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Background: Realization of online control of an artificial or virtual arm using information

decoded from EEG normally occurs by classifying different activation states or voluntary

modulation of the sensorimotor activity linked to different overt actions of the subject.

However, using a more natural control scheme, such as decoding the trajectory of

imagined 3D arm movements to move a prosthetic, robotic, or virtual arm has been

reported in a limited amount of studies, all using offline feed-forward control schemes.

Objective: In this study, we report the first attempt to realize online control of two virtual

arms generating movements toward three targets/arm in 3D space. The 3D trajectory of

imagined arm movements was decoded from power spectral density of mu, low beta,

high beta, and low gamma EEG oscillations using multiple linear regression. The analysis

was performed on a dataset recorded from three subjects in seven sessions wherein

each session comprised three experimental blocks: an offline calibration block and two

online feedback blocks. Target classification accuracy using predicted trajectories of the

virtual arms was computed and compared with results of a filter-bank common spatial

patterns (FBCSP) based multi-class classification method involving mutual information

(MI) selection and linear discriminant analysis (LDA) modules.

Main Results: Target classification accuracy from predicted trajectory of imagined

3D arm movements in the offline runs for two subjects (mean 45%, std 5%) was

significantly higher (p < 0.05) than chance level (33.3%). Nevertheless, the accuracy

during real-time control of the virtual arms using the trajectory decoded directly from

EEG was in the range of chance level (33.3%). However, the results of two subjects

show that false-positive feedback may increase the accuracy in closed-loop. The

FBCSP based multi-class classification method distinguished imagined movements

of left and right arm with reasonable accuracy for two of the three subjects (mean

70%, std 5% compared to 50% chance level). However, classification of the imagined

arm movement toward three targets was not successful with the FBCSP classifier as

the achieved accuracy (mean 33%, std 5%) was similar to the chance level (33.3%).

Sub-optimal components of the multi-session experimental paradigm were identified,

and an improved paradigm proposed.

Keywords: brain-computer interface (BCI), imagined 3D arm movements, online motion trajectory prediction,

multiple linear regression (mLR), filter-bank common spatial Patterns (FBCSP), electroencephalography, virtual

robotic arm
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INTRODUCTION

Brain-computer interface (BCI) research targets movement-
free communication between a human user and an electronic
device using information encoded in electrophysiological activity
of the brain without involving neuromuscular pathways. Two
significantly different approaches are commonly used to achieve
continuous control on electronic devices using non-invasively

recorded electrophysiological correlates of motor function
(van Gerven et al., 2009), i.e., sensorimotor rhythms (SMR)

based multi-class classification and movement/motion trajectory
prediction (MTP) (in some applications movement direction

classification). The first approach uses SMR based multi-class
classification to assign control commands to different cognitive

task-specific brain activity patterns, normally using discrete time
windows of information during the movement or movement
imagery (Pfurtscheller et al., 2006; Morash et al., 2008) to achieve
multi-functional control over objects in real (LaFleur et al.,
2013) or virtual space (Royer et al., 2010). For example, in
Yu et al. (2016) two distinct motor imagery tasks (imaginary
movements of the left and right hands) was used to generate
a multi-task car control strategy comprising of engine start,
moving forward, turning left, turning right, moving backward,
and stopping the engine. Furthermore, Feng et al. (2018) calls
attention to a subject-specific time latency between onset of the
motor imagery task and a feature window that maximizes the
accuracy of the classification method. Thus, using a subject-
specifically optimized latency of the feature window can lead
to an increased performance of the classification method. The
second approach (MTP) decodes the trajectory of an executed,
observed, or imagined limb movement, i.e., the time-varying
limb coordinates or velocity vectors are estimated. While the
application of SMR based BCIs using multi-class classification
to a wide range of devices may be possible, MTP BCIs focus
on prosthetic, robotic, or virtual limb control. The non-invasive
MTP approach was introduced by Georgopoulos et al. (2005)
for magnetoencephalography (MEG) in 2005, and it was applied
to electroencephalography (EEG) by Bradberry et al. (2010) in
2010. Most MTP BCI experiments have decoded single upper
limb movements toward different targets in 3D space (Bradberry
et al., 2010; Choi, 2013; Yeom et al., 2013). Finger movement
(Paek et al., 2014), drawing tasks (Georgopoulos et al., 2005),
or complex movements, such as walking (Presacco et al., 2011)
or drinking a glass of water (Heger et al., 2012) have also been
investigated using noninvasively recorded brain activity (EEG
or MEG).

Although MTP research aims at estimating 3D trajectories of
imagined movements, most MTP studies to date have focused
on prediction of executed movement trajectories. Prior to this
study, only a few MTP studies have presented results for non-
executed movements, e.g., movement observation in one (Ubeda
et al., 2017) or two orthogonal 2D plane(s) (Kim et al., 2015),
prediction of imagined movements in horizontal or vertical
directions (Ofner and Müller-Putz, 2015), estimating the speed
of an imagined grasp task (Yuan et al., 2010), or decoding 3D
trajectory of imagined arm movements (Korik et al., 2018b).

Regarding movement observation, Ubeda et al. in a recent
study (Ubeda et al., 2017) decoded 2D trajectories of executed

and observed movements with multiple linear regression (mLR).
However, in Ubeda et al. (2017) imagined movement (motor
imagery) task was not involved. Although Kim et al. decoded
3D trajectory of executed and imagined arm movements with
multiple linear regression (mLR) and kernel ridge regression
(KRR) methods (Kim et al., 2015), the motor imagery task was
performed in parallel with the observation of a human volunteer
or robot performing 3D arm movement. In Ofner and Müller-
Putz (2015) the motor imagery task was synchronized with a
metronome, the required imagery movement was not presented
during the motor imagery task, and the task involved performing
imagery of arm movements in vertical and horizontal directions
of a 2D plane and not a complex 3D movement. In contrast with
(Kim et al., 2015; Ofner and Müller-Putz, 2015; Ubeda et al.,
2017) wherein the executed, observed, or imagined movements
were decoded from the low delta EEG oscillations, typically
in the 0.5–2Hz frequency range, Yuan et al. (2010) showed
that, imagined clenching speed of the left and right hand can
be decoded from power of the EEG signal in mu and beta
bands using mLR. Finally, our recent study (Korik et al., 2018b)
showed that, 3D trajectory of imagined arm movements could
be decoded from EEG with an mLR model using bandpower of
mu, low beta, high beta, and low gamma EEG oscillations, and
that low delta band oscillations, although providing a limited
amount of information for decoding movement trajectories,
provided significantly lower decoding accuracy than the other
aforementioned bands for both executed and imagined 3D
arms movements.

Although the final goal of MTP research is a real-time
control of a virtual or artificial limb in a closed-loop using the
3D trajectory of imagined movements, to date, MTP studies
have focused on offline decoding methods. As reviewed in
Wolpert et al. (1998), motor learning is a complex process
wherein the cerebellum plays an important role in a closed-
loop application. Therefore, real-time feedback enables the brain
to adapt to the required cognitive state and it can be used to
improve the performance during amulti-session learning process
(Wolpert et al., 2011). Müller-Putz et al. (2018) presented two
closely related studies to classify, in closed-loop, six natural
single different joint movements of the same arm and three
different grasp types from motor-related cortical potentials
(MRCPs) in a narrow 0.3–3Hz band. In other studies such
different applications were studied as the control of a cursor
in 2D (Wolpaw and McFarland, 2004), classification of finger
movements in closed-loop (Lehtonen et al., 2008; Hotson et al.,
2016), open and grasp of a prosthetic hand (Fukuma et al.,
2015), controlling an upper-limb exoskeleton for stroke survivors
(Bhagat et al., 2016), use of a lower limb exoskeleton during
flexion and extension (Liu et al., 2017) and walking task (Lee
et al., 2017), and using a robotic arm to reach target objects in a
2D plane (Baxter et al., 2013;Meng et al., 2016). However, none of
these studies presented real-time control of a prosthetic, robotic,
or virtual arm using the 3D trajectory estimation of imagined arm
movements decoded from EEG.

Thus, following our offline studies (Korik et al., 2015,
2016a,b,c), a pilot study presented here was aimed at studying
the real-time control of two virtual arms in a closed-loop
using 3D trajectory of imagined arm movements decoded
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from EEG. The difference in the target classification accuracy
calculated from predicted 3D trajectories in runs using
different levels of assistance for calculating visual feedback
indicated that an over-balanced negative visual feedback
during online control may have had an impact on accuracy
during online task performance (Alimardani et al., 2014). As
target classification accuracy provided only limited success
for separating three corresponding targets per arm, key
elements of the experimental paradigm have been reviewed and
recommendations for modifications are proposed to support
future work targeting online control with EEG-based imagined
3D trajectory decoding.

METHODS

Subjects
Three right-handed volunteers (males, mean age 37 years)
participated in the experiment, which was conducted at the BCI
lab at the Intelligent Systems Research Centre (ISRC), Ulster
University, United Kingdom. All subjects were healthy without
any reported medical or psychological illness and/or medication,
and had normal or corrected to normal vision. Prior to the
research beginning, subjects were presented with information
about the experimental protocol and were asked to read and
sign an informed consent form to participate in the study, which
was approved by the Ulster University research ethics committee
(UREC). Subject 1 was experienced in classical motor imagery
BCI control while the other two subjects were naïve in motor
imagery BCI experiments.

Experimental Paradigm
The experiment comprised seven sessions, each session lasting
∼2 h including EEG preparation time. In each session, the
subjects were seated in an armchair positioned 1.5m in front
of a Fujitsu Siemens B22W-5 ECO 22′′ LCD monitor. Targeted
and decoded movements were displayed on the screen using
two virtual arms controlled by the Unity 3D Game Engine. The
positions of the three targets for each hand were selected in three
orthogonal directions from the view angle of the corresponding
home position, that is in horizontal (x), vertical (y), and depth (z)
directions from the left or right home position. This experimental
setup enabled standardized trajectories, i.e., the same orthogonal
distance between the home position of the virtual hand and each
of the corresponding targets (Figure 1). Before the beginning of
the experiments, subjects were requested to look forward and
maintain a constant head position, avoid teeth grinding and
to minimize unnecessary movements during task performance.
They were also asked to try to avoiding eye blinks during
imagined movement cycles.

Each of the seven sessions comprised three parts: an
offline part without feedback, an online part providing assisted
feedback (Equation 6), and an online part with direct
feedback. Details of the offline and online paradigms are
described below.

Offline Paradigm
The offline paradigm (Figure 2) comprised six runs, each run
comprising six blocks wherein each block comprised two sub-
blocks, each composed of four epochs:

FIGURE 1 | Virtual arm layout. Experimental setup for controlling virtual arms in 3D space. Green circles with labels LH and RH denote left and right home position,

respectively. Blue circles with labels LX, LY, LZ and RX, RY, RZ denote target positions for the left (L) and right (H) hand in the horizontal (X), vertical (Y), and depth (Z)

planes, respectively. The movement of the virtual arms was restricted to an area indicated with the cubic grid. The numbers above the grid on the left and right side of

the screen indicate Cartesian coordinates of the virtual arm. The slider bars above the Cartesian coordinates and the time indicator bar at top of the screen were not

used in this study.
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FIGURE 2 | Timing of the offline paradigm. (A) Timing of the imagined movement cycles in sub-blocks 1 and 2 between a home position and one of the three

corresponding target positions. In both sub-blocks, the subject performed the same motor imagery movement cycle that comprised home-to-target (4 s), pause at

target (2 s), target-to-home (4 s), and pause at home (2 s) intervals. However, visual representation of the required movement was only displayed in sub-block 1. (B) A

block comprised a block initialization period and two sub-blocks. (C) A run comprised a run initialization period and six blocks corresponding to the six targets in a

randomized order (the six targets comprised three targets per arm).

• Home-to-target: a movement period between the home
position and a target position synchronized with a 4 s auditory
cue (6 kHz tone)

• Pause-at-target: a 2 s pause at the target position without an
auditory cue

• Target-to-home: a movement period between the target
position to the home position synchronized with a 4 s auditory
cue (4 kHz tone)

• Pause-at-target: a 2 s pause at the home position without an
auditory cue.

Ten seconds before commencing each run, a voice message
was played to inform the subject about the upcoming run.
Four seconds before commencing each block, a vocal message
informed the subject about the actual task which was for the left
hand: “move left hand to right,” or “move left hand to top,” or
“move left hand forward.”

Subjects were asked to kinesthetically imagine their own arm
moving in the trajectory illustrated by the virtual arm during
the first imagined movement cycle (sub-block 1). In the second
imagined movement cycle (sub-block 2), the virtual arm was idle
at the home position and the subject was instructed to perform
an imagined arm movement in the same trajectory as it was
performed during the first imaginedmovement cycle (i.e., in sub-
block 1). Subjects were asked to kinesthetically imagine their own
arm moving in the trajectory illustrated by the virtual arm in the
first trial (sub-block 1).

For the first sub-block, when the required movement was
displayed on the screen, the speed of the virtual arm in

the forward direction started from zero, reached a maximal
value at half way between the home and the target position,
and kept constant until the virtual arm reached the target
position. After the pause epoch at the target position, the speed
of the virtual arm in the backward direction started from
zero, reached a maximal value at half way between the target
and the home position, and kept constant until the virtual
arm reached the home position. Velocity trajectories of the
virtual arm during all possible movement periods are illustrated
in Figure 3.

The BCI was trained using a dataset recorded during the
offline runs of the session. The time duration of each sub-
block was 12 s (Figure 2A), and the time duration of each
block, consisting of a voice message and two sub-blocks, was
28 s (Figure 2B). The order of the imagined movements toward
different targets (corresponding to LX, LY, LZ, RX, RY, and RZ
directions, illustrated in Figure 1) was randomized in each run
and distributed over the six blocks. The time duration of each run
was 178 s (Figure 2C), and the inter-runs resting period lasted
40 s. Thus, the total duration of the offline part of the session
comprising six offline runs was 22 min.

Online Paradigm
The online experimental paradigm using assisted and direct
feedback (Figure 4) followed the same structure comprising six
runs wherein each run comprised six blocks.

Ten seconds prior to the commencing of each run a voice
message was played to inform the subject about the upcoming
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FIGURE 3 | Velocity trajectories used for the offline part of the experiment. The figure represents the velocity of the left (A) and right (B) virtual hand movement during

the first sub-block (pause periods are not presented). Label “H” indicates the left (A) or right (B) hand at the home position. Labels LX, LY, LZ and RX, RY, RZ indicate

X, Y, and Z, positions of the left (A) and right (B) hand, respectively.

FIGURE 4 | Timing of the online paradigm. (A) Timing of the virtual arm control between the home position and one of the three corresponding target positions. The

imagined movement cycle comprised home-to-target movement (7 s), pause [at movement end-point (2 s) + at target (4 s)], target-to-home movement (7 s), and

pause [at movement end-point (2 s) + at home (4 s)] intervals. (B) A block comprised a block initialization period and an imagined movement cycle. (C) A run

comprised a run initialization period and six blocks corresponding to the six targets in random order (the six targets comprised three targets per arm).

run. Four seconds prior to the commencing of each block, a
vocal message informed the subject about the actual task which
was for the left hand: “move left hand to right,” or “move left
hand to top,” or “move left hand forward.” For each block, the
corresponding virtual arm was controlled from a home position
toward a target position (forward movement) and back to the
home position (backward movement). The forward movement
was synchronized with a 7 s auditory cue (6 kHz tone), which was
muted earlier if the virtual hand reached a position where the
virtual hand was closer to the target positions than 20% of the

distance between the home and actual target positions. At the end
of the movement, the virtual arm was held at its current location
for a short pause (2 s) after which the virtual hand relocated at
the target position for a 4 s pause. Next, the backward movement
was synchronized with a 7 s auditory cue (4 kHz tone), which
was muted earlier if the virtual hand reached a position where
the virtual hand was closer to the home positions than 20% of
distance between the target and actual home positions. At the end
of the movement, the virtual arm was held at the current position
for a short delay (2 s) after which the virtual hand was re-located
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at the home position for a 4 s pause. Thus, themaximumduration
of each movement block was 30 s (Figure 4B) consisting of the
block initialization voice message (4 s) and the movement cycle
with maximal duration of 26 s (Figure 4A). The order of the
imagined movements toward different targets was randomized
in each run and distributed over the six blocks. The maximum
duration of each run was 190 s (Figure 4C), and subsequent
runs were separated by an inter-run resting period lasting 40 s.
Thus, the maximum duration of the online control comprising
six online runs, was 23min for both types of virtual arm control
method which described below at “Online signal processing for
MTP” headline.

Data Acquisition
EEG was recorded from 30 channels and electrooculography
(EOG) was recorded from two channels using an EEG system
with 32 active EEG sensors with two cross-linked 16 channels
g.BSamp bipolar EEG amplifiers and two AC type g.GAMMbox
(g.GSamp 16 channels, 2017). The EEG reference electrode was
positioned on the left earlobe. The EEG was amplified (gain:
20,000) and sampled (A/D resolution: 24 Bits, sampling rate:
120 samples/s). The ground electrode was positioned over the
AFz electrode location according to the international 10/20 EEG
standard. The electrodes placement configuration was designed
to cover multiple brain areas as the same EEG cap was used
for multiple, parallel running studies wherein different cortical
areas were studied. In this study, the participants were asked to
perform imagined kinesthetic movements, thus, EEG channels
near the sensorimotor area were more likely to provide task-
related information during imagined kinesthetic movements
(Neuper et al., 2005) than signals over other cortical areas. To
that end, only 16 channels with a homogeneous distribution near
the sensorimotor cortical areas were used in this study (Figure 5).

Data synchronization among EEG dataset (EEG signals)
and kinematic dataset (velocities and positions of the virtual
arms during the offline and online runs) was ensured by time
stamps stored simultaneously with the data recording in both
datasets. The communication between the EEG data acquisition
software in Simulink, the code of the experimental protocol
in Visual Basic, and the virtual arm application in Unity 3D
Game Engine was handled by a user datagram protocol (UDP)
based communication.

Offline Signal Processing for MTP
The BCI was calibrated in each session using the EEG-kinematic
dataset recorded at the beginning of each session during the
offline run. The optimal BCI architecture was used for predicting
imagined arm movements in the same session during the
online runs.

Pre-processing
The quality of the recorded EEG was inspected manually for all
channels, and EEG channels with high-level noise were removed
from further processing. To reduce commonmode artifacts, EEG
was re-referenced using a CAR filter as described in Equation (1)

FIGURE 5 | EEG montage. EEG and ground channels used for this study are

labeled. Non-labeled black channels were also recorded, but were not used in

this study (see the explanation in the text body).

according to McFarland et al. (1997) and Lu et al. (2013):

VCAR
i =VER

i −

N
∑

j= 1

VER
j /N (1)

where VER
i is the potential between electrode i and the reference

and N is the number of EEG channels used for signal processing.
Our prior experiments showed that, bandpower of mu, low

beta, high beta, and low gamma EEG encode more information
from an imagined arm movement than slow cortical potentials
(SCPs) in the low delta band (Korik et al., 2018b), therefore, in
this study, band power of 8–12Hz (mu), 12–18Hz (low beta), 18–
28Hz (high beta), and 28–40Hz (low gamma) oscillations were
used for decoding imagined kinesthetic movements from EEG.

The time-varying band power was calculated based on the
re-referenced EEG signals using the four non-overlapped EEG
bands (described above) using a sliding window of 250ms width
with an 8.33ms time lag between two adjacent windows. The
band power within a time window was calculated by averaging
the square values of the band-pass filtered EEG potentials as done
in the previous offline study (Korik et al., 2018b) and described
in Equation (2):

Bfn[t] =

∑M
m=1

(

P(m)fn[t]
)2

M
(2)

where Bfn[t] is the band power value calculated from EEG
channel n, using band-pass filter f, within a 250ms width time
window with offset t. M is the number of samples within a time
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window and P(m) is themth band-pass filtered sample within the
time window.

The trajectories of the virtual arm movements displayed
during the first sub-block (Figure 3) were used as a template
of expected imagined movements performed in both sub-blocks
(i.e., when virtual arm movement was displayed and when it
was not displayed on the screen). Thus, as no visual feedback of
the hand was given in the second sub-block, it was guaranteed
that the EEG signal was not affected by movement observation
related artifact.

Kinematic Data Prediction
The kinematic data estimation module was prepared based on
Bradberry et al. (2010) and applied in previous MTP studies
(Korik et al., 2015, 2016a,b,c, 2018b). To enable decoding
information from more than one EEG band, here we use
features from multiple bands. The BCI was trained separately for
decoding velocity of the left and right hands in three orthogonal
directions. The core equation of the kinematic data estimation
module is described in Equation (3):

vij [t]= aij+

N
∑

n=1

B
∑

f=1

L
∑

k= 0

bijnfkSjnf
[

t−k
]

+εij [t] (3)

where aij and bijnfk are regression parameters that learn the

relationship between the input Sjnf
[

t − k
]

time-varying feature
vector and the output vij [t] time-varying kinematic data. vij [t]
contains the three orthogonal velocity components of the arm at
left and right hand joint positions, Sjnf

[

t − k
]

is a standardized
temporal difference of EEG band power values in frequency band
f at sensor n at time lag k. Index i denotes spatial dimensions
in the 3D orthogonal coordinate system, index j denotes joints
at left and right hand positions, N is the number of sensors, L
is the number of time lags, and εij [t] is the residual error. The
embedding dimension (or model order) is the number of time
lags plus one (L+ 1), i.e., the number of time lagged samples that
are selected from each channel for estimating kinematic data at
time point t. The standardized difference for using band power
features is described in Equation (4):

Sjnf [t] =
Bjnf [t]

σBjnf
(4)

where Bjnf [t] is the value of the input time-series at time t (i.e., a
band power value) and σBjnf is the standard deviation of Bjnf .

The time lag between two estimations (i.e., the time lag
between two samples in the predicted kinematic dataset) was set
to 25ms to match the 40FPS refresh rate of the virtual arm. As a
final post-processing step, jitters in the predicted kinematic data
were reduced with a smoothing filter using a moving window
with nine samples width (i.e., 200 ms).

Optimal Parameter Selection and Training for the

Online MTP BCI
The optimal EEG channel set, time lag and embedding
dimensions (i.e., number of time lags +1) providing the highest
test accuracy (Box 1) were selected with a recursive method

described in this section. The test accuracy was measured using
the leave-out-one cross-validation (CV) technique. The number
of the folds used for CV was assigned to six and each fold was
matched one of the six offline runs (Figure 6). Thus, the test
dataset in the test folds was never used for training. The decoding
accuracy of the test data was calculated as described in Box 1.

In the first step of the recursive parameter selection
method, input parameters of the kinematic data estimation
module (according to Equation 3) comprised all of the sixteen
preprocessed channels. In each recursive step, the channel that
achieved the lowest score in the previous step was omitted.
The estimation module was trained for each combination of
the investigated time lag parameters (i.e., investigated time lags:
50, 100, 200ms, and number of the time lags: 1, 2, 4, 8). The
test accuracy (described in Box 1) was calculated and stored,
separately for each time lag parameter option. The range of the
investigated time lag parameters was assigned using experience
gained from previous offline MTP studies involving decoding
imagined arm movements from bandpower of EEG (Korik et al.,
2016b, 2018b).

EEG channels used in the current recursive step have been
ranked using a similar linear regression parameter scoring
method described by Sanchez et al. (2004) and Bradberry
et al. (2010). The channel scores were obtained as described in
Equation (5):

Rjnf =

∑L
k = 0

√

∑3
i =1b

2
ijnfk

L+1
(5)

where Rjn is the score of channel n according to velocity
estimation of joint j (left or right hand) while bijnfk variables are
regression parameters obtained from the training (indices i, j,
n, f, k are defined in Equation 3). Scores obtained from six test
folds in four frequency bands were averaged and the channels
were ranked based on the final scores for each of the two hand
joints, separately. The channel with the lowest rank was marked
and omitted from the following recursive step. The recursive
method involving training, testing and channel ranking steps was
repeated until all channels were ranked.

The number of the EEG channels selected for the online
application was between six and twelve. An EEG channel set
that scored the highest decoding accuracy rates for each arm was
selected for the online BCI runs along with the corresponding
time lags and linear regression parameters.

A general overview of the signal processing steps used for the
offline analysis is illustrated in the offline section of Figure 8.

Online Signal Processing for MTP
The online part of the experiment followed a protocol illustrated
in Figure 4. EEG data acquisition and preprocessing (using a
Simulink module designed for online signal processing) was
similar to the module, which applied to the offline analysis.
The velocity prediction for left and right hand in three
orthogonal spatial dimensions was realized with six separated
linear regression modules. Each module was calibrated using
an optimal BCI architecture (i.e., EEG channel set, time lag,
and number of the time lags) and linear regression parameter
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BOX 1 | Accuracy metrics.

As accurate control of the virtual arm requires minimizing the 3D distance between reconstructed (predicted) and expected (target) coordinates of the controlled joint

(i.e., length of the 3D position error vector), the mean value of this error value was calculated over each movement time-point (see details below):

Target (and reconstructed) kinematic data in each fold involve six movement cycles, each movement cycle performed between a home position and one of the three

corresponding target positions, and comprises a movement interval in the forward direction (home to a target) and a movement interval in the backward direction

(target to home) resulting in twelve trials per fold. As the speed of the moving virtual arm was normalized to a constant value in the online application, the length of

the target and reconstructed velocity vectors was also normalized to the value of one as described in Equation Box 1 (1), below:

v∗

i =
vi

∑3
i =1 (vi)

2
, v′ i

∗
=

v′ i
∑3

i =1 (v′ i)
2

Box 1 (1)

where v∗i and v′
∗
i are the normalized target and normalized reconstructed velocity vector components, respectively, and vi and v′ i are the original (non-normalized)

target and original reconstructed velocity vector components, respectively, according to the spatial dimension i.

The v∗i (normalized target) and v′
∗
i (normalized reconstructed) velocity values were converted into relative coordinates by integrating velocity values from sample

points in each trial, separately, according to the three spatial dimensions as described in Equation Box 1 (2), below:

xtim =

∑m
ω =1 v

∗
tiω

m
, x′ tim =

∑m
ω =1 v

′∗
tiω

m
Box 1 (2)

where xtim targeted relative coordinates and x′ tim and reconstructed relative coordinates were computed from v∗tiω normalized target and v
′∗
tiω and normalized

reconstructed velocity values, respectively, involved in the corresponding trial t according to spatial dimension i∈[1,2,3]. The sample points in a trial are indexed

by m.

Each of the twelve movement trials within a fold was converted into relative coordinates, separately, using the first sample in each trial as a reference point of

zero for the actual trial. The relative coordinate based error calculation eliminated a cumulative error in coordinates that could have resulted by integrating the error

resulting from velocity values over multiple trials. The reconstruction error within a trial was computed by the mean value of 3D distance between reconstructed and

expected (target) coordinates across the entire trial as describe in Equation Box 1 (3), below:

εt =

∑M
m =1

√

∑3
i =1

(

xtim − x
′

tim

)2

M
Box 1 (3)

where et is the reconstruction error in trial t calculated from 3D distance of xtim relative target and x
′

tim is the relative reconstructed coordinates in trial t. M and m are

the number of the samples and their index in a trial, respectively, and the spatial dimensions are indexed with i.

The mean value of εt reconstruction error calculated from twelve trials in six movement cycles within a test fold was used as a metric to measure decoding accuracy

in the test fold.

FIGURE 6 | Structure of the applied leave-out-one cross-validation (CV) technique. (A) Each fold was associated with a run and comprised data from the second

sub-block in which the virtual arm did not move (imagined arm movements were synchronized with an auditory cue). (B) Illustration of six possible options for

separating training and test data using 6-fold leave-out-one CV.

setups resulted from the offline analysis. The sampling rate of
the estimated kinematic data was down-sampled to 40Hz, and
a smoothing filter using a nine samples width (i.e., 200ms)
moving window was applied as used for the offline analysis.

The communication between the Simulink module, Visual Basic
software, and the Unity 3D Game Engine was handled with UDP
using the same protocol that was applied to the offline part
of the experiment. Predicted velocity vectors were normalized
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as described in Equation Box 1 (1) and hand positions were
displayed on the screen using assistance or without assistance
according to the online paradigm. In runs involving assistance,
the displayed coordinates were calculated using an assistance-
level specific linear combination of the targeted and predicted
velocity vectors as described in Equation (6):

v
∗

assisted[t] = ρv
∗

target [t]+ (1−ρ) v
∗

predicted [t] | ρ =
a

100%
(6)

where v
∗

assisted
, v

∗

target , v
∗

predicted
are normalized assisted, targeted,

and predicted velocity vectors, respectively, and assistance ρ ∈[0
. . . 1] was assigned with a ∈ [0 . . . 100%] assistance level. That
is for a zero level of assistance (ρ = 0) the displayed positions of
the controlled virtual hand were calculated from the normalized
predicted velocity vector without using the targeted velocity
vector for correction.

The online part of the experiment with assisted feedback used
50% assistance level in the first run. The assistance level was
decreased by 6% in each run resulting in 20% assistance level at
the sixth run. Finally, the online part of the experiment providing
the direct visual feedback used 0% assistance level. That is the
subject performed the task without assistance for the third part
of each session where the displayed position of the hand was
calculated directly from the predicted velocity vector.

The target, predicted, and displayed kinematic data along with
their corresponding EEG signals were stored for later evaluation
of the online results. A general overview of the signal processing
steps used for the online analysis is illustrated in the online
section of Figure 8.

Evaluation of the Offline and Online MTP
Results
This section describes evaluation methods indicating the
accuracy of the offline and online results. That is the accuracy
of predicted and displayed virtual hand coordinate trajectories.

Methods to Prepare Figures Comparing Calculated

and Target Trajectories
Here we describe the methods used for generating the figures that
compare estimated and targeted trajectories of the virtual hands
for the following five options:

Predicted trajectories from offline runs without
visual feedback compared with targeted trajectories
(Supplementary Figure 1)
Predicted trajectories from online runs using assisted

visual feedback compared with targeted trajectories
(Supplementary Figure 2)
Predicted trajectories from online runs using direct

visual feedback compared with targeted trajectories
(Supplementary Figure 3)
Displayed trajectories from online runs using assisted

visual feedback compared with targeted trajectories
(Supplementary Figure 4)
Displayed trajectories from online runs using direct

visual feedback compared with targeted trajectories
(Supplementary Figure 5).

It should be noted, that the predicted and displayed coordinates
might be different as the displayed coordinates were limited to
the area wherein the virtual arm was enabled to move (Figure 1)
while as the coordinates of the predicted trajectories were not
limited to the displayed area.

The sub-plots in Supplementary Figures 1–5 involve:
A comparison of estimated (predicted/displayed) and target

trajectories using an averaged trajectory from 6-folds presented
in subplot (A) of Supplementary Figures 1–5. The estimated
trajectories for seven sessions, a cross-session average of
estimated trajectories, and the targeted trajectory were plotted
in the same sub-plot for each subject, hand, and Cartesian
coordinates (i.e., x, y, z), separately. The comparison of
estimated and targeted trajectories indicates how accurately an
estimated (predicted and displayed) trajectory fits the target
trajectory by comparing them in each of the three spatial
dimensions, separately.

To compare the distance (error value) between the calculated
hand position and each of the three targets (subplot (B)

of Supplementary Figures 1–5), and home positions [subplot
(C) of Supplementary Figures 1–5] the pairwise 3D distance
between them was calculated for each subject and hand using
a 3D distance metric presented in Box 1 and described in
Equation (7):

djs[t] =

√

√

√

√

3
∑

i =1

(

xjsi[t]−x
′

jsi[t]
)2

(7)

where djs[t] is the 3D distance of xjsi[t] target and x
′

jsi[t] is

the predicted coordinates at time t. Subjects are indexed with
j, sessions are indexed with s, and the spatial dimensions are
indexed with i.

Results displayed in Supplementary Figures 1–5 were
analyzed and compared by visual inspection.

Time-varying Decoding Accuracy of Predicted

Trajectories
In order to calculate time-varying decoding accuracy (DA)
for each subject and hand across all sessions and runs, trials
belonging to the same subject and hand were pooled together
from all sessions and runs. The distance between predicted
and targeted hand coordinates was computed for each sample
point. The classification of the predicted coordinates at a sample
point within a trial was labeled as “success” if the 3D location
designated by the predicted coordinates was closer to the actual
target than to non-target locations for the trial. A ratio of the
number of “successful” and “un-successful” classifications was
calculated for each sample of each trial, session, run, hand and
subject. Finally, the “success” classification ratio was converted
into a percentage value and presented in the form of time-varying
DA plots (Figure 9) indicating how the DA varied over time in
the analyzed trials.

In order to validate the results obtained in the time-
varying DA analysis, a permutation test was performed. For
the permutation test, the order of the predicted trajectories
associated with three different targets was randomly permuted
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for each subject and hand. During the trajectory randomization,
3D coordinates of the virtual arm (calculated by three separate
MTP models) were associated and handled together. Time-
varying DA plots generated from the original and randomly
permuted datasets were displayed in the same sub-plot for each
subject and hand, separately, and compared (Figure 9). Finally,
the time-varying DA obtained using the original and randomly
permuted datasets were compared using the Wilcoxon non-
parametric test.

Multi-class Classification Using Filter-Bank
Common Spatial Patterns
The offline dataset was also assessed using a filter-bank
common spatial patterns (FBCSP) (Ang et al., 2008) and mutual

TABLE 1 | Investigated class setups for FBCSP-based multi-class classification.

Analysis

ID

Class

number

Investigated classes

A 2-class

classification

Motor imagery of the left vs. right arms

(Independently from the movement

direction)

B 3-class

classification

Imagined movement of the left hand

toward three targets (Left X, Left Y, Left Z)

Imagined movement of the right hand

toward three targets (Right X, Right Y,

Right Z)

C 2-class

classification

Task performance in sub-blocks 1 vs.

sub-block2 (Handling together all tasks in

both sub-blocks independently from task

types)

information (MI) selection (Pohjalainen et al., 2015) framework;
a well-established multi-class classification technique used in
BCI applications. The applied multi-class classification method
enables discriminating between different types of imagined
movements. Classification of imagined arm movements
performed (A) with left vs. right arm and classification of
imagined arm movements performed (B) with the same arm in
three orthogonal directions provides information to enable the
control of two virtual arms in 3D. Furthermore, we wanted to
know (C) whether any differences could be detected in motor
imagery tasks performed during sub-blocks 1 vs. sub-block2.
Thus, we investigated, with an FBCSP method could accurately
classify imagined arm movements performed (A) with different
arms, (B) with the same arm in three orthogonal directions, and
(C) in sub-blocks 1 vs. sub-block2 (Table 1).

The FBCSP based multi-class classification method used in
this study was described in a recent study aimed at classifying
mental imagery of five primitive shapes (Korik et al., 2018a). A
general overview of the applied FBCSP method is presented in
Figure 7.

Pre-processing
Frequency filtering: signals were band-pass filtered in six
non-overlapped standard EEG bands [0.5–4Hz (delta), 4–8Hz
(theta), 8–12Hz (mu), 12–18Hz (low beta), 18–28Hz (high
beta), and 28–40Hz (low gamma)] with Simulink using high-
pass and low-pass FIR filter modules (band-pass attenuation 0
dB, band-stop attenuation 60 dB).

Multi-class Classification Using FBCSP
The multi-class classification module involves multiple two-class
classifiers (target vs. non-target classes) to separate each target

FIGURE 7 | Filter-bank common spatial patterns (FBCSP) based multi-class classification method. The block diagram illustrates the structure of the FBCSP based

multi-class classification method using a mutual information (MI) selection module and linear discriminant analysis (LDA) based classifier.

Frontiers in Neurorobotics | www.frontiersin.org 10 November 2019 | Volume 13 | Article 94

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Korik et al. Decoding Dual Imagined 3D Arm-Movements

class from the other (non-target) classes. Thus, the number
of the two-class classifiers equaled the number of the classes.
The FBCSP method (subject-specific temporal-spatial filter)
was applied to each 2-class classifier using the six band-pass
filtered EEG channels to perform an autonomous selection of
key temporal-spatial discriminative EEG characteristics. Spatial
filtering: a CSP module was applied to each 2-class classifier as
a feature extraction method to create spatial filters to maximize
the discriminability of two classes by maximizing the class
conditional variance ratios (Lotte and Guan, 2010, 2011).

The number of the CSP filter pairs for each 2-class classifier
for each subject and frequency band was reduced and optimized
based on the obtained CSP discriminative filter pairs (described
above). Feature extraction: the time-varying log-variance of the
CSP filtered EEG was calculated using a 1 s width sliding window
with a 200ms time lag between two windows. The offset of the
sliding window was set to cover the time interval between −4 s
(prior) and 12 s (after) the onset of the imagined movement.
This interval included a full imaginedmovement cycle (presented
in Figure 2A). Feature selection: the mutual information (MI)
between features and associated target class using a quantized
feature space was estimated (Pohjalainen et al., 2015) to identify
features that can discriminate a target class from other (non-
target) classes. 2-class classification: A regularized LDA (RLDA)
algorithm [from the RCSP toolbox (Lotte and Guan, 2010)] was
applied to classify the extracted features to the actual target
or non-target class. Multi-class classification: the final DA for
multi-class classification was decided by assessing the signed
distance in the 2-class discriminant hyper-plane for each target
vs. non-target related binary classifiers.

Optimal Parameter Selection, Decoding Accuracy,

and Cross-Validation
The optimal parameter selection and multi-class DA calculation
were processed in the framework of the inner-outer (nested)
cross-validation (CV). The inner-outer CV enables testing and
selecting a range of parameters using an inner fold CV and
calculating the final test results in the outer fold CV using the
optimal architecture selected by the inner fold CV. For both levels
in the inner-outer CV (i.e., for inner and outer level CVs), a leave-
out-one CV was applied (described in Figure 6). A dataset that
was used for training at the outer level leave-out-one CVwas spilt
into test and training fold configurations during the inner level
leave-out-one CV. This data separation guarantees that the test
data of the outer level CV would not be used in the inner level for
parameter optimization.

For single session analysis (using a dataset recorded from
a single session), six outer folds were assigned (matching the
six runs) and five inner folds were assigned. For multi-session
analysis (using datasets from seven sessions of the same subject),
the number of the outer folds was set to seven (matching the
number of the sessions) and the number of the inner folds was
set to six. During the inner fold CV the optimal architecture
selection denoted the number of the selected CSP filter pairs, the
number of the quantization levels for MI processing module, and
the number of the selected feature at the output of theMImodule.

Further details of the inner-outer CV is described in Korik et al.
(2016a).

The Wilcoxon non-parametric test was used to validate the
difference of DA prior the task performance pause/resting period
(−1 s) and at the maximal peak accuracy occurring during the
motor imagery task (0–10 s) is significant (p < 0.01).

The analysis was carried out using a dataset comprising trials
from one of the two sub-blocks, separately. First sub-block: the
task was performed during visual and audio stimuli (i.e., the
virtual arm displayed the movement during task performance).
Second sub-block: the task was performed during audio cue
without displaying the movement (i.e., the virtual arms did
not leave the home position during the task performance).
Furthermore, an additional analysis was performed using a
dataset involving trials from both sub-blocks. The time-varying
DA was calculated and plotted from final test results (outer test
folds) based on single-session and multi-session analysis.

In order to identify frequency bands and cortical areas
that provide the highest contribution for DA, an analysis was
performed using a multi-session dataset involving CSP filters
and MI weights of the FBCSP classifiers trained for each subject,
session, and outer fold, separately. For the frequency analysis, the
mean values of MI weights (used for weighting features of the 2-
class classifiers) were calculated in each analyzed frequency band,
separately. The obtained results were plotted in form of subject-
specific heat maps indicating time-varying DA contribution of
the analyzed frequency bands. For the topographical analysis,
the averaged pattern of the MI weighted CSP filters (used for
generating input for feature extraction prior the MI and 2-class
classifier modules) were calculated in each analyzed frequency
band at the time point that provided maximal DA. The cross-
subject average of theMI weighted CSP filters was plotted in form
of cross-subject topographical map for each analyzed frequency
band, separately, indicating DA contribution of different cortical
areas in the relevant frequency band.

A summary of the analyzed class setups options is presented
in Table 1.

Methods Summary
A general overview of the methods used in this study is presented
in Figure 8.

RESULTS

MTP Results From the Offline and Online
Parts of the Sessions
A visual inspection of the results presented in
Supplementary Figures 1A1–A3 for most sessions showed that
the speed of the imagined identical (non-periodic) movements
was estimated correctly by the applied MTP model in the
direction that matched the direction of the imagined movement.
However, visual inspection of the results also showed that the
predicted velocity vector in 3D space had a significant error
resulting from incorrectly predicted velocity vector components
in the non-target directions (i.e., in directions that did not match
the direction of the imagined movement). Furthermore, a high
level of baseline shift of the predicted velocity vectors [detected
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FIGURE 8 | A general overview of the methods used for this study.

in form of linear shift of the predicted coordinates in most of
the sub-plots (A1–A3) of Supplementary Figures 2, 3] had a
negative impact on the online accuracy rate as it resulted in
a constant velocity component of the virtual arm movement
during online task performance.

Time-varying DA Plots
Figure 9 shows time-varying DA of predicted trajectories from
offline and online. Subjects 1 and 3 in most of the sessions
achieved significantly higher peak accuracy (DApeak mean 45%,
std 5%) in the offline part of the experiments (Figure 9A)
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FIGURE 9 | Time-varying decoding accuracy (DA) of predicted trajectories in offline and online parts of the experiments. The time-varying DA plots show how varying

the ratio of the “successful” and “un-successful” target classifications over time during a movement cycle from the home position to a target position. DA values were

calculated based on predicted coordinates of the virtual hand as described in the Methods section. (A) Offline DA without feedback. (B) Online DA with assisted

feedback. (C) Online DA with direct feedback. (D) Comparison of online DA using assisted vs. direct feedback. (A–D) present the mean value (colored line) and

standard deviation (colored shaded area) of the time-varying DA and (A–C) present also the results of the permutation test (mean: black dotted line, standard

deviation: gray shaded area). DA peaks obtained during task periods are indicated in (A–D) with vertical solid lines. The chance level (33.3% for 3-class classification)

is denoted by a black dashed line.

and in the online part of the experiments with assisted visual
feedback (DApeak mean 40%, std 5%) (Figure 9B) than chance
level (33.3% for 3-class classification). However, a significant
difference between DA calculated from the original dataset and
randomly permuted dataset (Wilcoxon non-parametric test, p <

0.05) was found only for the offline results.
The DA in the online part of the experiments in which the

subjects received a direct visual feedback (without assistance) was
in the range of 33% chance level (DApeak mean 35%, std 5%)
(Figure 9C) and DA calculated from the original, and randomly
permuted dataset were similar, i.e., a significant difference was
not found (Wilcoxon non-parametric test, p > 0.05).

During task performance, the peak accuracy of predicted hand
coordinates for online part of the experiments for trials with
assisted visual feedback was, in most of the cases, significantly
higher (Wilcoxon non-parametric test: p < 0.05) than for trials
with no direct visual feedback assistance (20–50% correction in
displayed coordinates) (Figure 9D).

It has to be noted that decoding accuracy for online
assisted experiments was calculated from the predicted kinematic
parameters and not from the displayed coordinates, which were
partially fitted to the target trajectory using a ratio designated by
the assistance level.

FBCSP Based Multi-class Classification
Results From the Offline Runs
This sub-section presents the results of the offline runs using an
FBCSP based multi-class classification method.

Classification of Imagined Movements Performed

With the Left or Right Hand
The time-varyingDA of 2-class classification separating imagined
movements of the two arms is presented in Figure 10, and peak
accuracy rates achieved for separating imagined movements of
the two arms are summarized in Table 2.

Subject 1 (who was previously trained to control a BCI using
left vs. right motor imagery paradigm) and Subject 2 (a naïve
subject) in both of the multi-session and single-session analyses
achieved a reasonable level of accuracy (DApeak mean 70%, std
5%) for separating imaginedmovement of the left and right arms.
The peak accuracy for subjects 1 and 2 was significantly higher (p
< 0.001, Wilcoxon non-parametric test) than DA obtained from
0 to 2 s prior to the onset of the tasks (which was equal to the
chance level of 50% for 2-class classification). For subject 3 (a
naïve subject), the left and right tasks were not separable (DA ≈

50% for both single-session and multi-session comparisons).

Classification of Single Arm Movements Toward

Three Different Targets
In order to discriminate between imagined arm movements
performed with the same arm toward the three corresponding
targets, an analysis was performed with the FBCSP based
classification method using one of the following three datasets.

(1) Trials from sub-block 1, during displayed movement
(2) Trials from sub-block 2, during non-displayed movement
(3) Trials collected from both task sub-blocks.
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FIGURE 10 | FBCSP: time-varying DA of Left vs. right imagined hand movements. (A) Results of the single-session analysis. (B–D) Results from the multi-session

analysis where (B) trials from sub-block1 (visual and auditory cue), (C) trials from sub-block2 (auditory cue without displayed movement), (D) trials from both

sub-blocks pooled together. The horizontal dashed line indicates the chance level (50% for 2-class classification).

Each of the above-presented options was analyzed using a
single-session and multi-session based training but none of
them provided DA significantly different from the chance level
(33% for 3-class classification). An example of the obtained
time-varying DA from multi-session analysis using trials
recorded during auditory stimuli without displayed movement is
presented in Figure 11.

Classification of EEG in Sub-block 1 vs. Sub-block 2
The time-varying DA results from an analysis, separating task
performance in two sub-blocks is presented in Figure 12.

A reasonably high level of peak accuracy (DApeak ≈ 80%) was
achieved prior the onset of the imagined movements (between
−5 and 0 s) for separating sub-block 1 and sub-block 2 and
the accuracy has decreased to the chance level (50% for 2-class
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classification) after the onset of the task performance (0 s)
(Figure 12). It is important to note, sub-blocks 1 and 2 were not
separated with an inter-sub-block resting period. Thus, the time
interval where the peak accuracy achieved for sub-block 1 it is
matched the resting period prior sub-block 1; for sub-block 2 it
is matched the end of the task period in sub-block 1 prior the
onset of sub-block 2 (Figure 2). Therefore, the peak accuracy is
achieved when a task initialization period (prior the onset of sub-
block 1) was compared with a task period (prior the onset of
sub-block 2).

Figures 13A–C presents results of the analysis performed to
identify frequency bands and cortical areas that allow the best
separation of imagined movements performed with the left and
right hand; and Figures 13D–F presents that of separating tasks
performed in sub-block 1 and sub-block 2. As the FBCSPmethod

TABLE 2 | Peak accuracy achieved for separating imagined movements of the left

and right arm.

Subject

ID

Multi-session analysis

(the classifier was trained

using trials from all

sessions)

Multiple single-session

analysis (the classifier

was trained using trials from

only one session)

Subject 1 DApeak = 75% DApeak = 65%

Subject 2 DApeak = 70% DApeak = 63%

Subject 3 DApeak ≈ chance level (50%) DApeak ≈ chance level (50%)

was not success in separation of imagined movements performed
toward different directions with the same hand, the frequency
and topographical analysis for movement direction classification
was omitted.

DISCUSSION

Decoding the trajectory of imagined movements from EEG has
been reported in a limited number of studies and to the best
of the authors’ knowledge, none of these studies provided real-
time feedback to the subject about task performance for close
loop control. Many motion trajectory prediction/decoding
focus on executed movement and do not consider
imagined movement.

Closely related studies regarding trajectory prediction of
imagined arm movements include Kim et al. (2015) who
decoded 3D trajectory of executed and imagined armmovements
performed in parallel with the observation of a human volunteer
or robot performing 3D arm movements. Decoded trajectories
in Kim et al. (2015) were calculated using two different
methods: a multiple linear regression (mLR)method and a kernel
ridge regression (KRR) method, and compared. The correlation
coefficient of target and predicted trajectories using multiple
linear regression resulted in R ≈ 0.35 for executed movements,
and R ≈ 0.3 for observed and imagined movements; based
on the kernel ridge regression these values are resulted in R

FIGURE 11 | FBCSP: time-varying DA during imagined movements toward three different targets. The 3-class DA presented in this figure was calculated from a

multi-session dataset based on the imagined movement of the left (A) and right (B) hands using sub-blocks without displaying movement on the screen (auditory

stimulus only). The horizontal dashed line indicates the chance level (33% for 3-class classification).
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FIGURE 12 | FBCSP: time-varying DA comparing task performance in sub-blocks 1 vs. sub-block 2. The 2-class DA presented in this figure was calculated from

single-session (A) and multi-session (B) based datasets comparing sub-blocks with (sub-block 1) and without (sub-block 2) displaying the expected movements. The

horizontal dashed lined indicates the chance level (50% for 2-class classification).

≈ 0.5 for executed movements, and R≈0.4 for observed and
imagined movements.

Ofner and Müller-Putz (2015) decoded motor imagery tasks
involving imagery of arm movement in vertical and horizontal
directions of a 2D plane synchronized with a metronome (DA
mean 64%, std 11% compared to 50% chance level). However,
both studies (Kim et al., 2015; Ofner and Müller-Putz, 2015)
used an open loop scenario and the analysis in these studies
was performed using an offline recorded dataset. Müller-Putz
et al. (2018) presented two closely related studies to classify in
closed-loop six natural joint movements of the same arm and
three different grasp types from motor-related cortical potentials
(MRCPs) in a narrow 0.3 to 3Hz band. For the first study, the
achieved classification accuracy was 37% (chance level was 16.7%
for six-class classification) and the second study showed grasps
possible to decode from MRCPs features (binary classification of
74% grasp vs. 100% grasp).

Other studies, reviewed in the introduction section (Wolpaw
and McFarland, 2004; Lehtonen et al., 2008; Fukuma et al., 2015;
Bhagat et al., 2016; Hotson et al., 2016; Lee et al., 2017; Müller-
Putz et al., 2018), aimed to achieve online control of objects in
2D/3D real and virtual spaces, however, none of these studies
provided real-time control of an artificial, robotic, or virtual arm
using the 3D trajectory of imagined arm movements decoded
from EEG.

Our present study aimed to investigate whether the 3D
trajectory of imagined hand movements could be decoded online
in real-time from EEG in closed-loop where two virtual 3D arms
are presented on a 2D screen. This scenario or experiment has
not previously been attempted.

The seven-session experiment, comprising each an offline
and two online experimental modules, was completed by three
subjects. The parameters of the BCI were tuned using datasets
recorded during the offline runs, and the trained BCI was used
to control the two virtual arms in the online runs. The major
step here is the attempt to decode in real-time imagined arm
movements, as opposed to offline decoding reported in our
previous works (Korik et al., 2015, 2016a,b,c).

Evaluation of the MTP Results
The present study showed that decoding the 3D trajectories of
imagined arm movements toward three targets per arm is a
challenging objective. Although, the accuracy rate achieved in
offline runs for Subjects 1 and 3 (DApeak mean 45%, std 5%) was
significantly higher (p < 0.05) than the chance level (33.3% for 3-
class classification) (Figure 9A), the decoding accuracy in online
runs fell below 40%.

A possible reason for this difference might be that, before
the online runs, the subjects were asked to control the virtual
arm by correcting the position whilst observing the visual
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FIGURE 13 | FBCSP: results of frequency analysis and topographical maps using multi-session dataset. (A–C) Indicate which frequency bands and cortical areas

provided the highest contribution for separating imagined movements performed with left vs. right hands at that time for which the classification accuracy was

maximal. (D–F) Indicate which frequency bands and cortical areas provided the highest contribution for separating imagined movements performed in sub-block 1 vs.

sub-block 2 at that that time for which the classification accuracy was maximal. The subject-specific frequency band contribution maps (A,D) were calculated at peak

accuracy using MI weights of the trained 2-class classifiers, which were applied to the multi-class classifier module. The cross-subject topographical maps (B,C,E,F)

were calculated using average of the MI weighted CSP filters, which were used from subject-specifically trained 2-class classifiers applied to the multi-class classifier

module. For calculating an averaged pattern for the cross-subject topographical plots, the MI weighted CSP filters subject-specifically were selected at peak accuracy

of the corresponding subjects.

feedback (i.e., always attempting to move the arm toward a
direction of the actual target or home position depending on the
actual arm position displayed on the screen). Thus, the subjects
may performed different motion imagery strategies during the
offline and online runs of the sessions. Furthermore, the online
part of the experiments used a BCI that was trained using a

dataset recorded in offline runs. Thus, the strategies used by
the subjects to generate imagined arm movements during online
runs presenting direct or assisted feedback may have differed
from that of used in the offline runs.

An additional putative cause for the enhanced accuracy
rate in online runs with assistant visual feedback might be
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that during most online sessions, a significant baseline shift
of the predicted velocity vectors was detected. As the virtual
hand coordinates were calculated by integrating velocity vectors
during a movement trial, the error in predicted velocity vectors
resulted in a constant velocity component of the virtual hand
movement (sub-plots A1-A3 of Supplementary Figures 2, 3).
This constant translation of predicted coordinates of the virtual
hand led to an over-balanced negative visual feedback during
online control without assistance. However, the ratio of the
negative and positive feedbacks was more balanced when an
assisted visual feedback was provided. Thus, the difference of the
accuracy rates achieved in online runs using assisted vs. direct
visual feedback (Figure 9D) might originate from the enhanced
negative feedback.

This explanation is in line with studies showing that negative
feedback has a significant impact on accuracy during online
task performance. In Huang and Yu (2014), a component of
event-related EEG potential called feedback-related negativity
(FRN) was found to be sensitive to negative feedback as well
as to a negative prediction error. Moreover, Alimardani et al.
(2014) highlighted that a biased feedback is an important
component in motor imagery BCI systems. They used an EEG
based BCI-operated human-like robotic hands to study subjects’
performance under different presentations of the feedback (non-
biased direct feedback, biased feedback corrected to fake positive
90% accuracy, or fake negative 20% accuracy ratio) using imagine
a grasp or squeeze motion. They found that, subjects achieved a
better accuracy rate when they received fake positive feedback
while fake negative feedback resulted in a decrease in the
classification accuracy. Our results are in line with Alimardani
et al. (2014) and suggest that, an un-balanced highly negative
real-time feedback, which is not ignored by the subject, may have
a negative impact on the subject’s performance. Furthermore,
the results also indicate that, a proper balance between the real-
time positive and negative feedbacks provided to the BCI user
during an online multi-session learning period is an important
factor that may help achieve a reasonably high accuracy rate in
experiments using a closed-loop scenario.

Evaluation of the FBCSP Based
Multi-Class Classification Results
This section discusses the FBCSP based multi-class
classification results.

Classification of Imagined Movements Performed

With Left vs. Right Hands
The results showed that using a dataset from whom the classifier
was trained using trials from multiple sessions achieved higher
DA (Figure 10D Subjects 1 and 2, DApeak mean 70%, std 5%)
compared to the average accuracy of multiple single session based
classification (Figure 10A Subject 1 DApeak mean 65%, std 5%,
Subject 2 DApeak mean 63%, std 5%). The difference in single-
session vs. multi-session based analysis may originate from the
difference in the number of trials used for training the classifier.
In the single-session based training the number of trials was low
for both of the following options: 5 trials/class using trials from
one of the two sub-blocks, or 10 trials/class using trials from both
sub-blocks. However, the number of trials for the multi-session

based training was seven-times more resulting in 35 trials/class
using trials from one of the two sub-blocks, or 70 trials/class
using trials from both sub-blocks. The low number of trials is
sub-optimal for the applied FBCSP classification method, but it
is should be mentioned FBCSP multi-class classification method
was not part of the planned analysis when the experimental
paradigm was designed.

The frequency and topographical analysis indicated that the
task related EEG activity in 8–12Hz (mu) and 12–28Hz (beta)
bands in the contralateral sensorimotor cortex around C3 and
C4 electrode locations provided the highest contribution for
separating imagined movements of the left and right hand
(Figures 13A–C). This observation is in line with the literature
(McFarland et al., 2000) reporting the highest classification
accuracy for separating imagined movements of left and right
hand using the power spectral density (PSD) ofmu (8–12Hz) and
beta (12–28Hz) bands in the contralateral sensorimotor cortex.

Classification of Single Arm Movements Toward

Three Different Targets
Although the applied FBCSP method provided reasonable
accuracy for left vs. right hand movement classification
(Figure 10), classification of single arm movements toward three
different targets using the same dataset did not result in a
reasonable accuracy rate for any of the three subjects (Figure 11).
In contrast to FBCSP results, MTP method applied in this study
using the same multi-session offline dataset for subjects 1 and 3
achieved a DA (in classification of predicted imagined movement
trajectories toward three targets/hand) that was significantly
higher than chance level (DApeak mean 45%, std 5%) (Figure 9A).
The difference may originate from different numbers of feature
vectors used for training the FBCSP based multi-class classifier
and MTP methods.

• The FBCSP based multi-class classifier was trained using
a dataset involving only one feature vector per trial.
Furthermore, features within the feature vector that was used
for training the classifier were calculated from a single time-
window (specified by width of the window and offset of the
window compared to onset of the task), therefore, the number
of the feature vectors used in training of the FBCSP classifier
was only 7 sessions × 5 runs × 1 trial/target = 35 trials/target
–> 35 feature vector/class.

• In contrast to the applied FBCSP based classifier, the applied
MTP model uses multiple feature vectors per trial for training
the kinematic data estimation module. Similarly to the FBCSP
classifier, each feature vector in the MTP model comprised a
specific number of features selected using a feature window. In
contrast to the FBCSP classifier, the MTP model does not only
use one feature vector per trial for training theMTPmodel but
uses a sliding feature window for collecting multiple feature
vectors. Thus, theMTPmethod provides a bigger pool of input
data for training the MTP module than the applied FBCSP
method selecting a single feature vector per trial.

A combination of the two above-mentioned methods (i.e.,
selecting multiple feature vectors per trial for training the
classifier) might improve the accuracy of the classification by
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taking advantage of each of the models. It should be tested in a
future work.

Classification of EEG in Sub-block 1 vs. Sub-block 2
Several seconds (−5–0 s) prior to the onset of the motor imagery
task, a reasonable high level of peak accuracy (DApeak ≈ 80%) was
obtained for classification of EEG signals recorded in sub-block
1 and sub-block 2. This time interval for sub-block 1 matched a
resting period prior the onset of sub-block 1 and for sub-block
2 this time interval involved task performance in sub-block 2
prior the onset of sub-block 2 (Figure 2). Thus, the achieved
peak accuracy probably originated from classification of task
vs. resting conditions and did not originate from classification
of different task performance within the two sub-blocks. This
statement is supported by the finding that several seconds before
the onset of the task the DA was maximal, and after the onset
of the tasks (when in both sub-blocks the motor imagery task
performed), the DA fell significantly.

The frequency analysis indicated that subjects specific
frequency bands [for subject 1 and 2 the 0–4Hz (delta) band,
for subject 3 the 8–12Hz (mu), and 12–28Hz (beta) bands]
provided the highest contribution for separating EEG signals
recorded prior the onset of the task performance in sub-blocks 1
and 2 (Figures 6, 13A). Furthermore, the topographical analysis
indicated that in the most frequency bands the sensorimotor
cortex around C3 and C4 electrode positions provided the
highest contribution to the classification accuracy. However, in
the 0–4Hz (delta), 4–8Hz (theta), and 28–40Hz (low gamma)
bands the frontal areas also provided a reasonable contribution.
The results support the notion that delta, mu, and beta EEG
oscillations in the sensorimotor cortex comprise information that
may enable to separate motor imagery tasks from a time interval
related to a resting period prior task performance.

Limitations and Proposed Modifications
The experimental paradigm that was used in this study was
designed based on the paradigm applied in our previous study
wherein 3D trajectory of imagined armmovements were decoded
offline from EEG (Korik et al., 2018b). However, in order to
close the control loop and allow online decoding of the imagined
trajectories, some key elements of the previous paradigmwere re-
examined and modified. This section summarizes the limitations
and issues associated with the approach applied, and presents a
proposed modification of the paradigm using experiences gained
from the present work.

The Critical Issues of the Present Paradigm
• Prior to commencing the online part of the experiments,

the subjects were asked to control the virtual arm during
the online tasks using the presented visual feedback. This
instruction may have resulted in different control strategies
for virtual hand movement between the offline runs (when the
BCI was trained) and online runs (when the subject used the
BCI). Thus, subjects in offline and online sessions might have
produced significantly different EEG patterns for an imagined
movement between the home position and a specific target

position. Therefore, ignoring the feedback during the time-
period in which the subject learns to use the BCI might lead
to higher accuracy.

• The present study trained subjects to control two virtual arms,
rather than one virtual arm, by motor imagery. This setup
increased the complexity of the experimental paradigm and
reduced the amount of trials per hand.

• As the EEG system differed from our earlier studies (data
recorded at HIT, Israel) we modified the montage, firstly to
simplify the setup with less electrodes and including only a
single reference electrode. This meant that we could not apply
directly the same approach as in Korik et al. (2018b). As there
were a number of significant changes between the current
online study and the offline study comparison of results across
studies is limited. In hindsight minimization of differences
between studies would have been more informative.

• The number of trials per hand and target in the offline session
was only six. This number is significantly lower than the
number of trials (80 per target) used in our previous study
(Korik et al., 2018b). We expected long trials (4 s for each
direction in the offline sessions) would compensate for this
drawback as feature vectors for training the BCI would be
collected over a long period during the imagined movement
trials. This modification in the paradigm may be sub-optimal
resulting in an improper training of the BCI, therefore, in
the future work the current paradigm should be modified.
The duration of the trials should be shorter (1 s instead of
4 s) along with the pause periods (1 s instead of 2 s). Sub-
blocks with displayed movements should not be involved in
the offline paradigm, i.e., to keep only sub-blocks without
displaying movements. Furthermore, the block initialization
time should be shorter by using visual cues (0.5–1 s) instead
of audio messages (2 s) informing the subject about the next
target. The above listed modifications should enable recording
a significantly higher number of trials during the same time-
period and could lead to a more optimal training of the BCI.

• The BCI in each session was re-trained for the online part
of the experiment using a dataset recorded at the beginning
of the session during an offline runs. Thus, the input feature
space selected for the online part of the experiment (involving
the optimal EEG montage, time lag, and number of the
time lags) varied between each session. This strategy did
not support a consequent learning process for the subject
across multiple sessions, which would require using a more
stable input feature space. (Lin et al., 2017) presented a
minimization of single-session EEG variability of emotional
responses using an attempt to facilitate cross-session emotion
classification. A multi-session analysis based feature selection
method comparing stability of DA using different groups of
features could lead to better BCI performance during a multi-
session online experiment series.

The accuracy metrics introduced in this study (Box 1) measures
the 3D distance of predicted and expected coordinates in the
form of a single scalar value as a non-linear combination of error
rates from three separately trained MTP models (each linked to
one of the three orthogonal basis vectors of the 3D virtual spaces).
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The accuracy metrics were used to attach the three separate MTP
models for selecting an optimal value for some structural model
parameters (EEG montage, time lag and time lag number) and
the same accuracy metrics used for result evaluation. However,
the three separate linear regression models [v(x), v(y), and v(z)]
were kept un-attached during training of the internal model
parameters (i.e., linear regression parameters) because of the
limitation of the applied mLR training method.

In the future works, the number of subjects should be
increased and the experimental paradigm should be revised
according to the critical issue discussed above. Also, it would be
advantageous to study subjects overmore sessions and to increase
the number of trials per session to investigate performance
improvement and learning in a closed-loop scenario.

CONCLUSION

To date, only a limited number of studies reported decoding
the trajectory of imagined limb movements from EEG, and
to the best of the authors’ knowledge, the real-time decoding
of imagined 3D arm movement trajectories from EEG has
not been studied yet in a closed-loop. In this research, we
aimed to address this gap by studying real-time control of
two virtual arms toward three corresponding targets placed at
orthogonal angles from the viewpoint of the home position
of each hand. The virtual arms, displayed on 2D screen, were
controlled by an online BCI that attempted to decode the 3D
trajectory of imagined arm movements with multiple linear
regression and power spectral density of mu, low beta, high
beta, and low gamma oscillations. The BCI was trained using
an offline EEG dataset recorded at the beginning of each
session before the online runs providing assisted and direct
visual feedback in a closed-loop using predicted coordinates
of the virtual arm. Although for two of three subjects a
reasonably high accuracy of imagined 3D trajectory prediction
for offline task performance was achieved (DApeak mean 45%,
std 5%, chance level 33.3%), the accuracy during real-time
control of the virtual arms using the trajectory decoded directly
from EEG for all subjects was in the range of chance level
(33.3%). Online performance of the two subjects with highest
accuracy in offline runs shows, that false-positive feedback
may have a positive impact on the accuracy using a closed-
loop scenario as suggested in Alimardani et al. (2014). The
difference in accuracy between online runs involving assisted
vs. direct (non-assisted) visual feedback highlights that an
overbalanced negative biofeedback can lead to a negative impact
on the accuracy.

To compare the accuracy of the imagined arm movement
trajectory prediction (MTP) method with the performance
of filter-bank common spatial patterns (FBCSP) and mutual
information (MI) based multi-class classification method, the

time-varying decoding accuracy was calculated for both methods
using the offline datasets and compared. Using the current
experimental paradigm, the FBCSP-MI based classifier separated
left and right hand movements with reasonably high accuracy
(DApeak mean 70%, std 5%, chance level 50%). However,
classification of the imagined movement toward different targets
with the same arm was successful only with the MTP. The
significant difference in achieved accuracy using MTP methods
vs. FBCSP-MI classifier for target classification might originate
from the low number of trials provided by the present
experimental paradigm. As the applied FBCSP-MI classifier
used only one feature vector per trial to train the classifier for
separating a certain number of classes, the low number of training
trials was a critical issue for the FBCSP-MI method.

The results of this pilot study provide an encouraging step
forward in the research and development of paradigms for BCIs
targeting physically impaired individuals to perform movement-
independent communication and online control in real and
virtual spaces. However, as highlighted in the discussion section
we recommend a range of adaptions to the paradigm for
future studies.
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