
Prompt Application-Transparent Transaction
Revalidation in Software Transactional Memory

Simone Economo, Emiliano Silvestri
Pierangelo Di Sanzo, Alessandro Pellegrini

DIAG - Sapienza University of Rome
Rome, Italy

{economo,silvestri,disanzo,pellegrini}@dis.uniroma1.it

Francesco Quaglia
DICII - University of Rome Tor Vergata

Rome, Italy
francesco.quaglia@uniroma2.it

Abstract—Software Transactional Memory (STM) allows en-
capsulating shared-data accesses within transactions, executed
with atomicity and isolation guarantees. The assessment of the
consistency of a running transaction is performed by the STM
layer at specific points of its execution, such as when a read
or write access to a shared object occurs, or upon a commit
attempt. However, performance and energy efficiency issues may
arise when no shared-data read/write operation occurs for a while
along a thread running a transaction. In this scenario, the STM
layer may not regain control for a considerable amount of time,
thus not being able to early detect if such transaction has become
inconsistent in the meantime. To tackle this problem we present
an STM architecture that, thanks to a lightweight operating
system support, is able to perform a fine-grain periodic (hence
prompt) revalidation of running transactions. Our proposal
targets Linux and x86 systems and has been integrated with
the open source TinySTM package. Experimental results with a
port of the TPC-C benchmark to STM environments show the
effectiveness of our solution.

I. INTRODUCTION

Transactional Memory (TM) allows marking software tasks
as transactions guaranteed to be executed in isolation and with
all-or-nothing guarantees, thanks to the capabilities of some
underlying TM layer. The latter can be implemented either
via software—this is the case of Software-TM (STM) [6]—or
via hardware support, as for the case of processors bundling
Hardware-TM (HTM) facilities [1]. TM synchronizes shared-
data accesses transparently to the application code, while
enabling scalability levels that are close to those achievable
via application-specific manual coding with fine-grain locking
schemes. On the downside, TM may lead to waste of CPU
time because of transaction aborts.

To cope with this latter aspect, in this article we present an
innovative software architecture that allows a fine-grain, pe-
riodic, and transparent revalidation of running transactions—
hence prompt abort of the transaction, if inconsistencies are
detected—in scenarios where the application execution profile
is arbitrary. This problem is non-trivial to cope with because
of the following reasons:

• to actually reduce wasted time, the periodic revalidation
mechanism must be lightweight, otherwise its cost will
exceed any potential revenue;

• in-memory transactions are typically fine-grain, so
prompt revalidation needs to be executed with relatively

high frequency, independently of the actual execution
profile of the application code.

Devising an application-transparent revalidation support sat-
isfying the above requirements is, to the best of our knowledge,
a not yet pursued challenge. In current STM implementations
(see, e.g., [2]) transaction revalidation is only performed upon
explicit shared-data accesses, if such access may result into
a violation of the opacity correctness criterion. However, if a
thread runs a transaction that does not access shared-data for
a while (e.g., it manipulates local variables into the stack),
or accesses data deemed valid, then there is no possibility
to quickly react to the materialization of inconsistencies in
the running transaction. A possibility is to use mechanisms
such as (temporized) operating system signals for bringing
control back to the STM layer at arbitrary (e.g., periodic)
points in time. However, the delivery of such signals exhibits
the granularity of the operating system tick-interval—e.g., 1
to 4 milliseconds in classical Linux configurations—while in-
memory transactions can show (much) finer granularity.

To cope with the above issues, we designed and imple-
mented an STM architecture targeting Linux and x86 systems,
which is able to exploit very fine-grain hardware-timer events,
directly delivered to (and handled by) user-space code. This
architecture allows a running thread to change its execution
flow and carry out the revalidation task independently of
the application code willingness to explicitly pass control
to the STM layer. This enables a timer-based revalidation
at execution points not covered by the traditional approach.
Notably, our solution adds new capabilities, in terms of support
for early aborts of transactions, which are orthogonal to those
already offered by traditional STM platforms that revalidate
transactions only upon read/write accesses to shared-data. To
pursue both correctness and performance goals, these two
mechanism need to be combined in a synergistic manner, as
it occurs in our architecture. We also report the results of
an experimental assessment of our proposal, which has been
based on running a port of the TPC-C benchmark to STM.

The remainder of this article is structured as follows. In
Section II we discuss related work. Our innovative revalidation
architecture is presented in Section III. Experimental data are
reported in Section IV.



II. RELATED WORK

One major research trend in TM systems is the one of
reducing as much as possible the incidence of transaction
aborts. In this context, transaction scheduling policies are used
to control whether some standing transaction can be admitted
to the processing stage, or needs to be delayed for a while,
because of a high likelihood of conflicts with already running
transactions. Thread scheduling policies stand as an alternative
approach to the reduction of the incidence of aborts. They
aim at (dynamically) determining the well-suited thread-level
parallelism of TM-based applications. A recent survey of all
these techniques can be found in [5].

In [4] the authors propose a solution for enabling a no-
longer consistent transaction to be rolled-back partially (rather
than totally), which can help saving work otherwise doomed
to be unfruitful. In this proposal transaction revalidation is
only actuated upon a new explicit access to shared-data by
the application code, which is intercepted and handled by the
STM layer.

Our work is orthogonal to all the above solutions, since
our objective is to enable a thread running a transaction
to transparently change its execution flow for revalidation
purposes independently of the actual operations carried out
within the transactional context.

III. PROMPT TRANSACTION REVALIDATION

A. Baseline Components

1) TinySTM: Our prompt transaction revalidation architec-
ture has been integrated with the open source TinySTM [2]
package, although its design principles are general. In fact,
it embeds a skeleton that enables a thread currently running
a transaction to transparently change its execution flow with
fine-grain period, in order to launch an arbitrary user-space
callback routine—a revalidation routine in our case. TinySTM
manages transactions by relying on a global version clock
(gvc). It is a global shared counter atomically incremented
whenever a thread commits a transaction that updates shared-
data. A data object is a memory word, and each word address
is associated with its own meta-data consisting of (A) a lock-
bit and (B) a timestamp, both kept in a single entry of a hash
array that is manipulated atomically (also called lock array).
When a transaction commits, the updated gvc value is reflected
as the new timestamp of the written word. Upon (re)starting a
transaction, a thread stores the current value of the gvc into a
local variable called transaction start-timestamp (tst). Upon a
write operation, the target address and the value to be stored
are both added to the transaction write set. Read operations
on shared objects previously updated by the same transaction
are served by picking values from the transaction write set.
Instead, read operations performed on shared objects outside
the write set lead to sample the timestamp and the lock bit of
the shared object in order to check if (A) the timestamp is less
than or equal to the tst of the reading transaction, and (B) the
object is not currently locked. If both checks succeed, it means
that no concurrent transaction has modified the object in the

interval between the start of the reading transaction and the
actual read operation, hence the read value is valid. Otherwise,
the transaction gets aborted.

A mechanism that is used in combination with this scheme
is called snapshot extension. When the thread reads an object
whose timestamp is greater than tst, this mechanism checks
if all the previously executed transactional read operations (if
any) are still valid in a snapshot that includes the timestamp of
the culprit read. If yes, the snapshot seen by the transaction is
still consistent, hence the transaction is not aborted. Addition-
ally, the tst is updated to the gvc value sampled immediately
before performing the check. In such a case, since the abort
is avoided, the transaction can continue its execution.

Clearly, such a revalidation policy does not allow timely
revalidations when the transaction does not perform read
accesses to shared-data for a while—e.g. it performs other
operations such as accesses to private data into the stack—or
in the case of a new read that does not trigger a snapshot
extension. Our prompt revalidation approach exactly solves
this problem, which is relevant when considering that the
actions performed by the application code within transactional
context (accesses to shared objects vs. accesses to private
data) are essentially arbitrary and only related to the way the
application logic is implemented.

It must be noted that our prompt revalidation architecture
operates synergistically with the aforementioned snapshot ex-
tension mechanism. Periodic revalidation can be skipped in our
modified STM runtime when tst and gvc are discovered to have
the same value (see next section). As a side effect, our solution
can also anticipate a portion of the extensions that would be
performed by TinySTM spontaneously, thus making a higher
fraction of reads fit into the current transactional snapshot. As
such, our revalidation task coincides with the stm_extend
API offered by TinySTM.

Upon attempting to commit a writing transaction1, all the
reads on shared objects are revalidated and a timestamp corre-
sponding to the value gvc+1 is installed for each written object
in the respective entry of the lock array. If the revalidation
succeeds, and provided that the thread managed to take the
locks for each written object2 the write set is committed to
memory.

2) The dev_extra_tick Linux Module: Another com-
ponent we exploit in our architecture, although in a re-devised
version suited for our purposes, is the dev_extra_tick
Linux loadable module presented in [3]. It allows to dynam-
ically control the LAPIC-timer on board of x86 processors
to enable the original operating system tick assigned to a
thread to be partitioned into finer grain extra-ticks, according
to a configurable scale parameter. This mechanism does not
change the planning of CPU usage among threads that is
put in place by the Linux kernel. Rather, the only effect of

1For read-only transactions the commit operation is unnecessary as no
shared object must be updated.

2Depending on the chosen locking strategy, this may happen at the time
shared-data are transactionally written (ETL, or Encounter-Time Locking) or
at commit time (CTL, or Commit-Time Locking).



typedef struct _control_buffer {
// thread is running in transactional context
unsigned int tx_on;

// revalidation took place since the last extra-tick
unsigned int recently_validated;

// asynchronous revalidation
unsigned int standing_tick

// first address of application code
void *range_start;
// last address of application code
void *range_end;

// timestamp of the transaction, if active
timestamp tst;

} control_buffer;

(a) The control buffer data structure

int extra_tick_delivery_check(control_buffer *buff){
int rv = buff->recently_validated;
buff->recently_validated = 0; // This is reset anyway

// The extra-tick must be filtered if any condition
// in the sequence of checks is satisfied
if (!buff->tx_on) return 0
if (!(buff->tst < *gvc)) return 0;
if (rv) return 0;
if (!range_ok()) {

buff->standing_tick = 1;
return 0;

}
// The extra-tick must be delivered through a control flow
// variation along the running thread
return 1;

}

(b) The extra-tick filtering function

Fig. 1: The extra-tick filtering logic and data structures

an extra-tick delivery is the one of resuming the user-space
execution of a thread from an instruction at a chosen address,
which corresponds to the address of some extra-tick handler.
To achieve this, a thread must request extra-tick deliveries to
the kernel by explicitly registering itself via the ioctl()
system call. Benchmarking data provided in [3] show that this
module induces negligible overhead for extra-tick deliveries on
commodity hardware, even under very short extra-tick periods
of the order of 50 microseconds. In the experimental section
we report further overhead data when using extra-ticks as
exploited in our STM-oriented management mechanism.

B. System Architecture and Implementation Details

A core part of our prompt revalidation architecture has been
based on modifying the dev_extra_tick module in order
to tailor it to the need of STM environments. In particular,
we modified the kernel-level handler of the hardware-timer
interrupt in such a way that only a subset of the issued extra-
ticks are actually delivered to user-space code for performing
transaction revalidation. The decision on whether to impose
a change of the current execution flow of the thread for
revalidation purposes is therefore directly actuated at kernel
level in a lightweight manner. Specifically, the extra-tick
filtering mechanism avoids bringing control back to the STM
layer if:

a) the thread running the application is not currently exe-
cuting a transaction;

b) the thread is running in a transactional context but the
transaction is surely consistent;

c) the thread is running in a transactional context but the
transaction has been already (very) recently revalidated;

d) the thread is running in a transactional context but control
is currently within an external library (such as the C
standard library) or non-application code (such as within
the STM layer itself).

As for point d), we note that interrupting the execution of
some “environmental” function to carry out revalidation would
require that function to be reentrant along the same thread,
which is not always guaranteed. The revalidation task could

indeed rely on the same function (e.g. a memory allocation
function) before the previous invocation has returned. This
is true for many standard-library functions, system calls and
for functions within the STM layer itself. Filtering the extra-
tick delivery, so as to avoid interrupting the execution flow
of a thread while running environmental code, allows us to
comply with any kind of environmental software. Also, it
makes our solution easily reusable independently of the actual
environmental services (if any) used by the STM layer itself
for carrying out the revalidation task. On the other hand,
simply filtering the extra-tick delivery would lead to lose
the rhythm of fine-grain revalidation. This issue is tackled in
our architecture via a capability we refer to as asynchronous
revalidation (with respect to the extra-tick arrival), which we
shall discuss shortly.

In order to discriminate and manage the scenarios in points
a)-d), we have re-engineered the dev_extra_tick module
so as to enable a thread registered to be extra-ticked to
communicate to the kernel the address of a control buffer that
is used to program and assist the delivery of extra-ticks to user-
space code. In particular, the control buffer can be programmed
to notify the hardware-timer interrupt handler supported by
dev_extra_tick whether any of the conditions in previous
points are in place. The structure of the control buffer is
presented in Figure 1a.

The control buffer content is managed in an application-
transparent manner via wrappers around the STM API func-
tions invoked by the application code. In particular, the
stm_start API offered by TinySTM has been wrapped so
that, right before returning control to the application layer, it
sets to 1 the flag tx_on within the thread control buffer, and
updates the tst field to the timestamp value assigned by the
STM layer to the transaction. Similarly, the stm_commit
API has been modified to reset the tx_on flag.

The recently_revalidated flag works like a sticky
flag to check whether revalidation has been already executed
in between two consecutive extra-ticks. After being initialized
to the value 0 by an invocation to stm_start, it is set
to 1 each time a revalidation not triggered via extra-ticks



takes place, e.g., because of a snapshot extension attempted
by the STM layer. This flag is checked by the hardware-timer
interrupt handler at kernel level to determine whether the extra-
tick needs to be actually delivered to the STM layer, and is
reset by the same handler (regardless of any possible filtering
condition) as a way to capture a notion of “time proximity”
with respect to the last occurred revalidation.

The other two fields in the buffer, namely range_start
and range_end, represent the range in which application
code is located in memory—these are the boundaries of the
application-specific modules within the text section of the ex-
ecutable, and are easily determined at compile/link time of the
application. When a transaction is interrupted in code living
outside of such range, the hardware-timer interrupt handler
notifies via the control buffer that it could not deliver that
extra-tick synchronously, and that such tick may be processed
by the STM layer in an asynchronous manner. This is exactly
the purpose of the standing_tick field. Asynchronous
processing takes place in our architecture by wrapping public
STM functions in TinySTM. The purpose of these wrappers is
to check if there is a standing tick and invoke the revalidation
task, if the flag is raised, upon function return. In other
words, this scheme leads our architecture to process an extra-
tick—which could not be delivered synchronously—as soon as
possible, i.e., right before returning control to the application
code after an invocation to some STM function3. In this way,
the rhythm of fine-grain revalidations tends to be preserved
independently of the interleaving between application and
environmental software along the same thread.

The kernel module is also notified of the memory address
where the global version clock gvc kept by TinySTM resides,
to compare gvc against the tst field within the thread control
buffer4. Most specifically, when tst is equal to gvc no
concurrent commit can have occurred, therefore the running
transaction is surely consistent and the interrupt handler can
simply return.

Overall, the high-level functioning of the filtering
logic we embedded within the hardware-timer inter-
rupt handler is encapsulated within the kernel function
extra_tick_delivery_check and works as in Fig-
ure 1b. The concrete kernel module implementation needs
to handle additional low-level details to make sure that per-
formance aspects are taken into account. To name a few of
such aspects, all data movements from and to the control
buffer (which resides in user-space memory) are regulated by
the fast __put_user and __get_user kernel functions,
which are deprived of any check for different code segments
or insufficient page permissions. Besides, the whole range of
addresses that make up the control buffer is properly mlock’d
so as to avoid having to swap the respective virtual pages in

3In our architecture we also offer wrappers for the most-used standard-
library functions, as a way to reduce the latency of asynchronous extra-tick
processing. This allows coping with a wide range of diverse application coding
schemes, where the interaction between application code and STM API can be
more or less prominent compared to the API offered by the standard library.

4In our implementation this field is updated each time a snapshot extension
occurs.

RAM along the critical path of the hardware-timer interrupt
handler.

C. The Extra-tick User-space Callback

A complementary component of our fine-grain extra-tick
delivery is represented by the extra-tick user-space callback.
It is the function that is invoked every time an extra-tick
successfully passes through all kernel-level filters and is de-
livered to user-space. Thanks to the hardware-timer interrupt
mechanism described in the previous section, the invocation
of the callback function is transparent to the application and
has the same effects as placing an explicit call to this function
in the application code. The important difference is that the
kernel-level interrupt handler places such calls dynamically
along the application code lifetime, and at periodic intervals.
Achieving the same dynamism and degree of precision using
alternative techniques (such as with dynamic binary software
instrumentation) would likely produce higher overheads at no
additional benefit.

A major drawback of this dynamic scheme is that the com-
piler cannot be aware of these run-time callback activations
and therefore does not make sure that the execution state is
properly preserved across such dynamic calls. In particular,
the current stack frame and value of registers are likely to
be exposed to unexpected writes in the extra-tick callback,
thus producing unrecoverable damages to the execution state
to be resumed upon callback return. To comply with all the
above issues, we adopted the following strategy. First of all,
stack frames are preserved in our software architecture by
having all application code automatically compiled with the
no-red-zone flag. This flag tells the compiler that all
function invocations must have an explicit stack frame and that
the address of any stack location in the current frame must be
greater than the stack pointer itself. On the other hand, the
value of registers is preserved by making sure that the extra-
tick callback handler is invoked within a trampoline sequence
which, regardless of the calling conventions adopted in the
application code, saves and restores the values of all user-
visible registers, including the status register. Therefore, the
extra-tick callback seen by the kernel module is the trampoline
itself, which eventually invokes the stm_extend API of
TinySTM for performing transaction revalidation.

To minimize the cost for saving CPU registers upon the
activation of the extra-tick callback, we also exploited low-
level optimizations such as saving/restoring the status register
via lahf/sahf instructions, as well as using fxsave and
fxrstor to efficiently copy floating-point registers.

Notice that, in case of asynchronous delivery of stand-
ing extra-ticks, the wrappers we developed for public STM
functions in TinySTM just call stm_extend before they
return, with no need to save the processor state since the
compiler guarantees that such explicit function calls are cor-
rectly managed—in terms of saving/restoring CPU registers—
in compliance with the specific reference ABI.



IV. EXPERIMENTAL EVALUATION

In this section we report results assessing the effectiveness
of our architecture5. We run experiments on a cluster of two
64-bit NUMA HP ProLiant servers, each equipped with four
2GHz AMD Opteron 6128 processors and 64 GB of RAM.
Each processor has 8 cores, for a total of 32 CPU-cores.
The STM application is deployed on one of the nodes—
acting as a back-end data layer—while the other node is used
for generating the workload of transactional requests. The
operating system is OpenSuse 13.2, with Linux kernel 3.16.7.
To study the effects of transaction revalidations occurring at
different frequencies along the application lifetime we have
used three different extra-tick intervals, namely 200, 100,
and 50 microseconds. They correspond to 1

5 , 1
10 , and 1

20 of
the original operating system timer-tick of 1 millisecond, or
equivalently to a scale parameter for the dev_extra_tick
module of 5, 10, and 20. Plots refer to such experiments with
the common prefix of PR (PROMPT-REVALIDATE), followed
by the suffix s5, s10, or s20 depending on the reference scaling
factor.

As a benchmark application, we have used a port of TPC-
C [7] to the STM environment. TPC-C is representative of
OLTP workloads and includes different transaction profiles
that simulate a whole-sale supplying items from a set of ware-
houses to customers within sales districts. In our experiments
we instantiated one district, and generated a workload made
up by requests spanning four different transaction profiles
specified by the benchmark, excluding the “delivery” profile
since it is conceived to be run in deferred mode as per TPC-C
specification.

We note that transactions belonging to different profiles
exhibit very different CPU demands and different data ac-
cess patterns, thus enabling a study of our proposal with
an articulated workload. In our porting to the target STM
environment, CPU demands range from tens of microseconds
to milliseconds, as shown in the table below, where we also
report the percentage mix of the different profiles.

ID Profile CPU demand % mix
1 new order ≈ 350 µsec 0.49
2 payment < 10 µsec 0.43
3 order status ≈ 10 µsec 0.04
4 stock level ≈ 650 µsec 0.04

Further, this diversity in the granularity of the different
profiles allows assessing our prompt revalidation architecture
against a non-favourable workload, which also includes trans-
actions that are highly unlikely to be hit by extra-ticks, given
their very fine-grain nature (i.e. payment and order status).
Hence, in this scenario, the capability of our architecture in
terms of possibility to hit running transactions via extra-ticks
is limited to a fraction of the overall workload.

We run our experiments with continuous injection of trans-
actional requests, using either 8, 16 or 24 threads for process-
ing the requests on the back-end data management node, and
6 threads for managing the socket pool from which the client-
generated workload comes. This scenario led to use at most

5Available at https://github.com/HPDCS/tinySTM-reval

0

1

2

3

4

5

6

8 threads 16 threads 24 threads

A
v
g

. 
th

ro
u

g
h

p
u

t 
(1

0
0

0
0

 t
x
/s

)

Baseline
OVH-ET s5

OVH-ET s10
OVH-ET s20

PR s5
PR s10
PR s20

Fig. 2: Throughput data.

94% of the CPU computational power at the server side, thus
avoiding hardware resources saturation that would affect the
reliability of the experimental analysis. We decided to vary
the number of threads used to process transactions in order to
assess our proposal with different levels of actual transaction
concurrency. In any case, at each thread count we always run
with the highest concurrency since we configured TinySTM
to rely on the CTL scheme (rather than ETL) for data-lock
acquisition. In all the configurations, we set the backlog of
pending transactional requests to be processed at the server
side to 4096, and we experimented with a sustained workload
leading the backlog to be close to saturation at any used
thread count. Each experiment with 8 threads entails 1 million
committed transactions, while all the experiments with 16
and 24 threads entail 2 and 3 million committed transactions,
respectively.

In Figure 2 we report the transaction throughput that we
observed in the different configurations, plus a baseline exper-
iment where our prompt revalidation architecture is disabled.
Each histogram refers to an average over 10 runs of the same
configuration (variance is not reported since the results for
different runs where within the 2% of each other, except for
profile 3). We have also included the throughput observed
when running the system without installing the extra-tick
user-space callback (denoted OVH-ET in the plots), as a
way to assess the overhead introduced by our kernel module
(particularly, by the extra-tick management mechanism).

By the results we see that the prompt revalidation architec-
ture allows improving the system throughput, compared to the
baseline, by up to 17% and up to roughly 8000 additional
txs/sec in absolute terms. The maximum gain is noted for
the 24 threads case, meaning that our prompt revalidation
mechanism leads to better exploit the increased parallelism
in the execution of transactions. As for OVH-ET, it can be
seen that it shows no more than 9% worse performance than
the baseline. More important, such performance loss tends
to slightly scale down at larger thread counts. Overall, the
data suggest that our mechanism provides better benefits in
the relevant scenario where there is a high degree of actual
transaction parallelism, which gives rise to many conflicts that
cannot be detected in time by the underlying STM platform
in case of the baseline revalidation scheme. Moreover, the



0.2

1.0

4.0

16.0

64.0

256.0

1024.0

1 2 3 4

8 threads

Baseline

PR s5

PR s10

PR s20

 

 

 

 

 

 

 

1 2 3 4

16 threads

 

 

 

 

 

 

 

1 2 3 4

0.2

1.0

4.0

16.0

64.0

256.0

1024.0

24 threads

Fig. 3: Number of successful validations with snapshot exten-
sion per commit (y-axis) per transaction profile (x-axis)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4

8 threads

PR s5

PR s10

PR s20

 

 

 

 

 

 

 

 

1 2 3 4

16 threads

 

 

 

 

 

 

 

 

1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

24 threads

Fig. 4: Total number of aborts (y-axis) per transaction profile
(x-axis) relative to baseline

overhead results show that we are able to consistently defeat
the actual overhead of the hardware-timer interrupt and of its
management logic, and that it does not undermine the benefits
of our prompt revalidation mechanism.

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4

8 threads

PR s5

PR s10

PR s20

 

 

 

 

 

 

1 2 3 4

16 threads

 

 

 

 

 

 

1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

24 threads

Fig. 5: Average turnaround (y-axis) per transaction profile (x-
axis) relative to baseline

A second batch of experimental results are reported in
order to show the performance of our system in terms of:
1) increase in the number of validations with snapshot ex-
tension per commit, 2) variation in the number of aborts
per profile, and 3) improved turnaround per profile. The
number of validations with snapshot extension per commit
(Figure 3) is definitely increased compared to the baseline,
with values that grow steadily while moving from s5 to s20.
This illustrates that our architecture is much more capable to
check the consistency of ongoing transactional work and re-
evaluate running transactions. As for the aborts (Figure 4),
we can see that our prompt revalidation scheme gives rise to
no more than 130% of the aborts experienced by baseline
for the two transactional profiles that constitute the major
portion of the overall workload, namely profiles 1 and 2.
However, a higher number of aborts does not necessarily imply
a longer turnaround time for completing a transaction. In fact,

in Figure 5 we see that the average turnaround per profile6 is
reduced by up to 25% for the most relevant profile—namely,
the new order transaction, which is long running and has a
very relevant weight in the workload mix. Also, a significant
worsening of the turnaround is noted only for the stock level
transaction, which has a marginal weight it the workload mix.
Overall, turnaround data are consistent with throughput data.

V. CONCLUSIONS

In this article we have presented and evaluated a mechanism
for early detecting conflicts in Software Transactional Mem-
ory (STM) applications, which is based on the application-
transparent prompt revalidation of running transactions. Such
mechanism relies on a software stack we implemented that
delivers fine-grain hardware-timer interrupts directly to user-
space code—more precisely, the STM layer—in order for it to
gain control independently of the activities currently carried
out in a thread. If that thread is running a transaction that is
already doomed to abort, its inconsistency is promptly detected
by the STM layer, thus leading to an early abort that reduces
the CPU cycles spent for inconsistent work. To achieve a better
trade-off between effectiveness and overhead of our software
stack, we have devised a filtering mechanism that prevents the
delivery of hardware-timer interrupts to the STM layer when
either the transaction is still surely consistent, or a revalidation
has been already performed recently. Experiments carried out
with a port of the TPC-C benchmark to STM suggest that our
solution is effective in reducing the waste of CPU cycles for
inconsistent work, thus improving the delivered performance.

REFERENCES

[1] http://www.intel.com/content/www/us/en/processors/core/5th-gen-core-
processor-family.html.

[2] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of word-
based software transactional memory. In Proceedings of the 13th ACM
Symposium on Principles and Practice of Parallel Programming, pages
237–246, 2008.

[3] A. Pellegrini and F. Quaglia. A fine-grain time-sharing Time Warp system.
ACM Transactions on Modeling and Computer Simulation, 27(1): 10:1-
10:25, 2017.

[4] A. Porfirio, A. Pellegrini, P. di Sanzo, and F. Quaglia. Transparent support
for partial rollback in software transactional memories. In Proceedings of
the 19th International Conference on Parallel Processing, pages 583–594,
2013.

[5] P. D. Sanzo. Analysis, classification and comparison of scheduling
techniques for software transactional memories. IEEE Transactions on
Parallel and Distributed Systems, 10.1109/TPDS.2017.2740285.

[6] N. Shavit and D. Touitou. Software transactional memory. In Proceedings
of the 14th ACM Symposium on Principles of Distributed Computing,
pages 204–213, 1995.

[7] TPC Council. TPC-C Benchmark, Revision 5.11. Feb. 2010.

6Turnaround is the latency from the start of transaction processing up to
its commitment, thus including the latency for intermediate aborted runs.


