805 research outputs found

    Human behavioural analysis with self-organizing map for ambient assisted living

    Get PDF
    This paper presents a system for automatically classifying the resting location of a moving object in an indoor environment. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a low-cost, low-power automated home-based surveillance system, capable of monitoring activity level of elders living alone independently. The proposed system runs on an embedded platform with a specialised ceiling-mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels and to detect specific events such as potential falls. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). A novel edge-based object detection algorithm capable of running at a reasonable speed on the embedded platform has been developed. The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 20% classification error, showing the robustness of our approach over others in literature with minimal power consumption. The head location of the subject is also estimated by a novel approach capable of running on any resource limited platform with power constraints

    Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities

    Full text link
    [EN] Fog computing is emerging an attractive paradigm for both academics and industry alike. Fog computing holds potential for new breeds of services and user experience. However, Fog computing is still nascent and requires strong groundwork to adopt as practically feasible, cost-effective, efficient and easily deployable alternate to currently ubiquitous cloud. Fog computing promises to introduce cloud-like services on local network while reducing the cost. In this paper, we present a novel resource efficient framework for distributed video summarization over a multi-region fog computing paradigm. The nodes of the Fog network is based on resource constrained device Raspberry Pi. Surveillance videos are distributed on different nodes and a summary is generated over the Fog network, which is periodically pushed to the cloud to reduce bandwidth consumption. Different realistic workload in the form of a surveillance videos are used to evaluate the proposed system. Experimental results suggest that even by using an extremely limited resource, single board computer, the proposed framework has very little overhead with good scalability over off-the-shelf costly cloud solutions, validating its effectiveness for IoT-assisted smart cities. (C) 2018 Elsevier Inc. All rights reserved.Nasir, M.; Muhammad, K.; Lloret, J.; Sangaiah, AK.; Sajjad, M. (2019). Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities. Journal of Parallel and Distributed Computing. 126:161-170. https://doi.org/10.1016/j.jpdc.2018.11.004S16117012

    Deep Learning for Semantic Video Understanding

    Get PDF
    The field of computer vision has long strived to extract understanding from images and videos sequences. The recent flood of video data along with massive increments in computing power have provided the perfect environment to generate advanced research to extract intelligence from video data. Video data is ubiquitous, occurring in numerous everyday activities such as surveillance, traffic, movies, sports, etc. This massive amount of video needs to be analyzed and processed efficiently to extract semantic features towards video understanding. Such capabilities could benefit surveillance, video analytics and visually challenged people. While watching a long video, humans have the uncanny ability to bypass unnecessary information and concentrate on the important events. These key events can be used as a higher-level description or summary of a long video. Inspired by the human visual cortex, this research affords such abilities in computers using neural networks. Useful or interesting events are first extracted from a video and then deep learning methodologies are used to extract natural language summaries for each video sequence. Previous approaches of video description either have been domain specific or use a template based approach to fill detected objects such as verbs or actions to constitute a grammatically correct sentence. This work involves exploiting temporal contextual information for sentence generation while working on wide domain datasets. Current state-of- the-art video description methodologies are well suited for small video clips whereas this research can also be applied to long sequences of video. This work proposes methods to generate visual summaries of long videos, and in addition proposes techniques to annotate and generate textual summaries of the videos using recurrent networks. End to end video summarization immensely depends on abstractive summarization of video descriptions. State-of- the-art neural language & attention joint models have been used to generate textual summaries. Interesting segments of long video are extracted based on image quality as well as cinematographic and consumer preference. This novel approach will be a stepping stone for a variety of innovative applications such as video retrieval, automatic summarization for visually impaired persons, automatic movie review generation, video question and answering systems

    Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring

    Get PDF
    DOI 10.1109/TCSVT.2008.2005612In this work, we study how continuous video monitoring and intelligent video processing can be used in eldercare to assist the independent living of elders and to improve the efficiency of eldercare practice. More specifically, we develop an automated activity analysis and summarization for eldercare video monitoring. At the object level, we construct an advanced silhouette extraction, human detection and tracking algorithm for indoor environments. At the feature level, we develop an adaptive learning method to estimate the physical location and moving speed of a person from a single camera view without calibration. At the action level, we explore hierarchical decision tree and dimension reduction methods for human action recognition. We extract important ADL (activities of daily living) statistics for automated functional assessment. To test and evaluate the proposed algorithms and methods, we deploy the camera system in a real living environment for about a month and have collected more than 200 hours (in excess of 600 G bytes) of activity monitoring videos. Our extensive tests over these massive video datasets demonstrate that the proposed automated activity analysis system is very efficient.This work was supported in part by National Institute of Health under Grant 5R21AG026412
    • …
    corecore