intersection of A and B. The objective of Protocol II in PPME is for Alice and Bob to

identify C, but nothing else, provided that A and B are in the same format. Protocol VI in

PPME is for Alice and Bob to privately compute the LCS of their input strings SA and SB,

without unveiling any other (unmatched) parts in SB(SA) to each other. The matching

outcomes are then fed to the alert correlator to report the final correlation results.

local alerting tools

(IDS , IPS, signature generation tools, honeynet, firewall, etc)

privacy-preserving matching engine

(Scheme I, Scheme II)

 attack patterns

(common attackers/victims, attack

chains, etc)

 common attack contents

matched attribute records or LCS

alert parser

alert correlator

formatted or string attribute records

(b)

PAC

Communicator

PAC client

PAC client

(a)

Fig. 11. (a) The PAC system architecture (b) Major modules of a PAC client.

93

The general workflow of PPME for Protocol II is summarized as follows. First,

the PPME of Alice uses an encryption function E to map hashed attribute records into

ciphertexts, and sends them to the PPME of Bob. The PPME of Bob uses a modification

function M to create a new ciphertext by bundling the received ciphertexts with his own

attribute records, and then returns it back to the PPME of Alice. This way, the PPME of

Alice can use a decryption function D to compute the matched attribute records of Alice

and Bob from the modified ciphertexts. For Protocol VI additional steps are required to

calculate the LCS. The terms E (encryption) and D (decryption) are drawn from the

naming convention of private set intersection literatures, e.g., [24]. They can be

conceptualized as a form of public-private key encryption-decryption chain, except that

we obtain the Yes-No results (i.e., two records are identical or not) at end of the process.

In this section we present details of Protocol VI in PPME. We note that the

design of Protocol II is based upon the second private set intersection protocol proposed

in Section III. C. Protocol VI is designed for Alice and Bob to compute the LCS of

strings SA and SB, separately owned by them. It is consisted of three phases. In the first

phase, it is used to discover common short sub-strings. In the second phase, some

(protected) position information of matched short sub-strings is revealed to each other.

Finally, longer common sub-strings can be discovered, until the longest common sub-

string is found.

In the first phase Alice and Bob agree upon a parameter l, so that both SA and SB

are broken into two sets of l-grams L(SA) and L(SB), respectively. This implies that n-

grams whose lengths shorter than l are not considered. In the second phase, positions of

94

matched l-grams are privately computed for discovery of all possible common sub-

strings, without explicit unveiling of these positions. These positions can be

compromised under two conditions: (1) multiple unlinked shorter sub-strings of a user

could be used to infer a longer sub-string of the other user, or (2) vice versa. We

eliminate these problems by adding randomly generated “faked sub-strings” (or, faked

ECC points in our design), such that the protected sub-strings cannot be exhaustively

matched by other unlinked shorter sub-strings or a longer sub-string. A randomization

function R is responsible for generation of those faked points. In the mean time, the

randomization should still allow Alice and Bob to discover their adjacent matched l-

grams within a few rounds of interactions. Selection on the number of faked points is

based on the balance between protection of location information and computing cost. In

the third phase, Alice (Bob) generates all possible sub-strings based on her (his)

common, sequenced l-grams. These sub-strings are used for matching by Protocol II to

discover the longest common sub-string. Next, we introduce more details about the three

phases, and then formally summarize the scheme.

In the first phase, Alice and Bob determine a set of matched l-grams L(C) = {c1,

c2, … cw} between L(SA) and L(SB) using Protocol II. In the second phase Alice (Bob)

first enumerates all sub-strings, UA = {α1, α2, …,αn’} (UB = {β1, β2, β3, …,βm’}) that can be

generated by concatenation of some adjacent ck in LA(LB). Any record in UA(UB) is

removed if it is a sub-string of some other longer string in UA(UB). Next, ∀ αi∈ {α1,

α2, …,αn’}, Alice generates l-grams L(αi) = {ai1, ai2, …}. The set of all the l-grams

generated based on UA is denoted as L(UA) = {L(α1), L(α2), …, L(αn’)}. For each L(αi) =

95

{ai1, ai2, …} ∈ L(UA), Alice invokes E of Protocol II to get E(L(αi)) = {E(ai1), E (ai2), …}.

Then ∀ E(L(αi)) ∈ {E(L(α1)), E(L(α2)), …, E(L(αn’))}, Alice generates randomized-

shuffled ciphertext R(E(L(αi)), by inserting random ECC points to E(L(αi)) and then

shuffling their order.

The set of randomized-shuffled ciphertexts is denoted as R(E(L(UA)) =

{R(E(L(α1))), R(E(L(α2))), … , R(E(L(αn’)))}. Then Alice transforms it into R(E(L(UA))’

by inserting an infinite point O of E between every two entries in R(E(L(UA)) (i.e., use O

as a symbol to separate every two entries in R(E(L(UA))). Following a similar procedure,

Bob also generates L(UB) = { L(β1), L(β2), …, L(βm’)} and R(E(L(UB))’. Alice and Bob

then exchange R(E(L(UA))’ and R(E(L(UB))’.

With L(UA) and R(E(L(UB))’ as its inputs, Alice generates M{L(UA), R(E(L(UB))’}

by the modification function M of Protocol II. In the process, the randomization and

shuffling and insertion functions mentioned above are also employed. Bob also

generates M{L(UB), R(E(L(UA))’} following a similar procedure. Alice and Bob then

exchange their modified ciphertexts M{L(UA), R(E(L(UB))’} and M{L(UB), R(E(L(UA))’}.

Then Alice (Bob) can use D to find L(UC), which denotes the common l-grams between

L(UA) and L(UB) with adjacent positions in UA(UB). In the last phase, Alice (Bob)

generates all possible sub-strings based on L(UC) and UA(UB). These sub-strings are used

for matching by Protocol II to discover the longest common sub-string.

During execution of E and M, Alice/Bob can protect location information of

ciphertexts or modified-ciphertexts by insertion of random ECC points generated by R.

For example, in Protocol II when Alice encrypts A to get E (A) = [E(a0), E(a1),…, E(an)],

96

she could call R to generate additional 2s points and attach them with the real ciphertexts,

i.e., R(E (A)) = [E(a0), E(a1),…, E(an), E(a’0), E(a’1),…, E(a’s)], where s is a chosen large

integer, ∀ i ∈ [0, s], E(a’i) = [E(a’i)f, E(a’i)b]= (rAQ, Pi), Pi is a randomly generated

faked point. R guarantees that Bob cannot tell whether or not a point represents a real

attribute record, or a faked point. The detail of Protocol VI is introduced as follows.

Protocol VI. Privacy-Preserving LCS Computation

Input: Alice’s string SA, Bob’s string SB, shortest sub-string length l, and all other

security parameters presented in Protocol II

Output: the longest common sub-string LCS between SA and SB

(1) Alice: generate L(SA) from SA

(2) Bob: generate L(SB) from SB

(3) Alice ↔ Bob: Alice and Bob implement Protocol II to find L(C) = {c1, c2, … cw},

the matched records of L(SA) and L(SB)

(4) Phase 2

(5) Alice: generate plaintexts L(UA) and ciphertexts R(E(L(UA))’ by taking the

following steps: generate sub-strings UA = {α1, α2, …,αn’}, ∀ αi ∈ UA, αi is

generated from the concatenation of some ca0, ca1, …, ∈ L(C), where ca0, ca1, …

are adjacent in SA. ∀ αi ∈ UA, αi is removed from UA if there is another αi’ ∈

UA ,αi ιs a substring of αi’ for αi= α1 to αi= αn’, generate l-grams L(αi)= {ai1,

ai2, …}, the set of all the l-grams of UA is denoted by L(UA) = {L(αi), L(α2), …,

L(αn’)}. For L(αi)= L(α1) to L(αi)= L(αn’)’ suppose L(αi) = ai1, ai2,…, , encrypt

ai1, ai2,… to generate E (ai1), E (ai2),… to get E(L(αi)) = {E (ai1), E (ai2)…}. For

97

E(L(αi)) = E(L(α1)) to E(L(αi)) = E(L(αn’)), call R to add random points into

E(L(αi)) and then shuffle the order of entries in E(L(αi)), the randomized-

shuffled ciphertexts is denoted by R(E(L(αi)). Generate R(E(L(UA)) =

{R(E(L(α1)), R(E(L(α2)), … , R(E(L(αn’))} and transform it into R(E(L(UA))’ by

inserting an infinite ECC point O between every two entries in R(E(L(UA))

(6) Bob: generate L(UB) and R(E(L(UB))’ following the same steps as Alice

(7) Alice ↔ Bob: exchange R(E(L(UA))’ and R(E(L(UB))’

(8) Alice: compute M(L(UA), R(E(L(UB))’), invoke R and shuffling and insertion

function during the modification process, send M(L(UA), R(E(L(UB))’) to Bob

(9) Bob: compute M(L(UB), R(E(L(UA))’) and send it to Alice following the same

procedures

(10) Alice: compute D(M(L(UA), R(E(L(UB))’)), discover all matched l-grams L(UC) =

{c0’, c1’, …} and record possible position information, i.e., for any ci, ci’∈ L(UC),

(a) ci, ci’∈ L(αi) & ci, ci’∈ R(E(L(βj)), where L(αi) ∈ L(UA) and R(E(L(βj)) ∈

R(E(L(UB))’; (b) ci, ci’ have adjacent positions in αi

(11) Bob: discover matched l-grams using a similar confirmation test

(12) Phase 3

(13) Alice: generate possible sub-strings based on the common, sequenced l-grams in

L(UC), execute Protocol II with Bob to find the matched sub-string with the

longest length

(14) Bob: find the matched sub-string with the longest length following the same

procedures

98

The crypto computing complexity of Protocol VI is that of Protocol II, plus the

additional costs required for randomization and shuffling. Both the parameter l and the

length of the LCS are important parameters that affect the running time of Protocol VI.

For example, if two input strings have no LCS, then only Phase 1 will need to be run, i.e.,

only one round of matching between two sets of l-grams is required. On the other hand,

when two input string have some identical substrings, it is necessary to devise a

proportional number of steps for shuffling and randomization (faked points).

In this section we present the proof of the security properties for both schemes.

In our design we consider passive attacks that aim at compromising confidentiality of

sensitive information by analyzing transmitted messages, e.g., dictionary attack. We also

consider both outside adversary and inside adversary: an outside adversary does not

participate in the matching process and knows nothing, an inside adversary participates

in a matching process who may have some matched records with the targeted victim and

try to discover other unmatched records owned by the victim.

Based on the adversary model and attack model introduced above, Protocol II

holds Private Set Intersection and Record Confidentiality, Protocol VI holds String

Confidentiality and Partial Sub-String Confidentiality. (1) Record Confidentiality: either

an outside or inside polynomial-time adversary cannot learn what attribute records a peer

owns or what matching results two peers obtained by launching any passive attack, if

this adversary does not own the same records. Suppose Alice has a set of records A. If ai

∈ A and Bob does not have ai, Bob cannot learn ai by launching any passive attack. This

property holds since in Protocol II large random numbers are used to multiply records to

99

generate encrypted records and they are then associated with a fixed ECC point, e.g.,

(rA1ai + rA2)QA. We claim that record ai cannot be deduced from (rA1ai + rA2)QA by any

passive attack because rA1 and rA2 are large enough to guarantee the ECDLP. (2) Private

Set Intersection: matching peers only discover matched records in the intersection set of

their inputs. This property is guaranteed by our matching scheme. Suppose Alice has set

A and Bob has set B. They did matching process with each other and found their

intersection SIAB. If record ai ∈ A and ai ∉ SIAB, Bob cannot learn ai by launching any

passive attacks and vice versa. The property holds also because all records are encrypted

in a format that guarantees the ECDLP and the detailed analysis is omitted here.

Since Protocol VI is built upon Protocol II, outsiders cannot compromise a user’s

privacy by eavesdropping transmitted messages, i.e., String Confidentiality is guaranteed.

But for malicious insiders, Protocol VI only holds partial confidentiality, named as

Partial Sub-String Confidentiality. (3) String Confidentiality: an outside adversary

cannot learn what input string a peer owns or what results (the longest common sub-

string) two peers obtain. Based on the hardness of ECDLP, any polynomial-time outside

adversary, cannot compromise string confidentiality without compromising the string

owners. In Protocol VI input strings are processed as l-grams, e.g., L(i)= {ai1, ai2, …}.

All these l-grams are matched and transmitted in encrypted format by using Protocol II

as the building block. So if Record Confidentiality holds in Protocol II, String

Confidentiality also holds for the same reason. (4) Partial Sub-String Confidentiality: an

inside adversary cannot learn what sub-strings a peer owns if the insider does not have

the same sub-strings. Depending on the randomization function R, the adversary may

100

know what sub-string a peer possibly has if he owns the l-grams that can comprise the

substring. That is, if the matched l-grams comprise same sub-strings on both the user’s

and adversary’s side, the adversary will learn this fact; otherwise, the adversary will only

know that the user might have the sub-string due to the randomly inserted faked points

from R. For example, if Alice calls R to add faked points into E(A), she gets R(E (Ai)) =

[E(a1), E(a2),…, E(an), E(a’1), E(a’2),…, E(a’s)]. Here we assume that each record in A

represents a l-gram. Since each E(a’i) = [E(a’i)f, E(a’i)b]= (rAQ, Pi) represents a faked

encrypted l-gram, where Pi is a randomly generated faked point, even if the first n real l-

grams are matched, the adversary only has a small probability to discover the

corresponding sub-string by combining them in right sequence from the whole (s + n) l-

grams.

A prototype of PAC has been implemented and evaluated it using real alerts from

IDS tools such as Snort, worm signature generation tools such as Autograph [92], and

network traces collected from a real-world honeynet as its inputs. We used PAC to

correlate the alerts for novel applications such as privacy preserving discovery of global

attacks, common victims, attack chains, and generation of common malware (e.g.,

worms/bots) signatures. The software prototype is available at

http://creat.tamu.edu/alertcorrelation/. More detail of the evaluation of PAC is presented

in Appendix C.

The related work is in three different areas: privacy-preserving alert correlation,

alert correlation/aggregation and related cryptographic schemes.

101

Privacy-Preserving Alert Correlation: One of the first privacy-preserving alert

sharing techniques was proposed in [6], which was based on a set of sanitization

techniques to hash external IP addresses for matching. It implemented keyed hash

functions to encrypt internal IP address and removed other sensitive parts of alerts, e.g.,

captured and infected data, for privacy protection. The simple and efficient technique

supported a few correlation functions. It was vulnerable to dictionary attack. Hash-based

sanitization technique was also implemented in [12] to achieve privacy-preserving

collaborative intrusion detection based on a P2P networking model. N-gram signature

and Bloom filter n-gram signature [13] were proposed for payload-based correlation,

which also only supported limited correlation utilities. Another sanitization technique

[14] was proposed to generalize sensitive parts of alerts to high-level abstraction, e.g.,

uncertainty, to be incorporated into the data while retaining partial semantics. The

approach was applied to IP addresses and time stamps to discover possible causal

relations between attacks. It achieved correlation results on other parts of alerts besides

IP addresses, with moderate security support. A semi-centralized architecture was

proposed in [23], in which a proxy blinded user inputs and a server identified the blinded

keywords by some evaluation function. A survey of previous attempts at privacy-

preserving log sharing techniques was presented in [8], e.g., prefix-preserving IP

pseudonymizer [93], pseudonym technique [94], packet anonymizer [95] and secure

auditing technique [96]. Currently there are some real Internet log and data collection

centers such as the Internet Storm Center (ISC) [89] and DShield.org [90]. Most of them

102

are focused on providing centralized applications with good performance, and privacy

protection is not their primary concern.

 Alert Correlation /Aggregation: Many techniques have been proposed for

plaintext alert correlation to discover more attack information. A formal data model was

proposed IDS alert correlation in [97]. A decision-theoretic alert fusion technique [98]

was proposed to improve the performance of combination of diverse intrusion detectors.

Another approach [99] was presented to construct attack scenarios by correlating alerts

based on the prerequisites and consequences of intrusions. In [100] a tool was proposed

to perform real-time alert verification. Another alert aggregation and correlation

algorithm [101] was presented to discover a more condensed view of alerts. All these

alert correlation techniques require matching of certain (plaintext) attributes, and our

technique can be viewed as a supporting tool when privacy protection is a major concern

for distributed alert collaborators.

 Related cryptographic schemes: Most of the related have been discussed in

Section III. The main reason that there have not been any practical privacy-preserving

alert correlation tools is because that the high computational complexity of most

previous PSI or SMC protocols are major hurdles for their practical use in correlation of

large volume of inputs [23][91].

103

VII. SUMMARY

The objective of this research work is to develop a general framework for design

of efficient and secure privacy-preserving element matching and credential

authentication protocols, and implement the protocols on various Internet applications

with privacy protection requirement. While most existing cryptographic

protocols/algorithms face challenges of poor efficiency, high computing costs, and

inadequate security protections for different kinds of critical Internet application with

high security and performance requirement, we proposed two private set intersection

(PSI) protocols with linear computing and communication costs, an unlinkable secret

handshake (SH) protocol with reusable credential and least communication cost, and

interlocked protocols with new security properties. The proposed protocols were also

implemented to design a privacy-preserving inquiry matching system for online social

applications and a privacy-preserving alert correlation system for collaboration of

different sources of network alerts.

A general framework was presented to illustrate the mathematical basis under

privacy-preserving element matching and credential authentication protocols. A

homomorphic randomization function was proposed to meet the conflicting goals:

matched (verified) elements (credentials) are computed through homomorphism, while

unmatched (unverified) elements (credentials) are protected through randomization.

Based on the function we presented common requirement between PSI and SH protocols,

and the three common phases of PSI and SH protocols: Protocol Initialization phase,

Secret Matching phase and Result Computing phase. In addition, the general attack

104

model and adversary model for both PSI and SH protocols were introduced in this

dissertation.

PSI protocols are used for privacy-preserving element matching. The existing

PSI solutions have O(n
2
) or O(nL) computing cost, where n is the number of elements

and L is the average bit length of an element. Based on the general framework we

proposed two new PSI protocols with linear computing cost O(n). The first protocol uses

full homomorphic randomization function as the cryptographic basis, and achieves

element confidentiality and private set intersection in honest-but-curious adversary

model with linear computing cost. The second protocol uses partial homomorphic

randomization function as the cryptographic basis. Besides element confidentiality and

private set intersection, the second protocol is also more secure against malicious attacks

like falsification.

SH protocols are used for privacy-preserving credential authentication. The

existing SH solutions either requires a large number of pairs of single-use credentials

and pseudonyms or 6 bilinear mapping operations to achieve unlinkability, which is one

of the most important security properties of SH protocols. Based on the general

framework we proposed a new SH protocol that achieves unlinkability with a reusable

pair of credential and pseudonym. Our solution only requires 2 bilinear mapping

operations. In our design a party directly chooses random numbers and associates them

with his pseudonym to minimize the correlation between his credentials and

pseudonyms.

105

Based on the proposed framework we proposed to interlock PSI protocols and

SH protocols to design two protocols with new security properties. In the first protocol a

PSI protocol is executed first and then the matched elements are associated with the

credentials in a following SH protocol. The first interlocked protocol guarantees

authenticity on matched elements. In the second protocol a SH protocol is executed first

and then the pairwise session key and verified credentials are utilized in a following PSI

protocol. The second interlocked protocol guarantees detection resistance and

impersonation attack resistance on matching elements.

We implemented the proposed PSI and SH protocols to provide privacy-

preserving inquiry matching service (PPIM) for social networking applications and

privacy-preserving correlation service (PAC) of network security alerts. In PPIM a

system based on an end-user privacy control model is built, in which online social

service consumers first use non-privileged information to discover potential candidates

and then engage in PPIM transactions with the candidates to exchange encrypted

inquiries. The proposed PSI protocol is called in PPIM for matching of (encrypted)

inquires and the proposed SH protocol is called in PPIM for verification of group

memberships (credentials). In the end only the owner and her peer with matched

inquiries and group memberships can know the real transaction contents, but not any

other users, including our PPIM server. In PAC a system is built to correlate network

security alerts between semi-honest users. Two different protocols based on the

homomorphism of the elliptic curve cryptosystem (ECC) are implemented for PAC. The

first protocol is the proposed partial homomorphism based PSI protocol, which is

106

implemented for privacy-preserving matching of alerts with known formats, e.g., IP

addresses, port numbers, etc. Expanding from the matching protocol, the second

protocol is designed for privacy-preserving computation of the longest common sub-

string (LCS) between two input strings, which is used for generating common contents

of captured malware/intrusion payloads.

107

REFERENCES

[1] R. Gross, A. Alessandro, and H. Heinz, “Information revelation and privacy in

online social networks,” in Proc. ACM Workshop on Privacy in the Electronic

Society, Nov. 2005, pp. 71-80.

[2] S. Guha, K. Tang, and P. Francis, “NOYB: privacy in online social networks,” in

Proc. WOSN, Aug. 2008, pp. 49-54.

[3] M. Chew, D. Balfanz, and B. Laurie, “(Under)mining privacy in social networks,”

in W2SP workshop, May 2008, pp. 45-49.

[4] A. Korolova, R. Motwani, S. Nabar, and Y. Xu, “Link privacy in social networks,”

in Proc. ICDE, Oct. 2008, pp. 1355-1357.

[5] M. M. Lucas and N. Borisov, “flyByNight: mitigating the privacy risks of social

networking,” in WPES workshop, Oct. 2008, pp. 1-8.

[6] P. Lincoln, P. Porras and V. Shmatikow, “Privacy-preserving sharing and

correlation of security alerts,” in Proc. USENIX, 2004, pp. 239-254

[7] P. Porras and V. Shmatikov, “Large-scale collection and sanitization of network

security data: risks and challenges,” in NSPW workshop, Sep. 2006, pp. 57-64.

[8] A. Slagell and W. Yurcik, “Sharing computer network logs for security and

privacy: a motivation for new methodologies of anonymization,” in Proc.

SECOVAL, Sep. 2005, pp. 80-89.

[9] J. Bethencourt, J. Franklin and M. Vernon, “Mapping Internet sensors with probe

response attacks,” in Proc. USENIX Security Symposium, 2005, pp. 193-208.

[10] R. Wang, X. Wang, Z. Li, H. Tang, M. Reiter and Z. Dong, “Privacy-preserving

genomic computation through program specialization,” in Proc. CCS, Nov. 2009,

pp. 338-347.

[11] R. Wang, Y. Li, X. Wang, H. Tang and X. Zhou, “Learning your identity and

disease from research papers: information leaks in genome wide association

study,” in Proc. CCS, Nov. 2009, pp. 534-544.

[12] M. Locasto, J. Parekh, A. Keromytis, and S. Stolfo, “Towards collaborative

security and P2P intrusion detection,” in Proc. IEEE Information Assurance

Workshop, Jun. 2005, pp. 333–339.

108

[13] J. J. Parekh, K. Wang, S. J. Stolfo, "Privacy-preserving payload-based correlation

for accurate malicious traffic detection," in Proc. SIGCOMM Workshop on Large

Scale Attack Defense, 2006, pp. 99-106.

[14] D. Xu and P. Ning, “Privacy-preserving alert correlation: a concept hierarchy

based approach,” in Proc. Computer Security Applications Conference, Dec. 2005,

pp. 537-546.

[15] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and mechanism

design,” in ACM Conf. on Electronic Commerce, 1999, pp. 129-139.

[16] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in Proc. ACM

SIGMOD, 2000, pp. 439–450.

[17] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information

retrieval,” Journal of the ACM, vol. 45, no. 6, pp. 965-982, 1998.

[18] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for genomic

computation,” in Proc. IEEE Symposium on Security and Privacy, May 2008, pp.

216-230.

[19] A. Leung and C.J. Mitchell, “Ninja: non identity based, privacy preserving

authentication for ubiquitous environments,” in Proc. International Conference on

Ubiquitous Computing, 2007, pp. 73–90.

[20] L. Lu, J. Han, L. Hu, Y. Liu, and L. M. Ni, “Dynamic key-updating: privacy-

preserving authentication for RFID systems,” in Proc. Pervasive Computing and

Communications, Mar. 2007, pp. 13–22.

[21] P. Porras and V. Shmatikov, “Large-scale collection and sanitization of network

security data: risks and challenges,” in Proc. New Security Paradigms Workshop,

Sep. 2006, pp. 57-64.

[22] W. Du and M. J. Atallah, “Secure multi-party computation problems and their

applications: a review and open problems,” in Proc. New Security Paradigms

Workshop, Sep. 2001, pp. 11-20.

[23] H. Ringberg, B. Applebaum, M. J. Freedman, M. Caesar and J. Rexford,

“Collaborative privacy-preserving data aggregation at scale,” in Cryptology ePrint

Archive, Report 2009/180, 2009.

[24] M. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and set

intersection,” in Proc. EUROCRYPT, May 2004, pages 1-19.

109

[25] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong, “Secret

handshakes from pairing-based key agreements,” in Proc. IEEE Symposium on

Security and Privacy, May 2003, pp.180-196.

[26] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Mazieres, and H. Yu, “RE:

reliable email,” in Proc. NSDI , May 2006, pp. 297-310.

[27] C. Hazay and Y. Lindell, “Efficient protocols for set intersection and pattern

matching with security against malicious and covert adversaries,” in Proc. TCC,

Mar. 2008, pp. 155-175.

[28] G. Ateniese and M. Blanton, “Secret handshakes with dynamic and fuzzy

matching,” in Proc. NDSS, Feb. 2007, pp. 159-177.

[29] “Facebook.” Available: http://www.facebook.com/

[30] “Snort.” Available: http://www.snort.org/

[31] H. Kim and B. Karp, “Autograph: toward automated, distributed worm signature

detection,” in Proc. USENIX Security Symposium, Aug. 2004, pp. 271-286.

[32] L. Kissner and D. Song, “Privacy-preserving set operations,” in Proc. Advances in

Cryptology-CRYPTO, Aug. 2005, pages 241–257.

[33] J. Camenisch and G. M. Zaverucha, “Private intersection of certified sets,” in Proc.

Financial Cryptography, Feb. 2009, pp. 108–127.

[34] S. Jarecki and X. Liu, “Efficient oblivious pseudorandom function with

applications to adaptive ot and secure computation of set intersection,” in Proc.

TCC, Mar. 2009, pp. 577–594.

[35] E. De Cristofaro, J. Kim, and G. Tsudik, “Linear-complexity private set

intersection protocols secure in malicious model,” in Proc. ASIACRYPT, Dec.

2010, pp. 213-231.

[36] J. S. Shin and V. D. Gilgor, “A new privacy-enhanced matchmaking protocol,” in

Proc. NDSS Symposium, Feb. 2008.

[37] J. Katz, R. Ostrovsky, and M. Yung, “Efficient password-authenticated key

exchange using human-memorable passwords,” in Proc. EUROCRYPT, May 2001,

pp. 475-494.

110

[38] Y. Sang, H. Shen, Y. Tan, and N. Xiong, “Efficient protocols for privacy

preserving matching against distributed datasets,” in Proc. ICICS, Dec. 2006, pp.

210 – 227.

[39] Y. Sang and H. Shen, “Privacy preserving set intersection based on bilinear

groups,” in Proc. ACSC, Jan. 2008, pp. 47-54.

[40] F. Kerschbaum, A. Schaad and D. Biswas, “Practical privacy-preserving protocols

for criminal investigations,” in Proc. IEEE Intelligence and Security Informatics,

Jun. 2009, pp. 197-199.

[41] A. C. Yao, “Protocols for secure computations,” in Proc. IEEE Symposium on

Foundations of Computer Science, Nov. 1982, pp. 160-164.

[42] D. Malkhi, N. Nisan, B. Pinkas and Y. Sella, “Fairplay – a secure two-party

computation system,” in Proc. USENIX Security Symposium, Aug. 2004, pp. 287-

302.

[43] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48,

no. 177, pp. 203–209, 1987.

[44] V. Miller, “Use of elliptic curves in cryptography,” in Proc. CRYPTO, 1985, pp.

417-426.

[45] L. C. Washington, Elliptic Curves: Number Theory and Cryptography. Boca Raton, FL:

Chapman & Hall/CRC, 2003.

[46] S. Jarecki and X. Liu, “Unlinkable secret handshakes and key-private group key

management schemes,” in Proc. Applied Cryptography and Network Security, Jun.

2007, pp. 270-287.

[47] “Opensocial.” Available: http://www.opensocial.org/

[48] “Match.com.” Available: http://www.match.com/matchus/

[49] “LinkedIn.” Available: http://www.linkedin.com/

[50] “ParterUp.” Available: http://www.partnerup.com/

[51] “Sermo.com.” Available: http://www.sermo.com/

[52] “INmobile.org.” Available: http://www.inmobile.org/information/

111

[53] R. Konrad, “Facebook opens to third-party developers,” Available:

http://www.msnbc.msn.com/id/18899269/.

[54] J. E. Vascellaro, “Social networking goes professional,” THE WALL STREET

JOURNAL. Available: http://online.wsj.com/article/SB118825239984310205.html.

[55] “Facebook Privacy Policy.” Available: http://www.facebook.com/ policy.php.

[56] “Opensocial.” Available: http://www.opensocial.org/.

[57] “OpenID.” Available: http://openid.net.

[58] “The DataPortability project.” Available: http://dataportability.org.

[59] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in Proc.

IEEE S&P, May 2009, pp. 173-187.

[60] WellNet Social Networking. Available: http://www.wellnethealthcare. com/.

[61] B. Popescu, B. Crispo, and A. Tanenbaum, “Safe and private data sharing with

Turtle: Friends team-up and beat the system,” in Proc. Cambridge Workshop on

Security Protocols, Apr. 2004, pp. 213-220.

[62] A. Felt and D. Evans, “Privacy protection for social networking platforms,” in

W2SP workshop, May 2008, pp. 37-44.

[63] E. Mills, “Facebook suspends app that permitted peephole,” Available:

http://news.cnet.com/8301-10784 3-9977762-7.html.

[64] M. Arrington, “Don’t post the evidence unless it supports your case,” Available:

http://tinyurl.com/6otok7.

[65] R. Gross, A. Alessandro, and H. Heinz, “Information revelation and privacy in

online social networks,” in Proc. ACM Workshop on Privacy in the Electronic

Society, Nov. 2005, pp. 71-80.

[66] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou R3579X?

anonymized social networks, hidden patterns, and structural steganography,” in

Proc. WWW, May 2007, pp. 181-190.

[67] “Privacy and security issues in social networking,” Fastcompany, 2008. Available:

http://www.fastcompany.com/articles/2008/10/social-networking-security.html.

112

[68] P. Bearman, J. Moody, and K. Stovel, “Chains of affection: the structure of

adolescent romantic and sexual networks,” American Journal of Sociology, vol.

100, no. 1, pp. 44-91, 2004.

[69] “A collection of social network stats for 2009,” Jeremiah Owyang, 2009. Available:

http://www.web-strategist.com/blog/2009/01/11/a-collection-of-soical-network-

stats-for-2009/.

[70] N. O’Neill, “Senate begins discussing privacy implications of online advertising,”

2008. Available: http://tinyurl.com/5aqqhe.

[71] E. Eldon, “VentureBeat: MediaSixDegrees targets ads using social graph

information,” 2008. Available: http://tinyurl.com/662q3o.

[72] K. B. Frikken and P. Golle, “Private social network analysis: how to assemble

pieces of a graph privately,” in Proc. Workshop on Privacy in Electronic Society,

Oct. 2006, pp. 89-97.

[73] B. Laurie, “Apres: a system for anonymous presence,” 2004. Available:

http://www.apache-ssl.org/apres.pdf.

[74] K. Liu and E. Terzi, “Towards identity anonymization on graphs,” in Proc.

SIGMOD, Jun. 2008, pp. 93-106.

[75] B. Zhou and J. Pei, “Preserving privacy in social networks against neighborhood

attacks,” in ICDE, Apr. 2008, pp. 506-515.

[76] E. Zheleva and L. Getoor, “Preserving the privacy of sensitive relationships in

graph data,” in PinKDD, Apr. 2007, pp. 153-171.

[77] R. Baden, A. Bender, N. Spring, B. Bhattacharjee and D. Starin, “Persona: an

online social network with user-defined privacy,” in SIGCOMM, Aug. 2009, pp.

135-146.

[78] “Patientslikeme.” Available: http://www.patientslikeme.com/

[79] “Man-in-the-middle attack.” Available: http://en.wikipedia.org/wiki/ Man-in-the-

middle attack.

[80] Y. Zhang, W. Liu and W. Lou, “MASK: anonymous on-demand routing in mobile

ad hoc networks,” IEEE Trans. on Wireless Communications, vol. 5(9), pp.2376-

2385, 2006.

[81] J. Douceur, “The sybil attack,” in Proc. IPTPS, Mar. 2002, pp. 251-260.

113

[82] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “SybilGuard: defending

against sybil attacks via social networks,” IEEE Trans. on Networking, vol. 16, no.

3, pp. 576-589, 2008.

[83] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “SybilLimit: a near-optimal

social network defense against sybil attacks,” IEEE Trans. on Networking, vol. 18,

no. 3, pp. 885-898, 2010.

[84] G. Danezis and P. Mittal, “SybilInfer: detecting sybil nodes using social

networks,” in Proc. NDSS, Feb. 2009.

[85] S. Galbraith, K. Harrison and D. Soldera, “Implementing the tate pairing,” in Proc.

Algorithm Number Theory Symposium, Jul. 2002, pp. 324-337.

[86] “MIRACL Library.” Shamus Software Ltd. Available: http://indigo.ie/~mscott/.

[87] “US Secure Hash Algorithm 1 (SHA-1).” Available:

http://tools.ietf.org/html/rfc3174.

[88] J. Bethencourt, J. Franklin and M. Vernon, “Mapping Internet sensors with probe

response attacks,” in Proc. USENIX, Aug. 2005, pp. 193-208.

[89] “ISC – Internet Storm Center.” Available: http://isc.incidents.org, 2005.

[90] “Distributed Intrusion Detection System,” DShield.org. Available:

http://www.dshield.org, 2005

[91] U. Meyer, S. Wetzel and S. Ioannidis, “New advances on privacy-preserving

policy reconciliation,” in Cryptology ePrint Archive, Report 2010/064, 2010.

[92] H. Kim and B. Karp, “Autograph: toward automated, distributed worm signature

detection,” in Proc. USENIX, Jun. 2004, pp. 271-286.

[93] J. Xu, J. Fan, M. H. Ammar and S. B. Moon, “On the design and performance of

prefix-preserving IP traffic trace anonymization,” in Proc. ACM SIGCOMM

Internet Measurement Workshop, Nov. 2001, pp. 263-266.

[94] J. Biskup and U. Flegel, “Transaction-based pseudonyms in audit data for privacy

respecting intrusion detection,” in Proc. Recent Advances in Intrusion Detection,

Oct. 2000, pp. 28-48.

[95] R. Pang and V. Paxson, “A high-level programming environment for packet trace

anonymization and transformation,” in Proc. ACM SIGSOMM, Aug. 2003, pp.

339-351.

114

[96] B. Waters, D. Balfanz, G. Durfee and D.K. Smetters, “Building an encrypted and

searchable audit log,” in Proc. Internet Society Network Distributed Systems

Symposium, Jan. 2004, pp. 205-214.

[97] B. Morin, L. Me, H. Debar, and M. Ducasse, “M2D2: a formal data model for IDS

alert correlation,” in Proc. Recent Advances in Intrusion Detection, Oct. 2002, pp.

115-137.

[98] G. Gu, A. A. Cardenas, and W. Lee, “Principled reasoning and practical

applications of alert fusion in intrusion detection systems,” in ASIACCS, Mar. 2008,

pp. 136-147.

[99] P. Ning, Y. Cui, and D. Reeves, “Constructing attack scenarios through correlation

of intrusion alerts,” in Proc. ACM CCS, Nov. 2002, pp. 245-254.

[100] C. Kruegel, G. Vigna, W. Robertson, “Using alert verification to identify

successful intrusion attempts,” Journal of Practice in Information Processing and

Communication, vol. 27, no. 4, pp. 220-228, 2004.

[101] H. Debar and A. Wespi, “Aggregation and correlation of intrusion-detection

alerts,” in Proc. International Symposium on Recent Advances in Intrusion

Detection, Oct. 2001, pp. 85-103.

[102] W. Mao. Modern cryptography: theory and practice. NJ: Prentice Hall, 2003.

[103] “Wireshark.” Available: http://www.wireshark.org/.

[104] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for

designing efficient protocols,” in Proc. CCS, Nov. 1993, pp.62-73.

[105] M. Bellare and P. Rogaway, “The exact security of digital signatures how to sign

with RSA and Rabin,” in Proc. EUROCRYPT, Mar. 1996, pp.399-416.

[106] D. Pointcheval and J. Stern, “Security proofs for signature schemes,” in Proc.

EUROCRYPT, Mar. 1996, pp.387-398.

[107] D. Pointcheval and J. Stern, “Provable secure blind signature schemes,” in Proc.

ASIACRYPT, Nov. 1996, pp.252-265.

[108] NIST, “Secure Hash Standard (SHS),” FIPS PUB 180-2, Aug. 2002.

[109] R. Canetti, O. Goldreich and S. Halevi, “The random oracle methodology,

revisited,” Journal of the ACM, vol. 51, no. 4, pp. 557-594.

115

[110] D. Boneh and X. Boyen, “Efficient selective-ID secure identity based encryption

without random oracles,” in Proc. EUROCRYPT, May 2004, pp.223-238.

[111] D. Boneh and X. Boyen, “Short signatures without random oracles,” in Proc.

EUROCRYPT, May 2004, pp.56-73.

[112] A. Menezes, T. Okamoto and S. Vanstone, “Reducing elliptic curve logarithms to

logarithms in a finite field,” IEEE Transaction on Information Theory, vol. 39, no.

5, pp.1639-1646, 1993.

[113] G. Frey and H. G. Ruck, “A remark concerning m-divisibility and the discrete

logarithm in the divisor class group of curves,” Mathematics of Computation, vol.

62, no. 206, pp.865-874, 1994.

[114] A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit conditions of elliptic

curve traces for FR-reduction,” IEICE Transactions on Fundamentals, vol. E84-A,

no. 5, pp. 1234-1243, 2001.

[115] H. Cohen, G. Frey and R. Avanzi. Handbook of Elliptic Curve and Hyperelliptic

Curve Cryptography. Boca Raton, FL: Chapman & Hall/CRC, 2006.

116

APPENDIX A

CRYPTOGRAPHIC PRIMITIVES

Group

Let {0, 1} denote the set of individual bits and let {0, 1}* denote the set of all bit

strings. N = {0, 1, 2, …} is the set of all natural numbers. κ ∈ N, 1
κ
 and {0, 1}

κ
 denotes

the bit string of κ ones and the set of bit strings of length κ, respectively. When a and b

are strings, then |a| refers to the length of the string a and a||b indicates the

concatenation of a and b. In this proposal “group” and “field” refer to the group and field

defined in number theory. Abelian groups and finite fields are two important algebraic

structures in modern cryptography. They are widely used in real world applications

because they provide the basic elements and operations for cryptographic schemes. A

group is thought as a set of objects with an operation between two elements in this set. It

can be described by mathematical language as follows [102]:

Definition A. I: a group (G, ◊) is a set G together with an operation ◊ which satisfies the

following conditions: For all a, b ∈ G, a ◊ b ∈ G. For all a, b, c ∈ G, a ◊ (b ◊ c)=(a ◊ b)

◊ c.There exists a unique element d ∈ G, for all a ∈ G, a ◊ d = d ◊ a = a. This element d

is called the identity element. For all a ∈ G, there exists a
-1

 such that a ◊ a
-1

 = d

Public Key Cryptography

Digital signatures are one of the most important cryptographic tools in modern

cryptography. In Public Key Cryptography (PKC), every user has two keys: One is the

public key which is published to everyone, and the other is the secret (or private) key

117

which is kept secret by the corresponding owner. In a traditional PKC, the key pair is

generated by users or by a key generator called Certificate Authority (CA). In identity-

based PKC (ID-PKC), the key pair is generated by a key generator called Trusted

Authority (TA). It is worthy of noting that their roles are different. When the key pairs

are generated by users, the CA does not know the users’ secret key and just issues the

certificate with the binding of identities and public keys. The TA checks that applicants

have claimed identity and then issues the corresponding secret key. Thus ID-PKC has a

key escrow facility. Whether this facility is useful or not depends on the particular

applications. Both PKC and ID-PKC use the difficulty of the mathematical problems,

such as integer factoring problems and discrete logarithm problems, to guarantee that no

one is able to recover the secret (private) key from the public key. The difference

between PKC and ID-PKC is that the public key is random in PKC, while the public key

in ID-PKC is specified before generating the private/secret key.

Random Oracle Model and Standard Model

The hash function is a very useful tool in modern cryptography because it has the

property of collision-resistant. Collision-resistant means that it is impossible for anyone

to find two different messages providing the same hash value. The hash function was

originally designed to be used in digital signature schemes for signing long messages by

reducing the size of the signatures without comprising the integrity of the message. In

order to obtain related arguments in the security proof of cryptographic schemes, some

cryptographers [104][105][106][107] have suggested that hash functions should be seen

as random functions. Therefore, a new model, the random oracle model (ROM), has

118

been introduced into the security proofs of cryptographic schemes. If one expects to

prove the security of a cryptographic scheme where hash functions are used, then these

hash functions are viewed as random oracles. This often makes it easy and simple to

prove the security of cryptographic schemes. The random oracles will return a truly

random value for each new query from a challenger. If a new query is the same as a

previous query, the random oracle will return an identical answer. This theoretical model

can help cryptographers verify whether the design of a cryptographic scheme is secure or

not. However, the random oracle model is only an imaginary model in theory. There

does not exist a true random oracle in the real world. In real world applications, hash

functions such as SHA-224 [108] play the role of random oracles. Since the concept of

the random oracle model was introduced into the community, researchers have used it to

provide the security proof for numerous cryptographic schemes. Although many

cryptographic schemes have been proven in the random oracle model, some researchers

doubted the reliability of this model. As what has been discussed in previous section,

hash functions are usually treated as random imaginary functions when proving the

security of the cryptographic schemes in the random oracle model. Recently, Canetti,

Goldreich and Halevi [109] investigated the reliability of the random oracle and

presented some useful results. They showed that there were some examples of

cryptographic schemes which are secured under the random oracle model but not in real

applications. Therefore, constructing cryptographic schemes without using random

oracles, namely in the standard model, has become an active research area. Encryption

schemes and signature schemes that do not use random oracles have been proposed

119

[110][111]. Their security has been proven in the standard model. It is noted that,

although the authors of [109] have shown the weakness of the random oracle model,

they did not agree that the random oracle model was of no use in proving the security of

the cryptographic schemes. Until now, there has been no explicit conclusion that

cryptographic schemes should not use random oracles. Therefore, new cryptographic

schemes with random oracles whose security is also proven in the random oracle model

are still being constructed.

Elliptic Curve Cryptosystem

Elliptic curve cryptography (ECC) was proposed by Koblitz [43] and Miller [44].

They independently suggested the use of elliptic curve groups in Public Key

Cryptography. Finite abelian groups are fundamental to Public Key Cryptography.

Elliptic curves over finite fields offer a large number of such finite abelian groups. In the

past twenty years, researchers have paid much attention to ECC and developed many

important cryptographic schemes. Compared with cryptosystems based on RSA or DLP,

ECC has several advantages. One of them is that ECC is able to provide reliable security

with shorter key lengths than other cryptosystems (more). Next, we review the definition

of elliptic curves over finite fields. Let K = Fp be a finite field. Suppose E(K) is an

elliptic curve E over a field K, it is defined as the set of points (x, y) with x, y ∈ K that

satisfy the Weierstrass equation. E(K) also includes an extra point O called point at

infinity which is usually denoted by O =(x, 1). The number of points on E(K) is called

the order of E(K) which is denoted by E(K) or # E. When K = Fp for a large prime p ≥ 5,

the Weierstrass equation shown in Equation 2.1 is simplified into the following equation

120

y
2
 = x

3
 + a4x + a6. An elliptic curve is the set of points (x,y) which satisfy the equation

y
2
 = x

3
 + a·x + b, where x, y, a, and b are over same finite field, e.g. Fp. If 4·a3 + 27·b2

≠ 0 (i.e. x3 + a·x + b contains no repeated factors), then points on an elliptic curve can

be used to form an additive group, usually written as E(Fp). Addition and doubling are

the two operations defined on a group of curve points. They are further used to compute

point multiplication, which is the basis of any elliptic curve cryptographic schemes:

given an integer k, computation of kP is called point multiplication. It was based on a

famous hard problem, i.e., Elliptic Curve Discrete Logarithm Problem. Given points P,

Q ∈ E(Fq) (E(Fq) is the additive group formed by the points on an elliptic curve), finding

an integer k ∈ Fq such that k·P = Q is called Elliptic Curve Discrete Logarithm Problem.

Definition A. II: for an elliptic curve E over a finite field K, where P, Q are two points

on E(K), it is difficult to determine λ ∈ Z such that Q =λP

Pairing-Based Cryptography

Menezes, Okamoto and Vanstone [112] proposed an efficient attack method for

supersingular elliptic curves called MOV attack. That is, an ECDLP on supersingular

elliptic curves can be reduced to a much easier DLP in a finite field by using bilinear

pairings, such as Weil pairing [112] or Tate pairing [113]. Therefore, such a

supersingular elliptic curve was seen as weak and to be avoided when selecting elliptic

curve parameters. Later the idea was implemented to generate pairing-based

cryptosystem [114]. Let q be a positive integer. G1 and G2 are two additive groups of

order q where DLP is difficult. G3 is a multiplicative group of order q. A bilinear pairing

e can be defined as e : G1 × G2 → G3

121

Currently, the bilinear pairings used in most existing cryptographic schemes are

derived from Tate pairings or Weil pairings, which can be implemented on a

supersingular elliptic curve or a suitable non-supersingular elliptic curve. G1 and G2 are

usually regarded as two Abelian groups constructed by elliptic curves over finite fields.

Let k be an integer larger than 1. In the following description, k is either a finite field Fp
k

or a subfield of Fp
k
, and k is defined as an embedding degree or security parameter. The

bilinear pairings in ECC are usually thought of as functions which map two elliptic

curve points to an element of a multiplicative group. Let O denote the identity element

of G1 or G2 and let 1 denote the identity element of G3. The bilinear pairings have the

following properties:

Definition A. III Bilinearity: For any P1, P2 ∈ G1, Q1, Q2 ∈ G2, e(P1 + P2; Q1)= e(P1;

Q1) e(P2; Q1) and e(P1; Q1 + Q2)= e(P1; Q1) e(P1; Q2).

Definition A. IV Non-degeneracy: For all P ∈ G1 except O, there is some point Q ∈ G2

such that e(P, Q) = 1. In the same way, for all Q ∈ G2 except O, there is some point P ∈

G1 such that e(P, Q) ≠ 1.

Suppose G1 denotes an additive cyclic group of prime order q. G2 denotes a

multiplicative cyclic group of order q. G1 and G2 are selected in such a way that the

Discrete Logarithm Problem (DLP) [45] is hard in both of them. Let G be an additive

group. Computational Diffie-Hellman Problem (CDHP) in G is defined by

Definition A. V: Given P , aP and bP ∈ G for a, b ∈ Z
*

p, compute abP.

Decisional Diffie-Hellman Problem (DDHP) [115] in G is defined by

122

Definition A. VI: Given P , aP , bP and cP ∈ G for a, b and c ∈ Z
*

p, decide whether c ≡

ab (mod p) or not. If true, (P , aP , bP , cP) is called a Diffie Hellman tuple.

Bilinear Diffie-Hellman (BDH) [115] Assumption is defined by

Definition A. VII: given P, aP, bP, cP for random a, b, c ∈ Z*q and P ∈ G1, it is not

possible to compute e(P, P)
a⋅b⋅c

 with a non-negligible probability, i.e., it is hard to

compute e(P, P)
a⋅b⋅c

.

A group G with prime order is called Gap-Diffie-Hellman (GDH) group if

DDHP can be solved in polynomial time while no known polynomial time algorithm can

solve CDHP with non-negligible advantage in polynomial time. An additive group G

constructed on an elliptic curve over finite fields is such a GDH group due to the

existence of the bilinear pairings. MOV attack [112] based on Weil pairing and FR

attack [113] based on Tate pairing make it possible to solve DDH in G, whereas there is

no known polynomial time algorithms for CDHP in G. CDHP and DDHP are the

fundamentals of pairing-based cryptosystems. These mathematical assumptions will be

used widely in advanced pairing-based cryptographic schemes.

123

APPENDIX B

EVALUATION OF PPIM

To demonstrate the utility of the PPIM service, we developed a patient support

community called “PatientMatch”, using Facebook as the SNS. The objective of the

PatientMatch prototype is to form a supporting group among qualified constituents

(patients, social workers, etc), for a particular type of health conditions (chronic illness,

substance abuse, etc) to simulate the type of services provided in [78], but keep other

people out of the group. Fig. 12 (a) shows a snapshot of the user interface of the

PatientMatch client tool, which only included the PSI functions. We have also

implemented the SH protocol, but it was only used for the running time evaluation.

Facebook platform assigns API Key and Application Secret for running each

application. Facebook uses callback URL to forward the request to users between

applications web pages. We implemented PatientMatch as a desktop application in order

to fully support the crypto-related computations. Otherwise, the web-based application

would be subject to the restriction of the javascript.

The PPIM server is implemented as a web service using standard HTTP port to

exchange XML messages with PPIM client, based on the Simple Object Access

Protocol (SOAP). The software architecture for the PPIM server and its client tool is

shown in Fig. 12 (b). A prototype of the PPIM server and our Patient- Match sample

desktop application can be accessed through

“http://apps.facebook.com/secretsharesearch”. The PPIM client is compiled into a DLL

124

with an exposed API so that it can be used as a plug-in by existing SNS applications.

Following an asynchronous messaging model, the PPIM server uses a (MySql) database

to buffer any unprocessed (ciphertext) messages between principals. The PPIM client

provides all the cryptographic functions (encryption, injection and modification of

ciphertexts, and decryption) and PPIM related networking functions.

Fig. 12. The PatientMatch prototype. (a) The client tool (b) PPIM architecture.

125

In the application, Alice can try to locate peers based on the health conditions

(left up corner of the GUI), discover potential matching candidates from SNS (next to

the attribute selection on GUI), encrypt the attributes (middle left box of GUI), and

upload the inquiries to PPIM server. Then, she needs to wait for matching candidates to

respond on the submitted inquiries. On the right upper corner, two boxes with green

labels represent matching invitations and their inquiries stored on the PPIM server. Alice

can download inquiries of these invitations, and modify these inquiries using the

modification function F. Then, she can upload them back to the PPIM server. On the

right lower corner, Alice can download all her submitted inquires that have been

modified by her matching candidates. She can then choose from the list of downloaded,

modified inquiries to perform the matching to get the final outcomes.

We used MIRACL [86] as the crypto library. We chose G1 as an additive group

of points on ς: y
2
 = x

3
 + x, with prime order q = 2

159
 + 2

17
 + 1. All our parameters

obtained from [86] deliver protection strength comparable to 1024-bit RSA. We chose e

as Tate pairing [85], and the SHA-1 [87] as H2.

We tested the running time of the PPIM software on different machines. First, we

conducted a few experiments on an Intel Pentium-4 2-GHz processor with 256-Mbyte

RAM and Windows XP. First we test the running time of SH. Given that other

operations in SH like hash function takes less than 1 ms, we used the computation of

Tate pairing [85] to represent the SH processing time. Basically two pairing

126

computations that represent one successful SH execution need approximately 130 ms,

which is efficient enough for practical use.

In the second experiment we measured the running time of one PSI transaction

executed between two PPIM client tools for Alice and Bob on the same machine to

minimize the communication delays. All messages are essentially encrypted elliptic

curve points, one point per attribute, and the message size for each point is roughly 1K

bytes. All the reported results are based the average of 100 runs of each experiment. The

running times, including the (very small) communication delays, for one round of PSI

matching for the 2n attributes between two users, where n = 10, 100, 1000, and 10000,

is given in Table 7. When the client tool of Alice receives the modified attributes from

that of Bob, it first fills up a comparison table after each modified attribute is multiple by

its private key PRIa. Then, each entry in this table is directly compared against every

entry of the inquiry sent by Bob. When n = 10 and 100, the total matching time is not

increased much because the majority of time was spent on creation of the comparison

table. When the number of attributes is large enough, the table creation time becomes

less significant, and the comparison time becomes increasingly dominating. This leads

to fairly linear increase of the overall PSI running time when n increased from 10 to 10k.

Table 7. Average running time of the ECC-based PSI protocol.
Number of Attributes 20 200 2k 20k

Time (sec) 6.266 7.750 22.953 175.436

127

Our experiments show that the computing cost is determined by the number of

attributes that need to be matched. That is, when Alice uses 10 attributes to perform

matching with other 1000 users, each of them also has 10 attributes; the total computing

time is about the same as that Alice performs matching with one user who has 10k

attributes for matching. In another setting, we fixed the number of attributes at n =10

for Alice, and the number of attributes for Bob at m, and the result is given in Table 8,

with very similar performance characteristics as the first experiment: when n is small

(large), the comparison table creation (matching) time dominates the other.

Table 8. Average running time of the PSI protocol.
(n, m) 10:10 10 : 100 10 : 1k 10 : 10k

Time (sec) 6.266 6.985 14.594 90.891

We also measured the matching time in a 100M bps local network environment,

in which two PPIM clients run on two different machines MA and MB, and the PPIM

server runs on machine MC. Each request is fixed at the size of 10 attributes, and the

running time for different parts of operations is itemed below. MA generates the specified

number of requests NR in step S1. It signals MC about the new request in step S2. MC

informs of MB about the new matching request, in step S3. Then, the request is sent from

MA, through MC, to MB, in step S4. MB modifies the received inquiry in step S5, and then

directly returns it to MC. MC first notifies MA of the completion of the modification in

step S6, and then sends it the modified request. The cost of sending the modified inquiry

from MB, through MC, to MA, excluding that of S6, is counted as step S7. Finally, MA

128

performs the final matching step in step S8. The running time measurements of S1 to S8

are summarized in Table 9. The results suggest that the average cost TA for handling one

request is about a fraction of a second (0.12-0.13 sec), and the PPIM server is not

considered a performance bottleneck.

Table 9 Running time (rounded) between three machines (unit: sec).
NR S1 S2 S3 S4 S5 S6 S7 S8 TA

1 0.034 0.034 0.003 0.04 0.003 0.006 0.04 0.003 0.17

10 0.34 0.05 0.005 0.4 0.02 0.007 0.4 0.024 0.12

100 3.4 0.05 0.02 4.9 0.2 0.008 4.3 0.24 0.13

1k 34.5 0.05 0.1 45 2 0.045 44.3 2.45 0.128

129

APPENDIX C

EVALUATION OF PAC

We have implemented PAC client tool using the crypto library of MIRACL [86]

to test functionality and computing costs of the proposed algorithms. We chose G1 as an

additive group of points on E: y
2
 = x

3
 + x, with the prime order q = 2

159
 + 2

17
 + 1, and

SHA-1 is selected [87] as H1. We used the PAC client tool to correlate alerts generated

from Snort, Autograph and honeynet traces for functionality testing.

The primary computing costs include the time required to perform matching, and

the bandwidth for transmission of messages. We installed two copies of PAC client tools

on two locally connected PC machines PC1 and PC2, (Intel(R) Xeon(TM) CPU

2.40GHz, RAM 2.00GB and Intel Core 2 Duo CPU 2.00GHz, 2.00GB RAM). For

computing cost testing, we increased the number of attribute records (IP addresses

extracted from a real honeynet trace) from 100 to 10000 on each machine to perform

matching using Protocol II. Each experiment is repeated for twenty times to get the

average computing costs, and the results are presented in Fig. 13 (a). The computing cost

grows linearly with the number of attribute records: about one second for matching of

100 attribute records and less than 120 seconds for matching of 10000 attribute records

for both two machines. The bandwidth requirement also grows linearly with the number

of attribute records (see Fig. 13 (b)) based on the measurements made by Wireshark on

PC1 [103].

130

We performed two experiments to derive the LCS between two inputs strings,

whose lengths were set at 100 and 1000, respectively. For each input set, we further

adjusted lengths of LCS, denoted as |LCS|, from 0 (matching of l-grams alone), to half

input length, and to the full input length. We chose l = 5 for all experiments. The

running times for these experiments are given in Table 10. The major costs of Protocol

VI are associated with protection of locations of matched l-grams, i.e., randomization

and shuffling, and the matching caused by the inserted faked points. We can see that the

computing cost is linear to the input string length when the percentage p is fixed.

Fig. 13. (a) Processing time, and (b) Bandwidth for Protocol II of PAC.

131

Table 10. Average running time of the PPLCS protocol.

Input lengths: 100 Time (s) Input lengths: 100 Time (s)

LCS length = 0 1.02 LCS length = 0 10.11

LCS length = 50 12.46 LCS length = 500 127.88

LCS length = 100 22.05 LCS length = 1000 221.94

We tested discovery of attack patterns using a honeynet packet trace captured in

a ten-day period in 2007. This original trace contains successful host infections from

external attackers, and a short period of infection propagation. To simulate correlation of

source-destination IP addresses across two different networks, we divided the original

trace by time and then by IP address to generate 4 traces. Trace 1(2) covers the first

(second) period of 5 days that contains 131k (21k) packets for 6177(5246) distinct IP

addresses. Trace 3(4) covers subnet I (II) for the 10 day period, and it contains 69k (83k)

packets for 5215 (6275) distinct IP addresses. For common attacker/victim correlation,

we extracted IP addresses from each trace, and then perform PAC based correlation

between trace 1 and trace 2, and then between trace 3 and trace 4, respectively. We

found 10 common attackers and 12 common victims between trace 1 and trace 2, and 58

common attackers and 70 common victims between trace 3 and trace 4, respectively.

The example in Fig. 14 shows that the common attacker (right hand side) was

discovered from the two traces (left hand side), which have different packet counts for

the identified IP. Here the term scale records the order of magnitude of a particular IP

being correlated and the first two bytes of the IP addresses were replaced by symbols to

protect network identities.

132

Fig. 14. An example of common attacker discovered by PAC.

An attack chain often span across multiple networks. It requires cooperation of

all involved networks to reconstruct the connection topology. The PAC client tool

allows any two adjacent points on the chain to confirm their existence, i.e., the

neighborhood relationship of two networks on an unknown attack chain. One option for

the next level correlation is based on an attack chain length calculation technique. That

is, two confirmed neighbors can exchange the length information (about the unknown

attack chain) that they already received from other neighbors, and then produce their

own latest lengths. When a network finds that the length of an attack chain exceeds a

threshold, it can spread the information for follow up actions.

Without loss of generality, we used the attack chain of Agobot infection to

illustrate the key steps involved in the process. In the experiment, five virtual hosts (HA-

HE), each of runs an un-patched Windows 2000 with DCOM vulnerability, were placed

in five different networks NA, NB, NC, ND, NE. Snort configured with DCOM-Port-

Scanning rules was also installed on these networks to monitor inbound traffic. A

133

simulated botmaster instructed the Agobot client on HA to infect four other hosts one by

one. SnortB running on NB detects the intrusion from HA and HB is its victim. Similarly,

SnortC, SnortD, and SnortE also generated their local alerts. Administrators of NB and NC

have agreed to use their PACs to correlate their victim IP addresses vs. attack source IP

addresses.

When PACB and PACC respectively have the victim IP addresses (of NB) and

attack source addresses (of NC) as their inputs, both PACB and PACC conclude that HB is

matched. As a result, NB (NC) knows the existence of an attack chain HA → HB → NC

(HB → HC), but NB does not know which host on NC has been attacked and NC does not

know HB was also attacked by HA. After a length exchange, Both NC and NB know that

the length of the attack chain is 3, i.e., HA → HB → NC (NA → HB → HC). Following a

similar argument, PACC and PACD can conclude that they are respectively on an attack

chain fragment of NA → HB →HC → ND and HC → HD after they complete their alert

correlation. After length exchange, NC and ND know that they are on an attack chain of

length 4. Neighboring networks can inform each other about an attack chain whenever

the length discovered by the correlation process exceeds a threshold.

Snapshots from the experiments are illustrated in Fig. 15. Each IP address with

its discovered appearing times were fed to PAC for matching. For example, the entry

B.B.2.111 (in red color) indicates the discovered IP address of HB, and below it

d_B.B.2.111 indicates that it is a destination IP. After their matching, NB and NC can both

see that they are the neighborhood of each other: NB gets A.A.2.110(HA) →B.B.2.111(HB)

→NC (B.B.2.111 attacks an unknown IP in C’s network). On the other hand, NC gets

134

B.B.2.111(HB)→ C.C.2.112(HC). After they exchange their length information, both

networks know that the existence of an attack chain of three. The correlation process can

be indefinitely expanded between any two networks. The length information can also be

generalized to include more information, e.g., branches, so that an arbitrary attack chain

topology can be derived based on our scheme.

Fig. 15. Illustration on discovery of the neighborhood on an infection chain.

PAC can be used for cross-network correlation to derive more global signatures

by exclusion of as much local information as possible in generation of their LCS. As

discussed earlier, other shorter common substrings can also be iteratively generated

using Protocol VI. To evaluate Protocol VI in PAC, we used local signatures generated

by Autograph run on different networks as the inputs to generate their LCS. Four types

of traffic were used in the example. The type I traffic is consisted of CodeRed I and

CodeRed II worms. The other three types of traffic (type II, III and IV) are plain text,

135

HTTP, and some binary executable files of regular applications. The testbed setup for

this experiment is illustrated in Fig. 16. In the first phase of the experiment, we let hosts

E & F scan ports on host B in network 1 and host C in network 2, respectively. Two

Autographs deployed at network 1 and network 2 detected the port scanning and then

added E and F to their suspicious IP lists for network 1 and network 2, respectively. All

subsequent packets sent from E and F to the scanned ports of B and C were classified as

abnormal traffic. In phase 2, hosts E and F began to transmit mixed traffic of types I-IV

to the two domains. CodeRed I (II) traffic was included in the traffic. Using signatures

created by Autograph in the two different networks as inputs, we generated the LCS for

CodeRed I and CodeRed II and removed the other types of traffic as unmatched (local)

contents.

Fig. 16. Attack patterns of CodeRed I & CodeRed II in the testbed.

In a similar experiment, we first used Autograph to extract local signatures from

local alert trace 1 and trace 2 separately. Most signatures came from attempts to exploit

vulnerable services such as HTTP (port 80), Netbios-ssn (port 139), Microsoft-ds (port

136

445). Then, we used PAC to determine the common signature between these local

signatures. Experimental results showed that Autograph totally found seven (four) local

signatures from trace 1 (2). We were able to generate the common signature correlated

from local ones for a malware instance that successfully exploited Microsoft-ds service

in both traces.

137

VITA

Name: Pu Duan

Address: Room 503, H.R. Bright Building, Department of Computer

Science and Engineering, Texas A&M University, TAMU 3112,

College Station, TX 77843-3112

Email Address: duanpu1979@tamu.edu

Education: B.S., Information Engineering, Xi’an Jiaotong University, 2001

 Ph.D., Computer Science, Texas A&M University, 2011

