69 research outputs found

    Data-Driven Transducer Design and Identification for Internally-Paced Motor Brain Computer Interfaces: A Review

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems that establish a direct communication pathway between the users' brain activity and external effectors. They offer the potential to improve the quality of life of motor-impaired patients. Motor BCIs aim to permit severely motor-impaired users to regain limb mobility by controlling orthoses or prostheses. In particular, motor BCI systems benefit patients if the decoded actions reflect the users' intentions with an accuracy that enables them to efficiently interact with their environment. One of the main challenges of BCI systems is to adapt the BCI's signal translation blocks to the user to reach a high decoding accuracy. This paper will review the literature of data-driven and user-specific transducer design and identification approaches and it focuses on internally-paced motor BCIs. In particular, continuous kinematic biomimetic and mental-task decoders are reviewed. Furthermore, static and dynamic decoding approaches, linear and non-linear decoding, offline and real-time identification algorithms are considered. The current progress and challenges related to the design of clinical-compatible motor BCI transducers are additionally discussed

    Feature- and classification analysis for detection and classification of tongue movements from single-trial pre-movement EEG

    Get PDF
    Individuals with severe tetraplegia can benefit from brain-computer interfaces (BCIs). While most movement-related BCI systems focus on right/left hand and/or foot movements, very few studies have considered tongue movements to construct a multiclass BCI. The aim of this study was to decode four movement directions of the tongue (left, right, up, and down) from single-trial pre-movement EEG and provide a feature and classifier investigation. In offline analyses (from ten individuals without a disability) detection and classification were performed using temporal, spectral, entropy, and template features classified using either a linear discriminative analysis, support vector machine, random forest or multilayer perceptron classifiers. Besides the 4-class classification scenario, all possible 3-, and 2-class scenarios were tested to find the most discriminable movement type. The linear discriminant analysis achieved on average, higher classification accuracies for both movement detection and classification. The right- and down tongue movements provided the highest and lowest detection accuracy (95.3±4.3% and 91.7±4.8%), respectively. The 4-class classification achieved an accuracy of 62.6±7.2%, while the best 3-class classification (using left, right, and up movements) and 2-class classification (using left and right movements) achieved an accuracy of 75.6±8.4% and 87.7±8.0%, respectively. Using only a combination of the temporal and template feature groups provided further classification accuracy improvements. Presumably, this is because these feature groups utilize the movement-related cortical potentials, which are noticeably different on the left- versus right brain hemisphere for the different movements. This study shows that the cortical representation of the tongue is useful for extracting control signals for multi-class movement detection BCIs

    Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

    Get PDF
    Brain–computer interfaces (BCI) (also referred to as brain–machine interfaces; BMI) are, by definition, an interface between the human brain and a technological application. Brain activity for interpretation by the BCI can be acquired with either invasive or non-invasive methods. The key point is that the signals that are interpreted come directly from the brain, bypassing sensorimotor output channels that may or may not have impaired function. This paper provides a concise glimpse of the breadth of BCI research and development topics covered by the workshops of the 6th International Brain–Computer Interface Meeting
    • …
    corecore