290,053 research outputs found

    Bitcoin: Where Two Worlds Collide

    Get PDF

    Robust Optimal Power Flow with Wind Integration Using Conditional Value-at-Risk

    Full text link
    Integrating renewable energy into the power grid requires intelligent risk-aware dispatch accounting for the stochastic availability of renewables. Toward achieving this goal, a robust DC optimal flow problem is developed in the present paper for power systems with a high penetration of wind energy. The optimal dispatch is obtained as the solution to a convex program with a suitable regularizer, which is able to mitigate the potentially high risk of inadequate wind power. The regularizer is constructed based on the energy transaction cost using conditional value-at-risk (CVaR). Bypassing the prohibitive high-dimensional integral, the distribution-free sample average approximation method is efficiently utilized for solving the resulting optimization problem. Case studies are reported to corroborate the efficacy of the novel model and approach tested on the IEEE 30-bus benchmark system with real operation data from seven wind farms.Comment: To Appear in Proc. of the 4th Intl. Conf. on Smart Grid Communication

    Prompt Application-Transparent Transaction Revalidation in Software Transactional Memory

    Get PDF
    Software Transactional Memory (STM) allows encapsulating shared-data accesses within transactions, executed with atomicity and isolation guarantees. The assessment of the consistency of a running transaction is performed by the STM layer at specific points of its execution, such as when a read or write access to a shared object occurs, or upon a commit attempt. However, performance and energy efficiency issues may arise when no shared-data read/write operation occurs for a while along a thread running a transaction. In this scenario, the STM layer may not regain control for a considerable amount of time, thus not being able to early detect if such transaction has become inconsistent in the meantime. To tackle this problem we present an STM architecture that, thanks to a lightweight operating system support, is able to perform a fine-grain periodic (hence prompt) revalidation of running transactions. Our proposal targets Linux and x86 systems and has been integrated with the open source TinySTM package. Experimental results with a port of the TPC-C benchmark to STM environments show the effectiveness of our solution

    A Bayesian Approach to Identify Bitcoin Users

    Get PDF
    Bitcoin is a digital currency and electronic payment system operating over a peer-to-peer network on the Internet. One of its most important properties is the high level of anonymity it provides for its users. The users are identified by their Bitcoin addresses, which are random strings in the public records of transactions, the blockchain. When a user initiates a Bitcoin-transaction, his Bitcoin client program relays messages to other clients through the Bitcoin network. Monitoring the propagation of these messages and analyzing them carefully reveal hidden relations. In this paper, we develop a mathematical model using a probabilistic approach to link Bitcoin addresses and transactions to the originator IP address. To utilize our model, we carried out experiments by installing more than a hundred modified Bitcoin clients distributed in the network to observe as many messages as possible. During a two month observation period we were able to identify several thousand Bitcoin clients and bind their transactions to geographical locations
    corecore