102 research outputs found

    Trajectories and resource management of flying base stations for C-V2X

    Get PDF
    In a vehicular scenario where the penetration of cars equipped with wireless communication devices is far from 100% and application requirements tend to be challenging for a cellular network not specifically planned for it, the use of unmanned aerial vehicles (UAVs), carrying mobile base stations, becomes an interesting option. In this article, we consider a cellular-vehicle-to-anything (C-V2X) application and we propose the integration of an aerial and a terrestrial component of the network, to fill the potential unavailability of short-range connections among vehicles and address unpredictable traffic distribution in space and time. In particular, we envision a UAV with C-V2X equipment providing service for the extended sensing application, and we propose a UAV trajectory design accounting for the radio resource (RR) assignment. The system is tested considering a realistic scenario by varying the RRs availability and the number of active vehicles. Simulations show the results in terms of gain in throughput and percentage of served users, with respect to the case in which the UAV is not present

    Lightweight Simulation of Hybrid Aerial- and Ground-based Vehicular Communication Networks

    Full text link
    Cooperating small-scale Unmanned Aerial Vehicles (UAVs) will open up new application fields within next-generation Intelligent Transportation Sytems (ITSs), e.g., airborne near field delivery. In order to allow the exploitation of the potentials of hybrid vehicular scenarios, reliable and efficient bidirectional communication has to be guaranteed in highly dynamic environments. For addressing these novel challenges, we present a lightweight framework for integrated simulation of aerial and ground-based vehicular networks. Mobility and communication are natively brought together using a shared codebase coupling approach, which catalyzes the development of novel context-aware optimization methods that exploit interdependencies between both domains. In a proof-of-concept evaluation, we analyze the exploitation of UAVs as local aerial sensors as well as aerial base stations. In addition, we compare the performance of Long Term Evolution (LTE) and Cellular Vehicle-to-Everything (C-V2X) for connecting the ground- and air-based vehicles

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications

    MIMO relaying UAVs operating in public safety scenarios

    Get PDF
    Methods to implement communication in natural and humanmade disasters have been widely discussed in the scientific community. Scientists believe that unmanned aerial vehicles (UAVs) relays will play a critical role in 5G public safety communications (PSC) due to their technical superiority. They have several significant advantages: a high degree of mobility, flexibility, exceptional line of sight, and real-time adaptative planning. For instance, cell edge coverage could be extended using relay UAVs. This paper summarizes the sidelink evolution in the 3GPP standardization associated with the usage of the device to device (D2D) techniques that use long term evolution (LTE) communication systems, potential extensions for 5G, and a study on the impact of circular mobility on relay UAVs using the software network simulator 3 (NS3). In this simulation, the transmitted packet percentage was evaluated where the speed of the UAV for users was changed. This paper also examines the multi-input multi-output (MIMO) communication applied to drones and proposes a new trajectory to assist users experiencing unfortunate circumstances. The overall communication is highly dependent on the drone speed and the use of MIMO and suitable antennas may influence overall transmission between users and the UAVs relay. When the UAVs relaying speed was configured at 108 km/h the total transmission rate was reduced to 55% in the group with 6 users allocated to each drone.info:eu-repo/semantics/publishedVersio

    Intelligent-Reflecting-Surface-Assisted UAV Communications for 6G Networks

    Full text link
    In 6th-Generation (6G) mobile networks, Intelligent Reflective Surfaces (IRSs) and Unmanned Aerial Vehicles (UAVs) have emerged as promising technologies to address the coverage difficulties and resource constraints faced by terrestrial networks. UAVs, with their mobility and low costs, offer diverse connectivity options for mobile users and a novel deployment paradigm for 6G networks. However, the limited battery capacity of UAVs, dynamic and unpredictable channel environments, and communication resource constraints result in poor performance of traditional UAV-based networks. IRSs can not only reconstruct the wireless environment in a unique way, but also achieve wireless network relay in a cost-effective manner. Hence, it receives significant attention as a promising solution to solve the above challenges. In this article, we conduct a comprehensive survey on IRS-assisted UAV communications for 6G networks. First, primary issues, key technologies, and application scenarios of IRS-assisted UAV communications for 6G networks are introduced. Then, we put forward specific solutions to the issues of IRS-assisted UAV communications. Finally, we discuss some open issues and future research directions to guide researchers in related fields

    Technologies for urban and rural internet of things

    Get PDF
    Nowadays, application domains such as smart cities, agriculture or intelligent transportation, require communication technologies that combine long transmission ranges and energy efficiency to fulfill a set of capabilities and constraints to rely on. In addition, in recent years, the interest in Unmanned Aerial Vehicles (UAVs) providing wireless connectivity in such scenarios is substantially increased thanks to their flexible deployment. The first chapters of this thesis deal with LoRaWAN and Narrowband-IoT (NB-IoT), which recent trends identify as the most promising Low Power Wide Area Networks technologies. While LoRaWAN is an open protocol that has gained a lot of interest thanks to its simplicity and energy efficiency, NB-IoT has been introduced from 3GPP as a radio access technology for massive machine-type communications inheriting legacy LTE characteristics. This thesis offers an overview of the two, comparing them in terms of selected performance indicators. In particular, LoRaWAN technology is assessed both via simulations and experiments, considering different network architectures and solutions to improve its performance (e.g., a new Adaptive Data Rate algorithm). NB-IoT is then introduced to identify which technology is more suitable depending on the application considered. The second part of the thesis introduces the use of UAVs as flying Base Stations, denoted as Unmanned Aerial Base Stations, (UABSs), which are considered as one of the key pillars of 6G to offer service for a number of applications. To this end, the performance of an NB-IoT network are assessed considering a UABS following predefined trajectories. Then, machine learning algorithms based on reinforcement learning and meta-learning are considered to optimize the trajectory as well as the radio resource management techniques the UABS may rely on in order to provide service considering both static (IoT sensors) and dynamic (vehicles) users. Finally, some experimental projects based on the technologies mentioned so far are presented

    Content Caching and Delivery in Heterogeneous Vehicular Networks

    Get PDF
    Connected and automated vehicles (CAVs), which enable information exchange and content delivery in real time, are expected to revolutionize current transportation systems for better driving safety, traffic efficiency, and environmental sustainability. However, the emerging CAV applications such as content delivery pose stringent requirements on latency, throughput, reliability, and global connectivity. The current wireless networks face significant challenges to satisfy the requirements due to scarce radio spectrum resources, inflexibility to dynamic traffic demands, and geographic-constrained fixed infrastructure deployment. To empower multifarious CAV content delivery, heterogeneous vehicular networks (HetVNets), which integrate the terrestrial networks with aerial networks formed by unmanned aerial vehicles (UAVs) and space networks constituting of low Earth orbit (LEO) satellites, can guarantee reliable, flexible, cost-effective, and globally seamless service provisioning. In addition, edge caching is a promising solution to facilitate content delivery by caching popular files in the HetVNet access points (APs) to relieve the backhaul traffic with a lower delivery delay. The main technical issues are: 1) to fully reveal the potential of HetVNets for content delivery performance enhancement, content caching scheme design in HetVNets should jointly consider network characteristics, vehicle mobility patterns, content popularity, and APs’ caching capacities; 2) to fully exploit the controllable mobility and agility of UAVs to support dynamic vehicular content demands, the caching scheme and trajectory design for UAVs should be jointly optimized, which has not been well addressed due to their intricate inter-coupling relationships; and 3) for caching-based content delivery in HetVNets, a cooperative content delivery scheme should be designed to enable the cooperation among different network segments with ingenious utilization of heterogeneous network resources. In this thesis, we design the content caching and delivery schemes in the caching-enabled HetVNet to address the three technical issues. First, we study the content caching in HetVNets with fixed terrestrial APs including cellular base stations (CBSs), Wi-Fi roadside units (RSUs), and TV white space (TVWS) stations. To characterize the intermittent network connection caused by limited network coverage and high vehicle mobility, we establish an on-off model with service interruptions to describe the vehicular content delivery process. Content coding then is leveraged to resist the impact of unstable network connections and enhance caching efficiency. By jointly considering file characteristics and network conditions, the content placement is formulated as an integer linear programming (ILP) problem. Adopting the idea of the student admission model, the ILP problem is then transformed into a many-to-one matching problem between content files and HetVNet APs and solved by our proposed stable-matching-based caching scheme. Simulation results demonstrate that the proposed scheme can achieve near-optimal performances in terms of delivery delay and offloading ratio with a low complexity. Second, UAV-aided caching is considered to assist vehicular content delivery in aerial-ground vehicular networks (AGVN) and a joint caching and trajectory optimization (JCTO) problem is investigated to jointly optimize content caching, content delivery, and UAV trajectory. To enable real-time decision-making in highly dynamic vehicular networks, we propose a deep supervised learning scheme to solve the JCTO problem. Specifically, we first devise a clustering-based two-layered (CBTL) algorithm to solve the JCTO problem offline. With a given content caching policy, we design a time-based graph decomposition method to jointly optimize content delivery and UAV trajectory, with which we then leverage the particle swarm optimization algorithm to optimize the content caching. We then design a deep supervised learning architecture of the convolutional neural network (CNN) to make online decisions. With the CNN-based model, a function mapping the input network information to output decisions can be intelligently learnt to make timely inferences. Extensive trace-driven experiments are conducted to demonstrate the efficiency of CBTL in solving the JCTO problem and the superior learning performance with the CNN-based model. Third, we investigate caching-assisted cooperative content delivery in space-air-ground integrated vehicular networks (SAGVNs), where vehicular content requests can be cooperatively served by multiple APs in space, aerial, and terrestrial networks. In specific, a joint optimization problem of vehicle-to-AP association, bandwidth allocation, and content delivery ratio, referred to as the ABC problem, is formulated to minimize the overall content delivery delay while satisfying vehicular quality-of-service (QoS) requirements. To address the tightly-coupled optimization variables, we propose a load- and mobility-aware ABC (LMA-ABC) scheme to solve the joint optimization problem as follows. We first decompose the ABC problem to optimize the content delivery ratio. Then the impact of bandwidth allocation on the achievable delay performance is analyzed, and an effect of diminishing delay performance gain is revealed. Based on the analysis results, the LMA-ABC scheme is designed with the consideration of user fairness, load balancing, and vehicle mobility. Simulation results demonstrate that the proposed LMA-ABC scheme can significantly reduce the cooperative content delivery delay compared to the benchmark schemes. In summary, we have investigated the content caching in terrestrial networks with fixed APs, joint caching and trajectory optimization in the AGVN, and caching-assisted cooperative content delivery in the SAGVN. The proposed schemes and theoretical results should provide useful guidelines for future research in the caching scheme design and efficient utilization of network resources in caching-enabled heterogeneous wireless networks
    • …
    corecore