70 research outputs found

    Fault diagnosis of motorized spindle via modified empirical wavelet transform-kernel PCA and optimized support vector machine

    Get PDF
    The fault diagnosis of motorized spindle contributes to the improvement of the reliability of computer numerical control machine tools. Presently, numerous mechanical fault diagnosis technologies suffer from the drawbacks of mode mixing, non-adaptive analysis, and low efficiency. Therefore, adopting an effective signal processing method for fault diagnosis of motorized spindle is essential. A method based on modified empirical wavelet transform (EWT) and kernel principal component analysis (Kernel PCA) is proposed. A new method, which determines the proper number of the Fourier spectrum segments, is applied when using EWT. To improve computational efficiency, Kernel PCA is adopted to reduce dimension. The support vector machine optimized by genetic algorithm is introduced to accomplish fault identification. The performance of the proposed method is validated through single and compound fault experiments. Results show that the recognition rate using the proposed method reached 98.8095 % and 98.4375 % in terms of single and compound fault diagnoses, respectively. Moreover, compared with empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), local mean decomposition (LMD) and EWT, the proposed method can save much computing time. The proposed method can be generalized to other mechanical fault diagnoses as well

    A Framework for Prognostics Reasoning

    Get PDF
    The use of system data to make predictions about the future system state commonly known as prognostics is a rapidly developing field. Prognostics seeks to build on current diagnostic equipment capabilities for its predictive capability. Many military systems including the Joint Strike Fighter (JSF) are planning to include on-board prognostics systems to enhance system supportability and affordability. Current research efforts supporting these developments tend to focus on developing a prognostic tool for one specific system component. This dissertation research presents a comprehensive literature review of these developing research efforts. It also develops presents a mathematical model for the optimum allocation of prognostics sensors and their associated classifiers on a given system and all of its components. The model assumptions about system criticality are consistent with current industrial philosophies. This research also develops methodologies for combine sensor classifiers to allow for the selection of the best sensor ensemble

    Mantenimiento Predictivo: Historia, una guía de implementación y enfoques actuales

    Get PDF
    Debido al aumento del número de sensores utilizados en las plantas de producción, la posibilidad de obtener datos de estas ha incrementado considerablemente. Esto conlleva la posibilidad de detectar fallos antes de que estos ocurran y futuras paradas que afecten a las plantas de producción. Las tecnologías de mantenimiento predictivo permiten predecir eventos futuros, convirtiéndolas en herramientas para afrontar los retos que surjan en los mercados competitivos. Esta tesis está dividida en cinco partes. La primera, describe el mantenimiento a lo largo de la historia, mientras que la segunda está enfocada en el mantenimiento predictivo. El tercer punto es una guía de implementación de un programa de mantenimiento predictivo para cualquier organización interesada en el tema. Finalmente, las dos últimas partes hacen referencia a los enfoques más comunes en inteligencia artificial donde se explican técnicas importantes como “Artificial Neural Networks” y “Machine Learning”, describiendo algunos ejemplos donde fueron usadas para realizar mantenimiento predictivo.Departamento de Organización de Empresas y Comercialización e Investigación de MercadosHochschule Albstadt-SigmaringenGrado en Ingeniería en Organización Industria

    Automated Detection of Cracked Railway Axle Journals Using an Ultrasonic Phased Array Technique

    Get PDF
    Railway vehicle axles experience fatigue behavior. This has become a critical issue considering both the increased loads and speeds of railway vehicles. The failure of one axle has the potential to cause derailment of the entire train. Train derailment can cause danger to the public, threaten lives, and cost thousands of dollars in repair and rehabilitation. A critical area is the axle journal. Inspecting axle journals is difficult due to limited accessibility, as the journal and nearby areas are covered by the bearing, bearing cap, and wheel. The main challenge of this research is to overcome the limited accessibility using ultrasonic techniques. Three main railway axle journal inspection concepts have been developed in this research: 1) automated detection system of a cracked axle journal using the ultrasonic phased array technique, 2) detection of a cracked axle journal using a chain scanner, and 3) cracked axle journal detection using surface waves. An ultrasonic phased array system has a much higher probability of detection (POD) and will provide a much more rapid inspection when compared to conventional ultrasonic transducers. Surface wave inspection proves that it can propagate along the complex geometry of the railway axle journal. Support vector machine (SVM) and the developed algorithm successfully distinguished between a cracked axle and an uncracked axle. Signal processing with a threshold classifier was developed to provide a faster computation time. Three different air-coupled experiments are demonstrated: 1) the line-source air-coupled ultrasonic array sensors in through-transmission mode, 2) the point-source air-coupled ultrasonic generation using Rayleigh waves, and 3) the laser array detector on a steel plate. A complete air-coupled ultrasonic system is achieved with the air-coupled 20-array ultrasonic line source and point source with microphone sensor as receiver. The best results can be obtained with an excitation frequency range of 50 to 100 kHz. The generated ultrasonic waves successfully penetrated the aluminum sheet, the low-density polyethylene (LDPE) plate, and the concrete mortar using the through-transmission technique. The one-side non-contact crack detection is demonstrated using a Rayleigh wave. It successfully distinguishes between cracked and uncracked regions using the time-of-flight technique. A complete air-coupled ultrasonic system is developed for various materials in this research

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes

    Street Scenes : towards scene understanding in still images

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 171-182).This thesis describes an effort to construct a scene understanding system that is able to analyze the content of real images. While constructing the system we had to provide solutions to many of the fundamental questions that every student of object recognition deals with daily. These include the choice of data set, the choice of success measurement, the representation of the image content, the selection of inference engine, and the representation of the relations between objects. The main test-bed for our system is the CBCL StreetScenes data base. It is a carefully labeled set of images, much larger than any similar data set available at the time it was collected. Each image in this data set was labeled for 9 common classes such as cars, pedestrians, roads and trees. Our system represents each image using a set of features that are based on a model of the human visual system constructed in our lab. We demonstrate that this biologically motivated image representation, along with its extensions, constitutes an effective representation for object detection, facilitating unprecedented levels of detection accuracy. Similarly to biological vision systems, our system uses hierarchical representations.(cont.) We therefore explore the possible ways of combining information across the hierarchy into the final perception. Our system is trained using standard machine learning machinery, which was first applied to computer vision in earlier work of Prof. Poggio and others. We demonstrate how the same standard methods can be used to model relations between objects in images as well, capturing context information. The resulting system detects and localizes, using a unified set of tools and image representations, compact objects such as cars, amorphous objects such as trees and roads, and the relations between objects within the scene. The same representation also excels in identifying objects in clutter without scanning the image. Much of the work presented in the thesis was devoted to a rigorous comparison of our system to alternative object recognition systems. The results of these experiments support the effectiveness of simple feed-forward systems for the basic tasks involved in scene understanding. We make our results fully available to the public by publishing our code and data sets in hope that others may improve and extend our results.by Stanley Michael Bileschi.Ph.D

    Computational and Causal Approaches on Social Media and Multimodal Sensing Data: Examining Wellbeing in Situated Contexts

    Get PDF
    A core aspect of our lives is often embedded in the communities we are situated in. The interconnectedness of our interactions and experiences intertwines our situated context with our wellbeing. A better understanding of wellbeing will help us devise proactive and tailored support strategies. However, existing methodologies to assess wellbeing suffer from limitations of scale and timeliness. These limitations are surmountable by social and ubiquitous technologies. Given its ubiquity and wide use, social media can be considered a “passive sensor” that can act as a complementary source of unobtrusive, real-time, and naturalistic data to infer wellbeing. This dissertation leverages social media in concert with multimodal sensing data, which facilitate analyzing dense and longitudinal behavior at scale. This work adopts machine learning, natural language, and causal inference analysis to infer wellbeing of individuals and collectives, particularly in situated communities, such as college campuses and workplaces. Before incorporating sensing modalities in practice, we need to account for confounds. One such confound that might impact behavior change is the phenomenon of “observer effect” --- that individuals may deviate from their typical or otherwise normal behavior because of the awareness of being “monitored”. I study this problem by leveraging the potential of longitudinal and historical behavioral data through social media. Focused on a multimodal sensing study, I conduct a causal study to measure observer effect in social media behavior, and explain the observations through existing theory in psychology and social science. The findings provide recommendations to correcting biases due to observer effect in social media sensing for human behavior and wellbeing. The novelties and contributions of this dissertation are four-fold. First, I use social media data that uniquely captures the behavior of situated communities. Second, I adopt theory-driven computational and causal methods to make conclusive research claims on wellbeing dynamics. Third, I address major challenges with methods to combine social media with multimodal sensing data for a comprehensive understanding of human behavior. Fourth, I draw interpretations and explanations of online-data-driven offline inferences. This dissertation situates the findings in an interdisciplinary context, including psychology and social science, and bears implications from theoretical, practical, design, methodological, and ethical perspectives catering to various stakeholders, including researchers, practitioners, and policymakers.Ph.D

    A Survey on Intelligent Internet of Things: Applications, Security, Privacy, and Future Directions

    Get PDF
    peer reviewedThe rapid advances in the Internet of Things (IoT) have promoted a revolution in communication technology and offered various customer services. Artificial intelligence (AI) techniques have been exploited to facilitate IoT operations and maximize their potential in modern application scenarios. In particular, the convergence of IoT and AI has led to a new networking paradigm called Intelligent IoT (IIoT), which has the potential to significantly transform businesses and industrial domains. This paper presents a comprehensive survey of IIoT by investigating its significant applications in mobile networks, as well as its associated security and privacy issues. Specifically, we explore and discuss the roles of IIoT in a wide range of key application domains, from smart healthcare and smart cities to smart transportation and smart industries. Through such extensive discussions, we investigate important security issues in IIoT networks, where network attacks, confidentiality, integrity, and intrusion are analyzed, along with a discussion of potential countermeasures. Privacy issues in IIoT networks were also surveyed and discussed, including data, location, and model privacy leakage. Finally, we outline several key challenges and highlight potential research directions in this important area
    corecore