6,829 research outputs found

    Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds

    Full text link
    Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with plain multi layer perceptrons (MLP) applied to image patches. We will show that by training on large image databases we are able to outperform the current state-of-the-art image denoising methods. In addition, our method achieves results that are superior to one type of theoretical bound and goes a large way toward closing the gap with a second type of theoretical bound. Our approach is easily adapted to less extensively studied types of noise, such as mixed Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise and noise resembling stripes, for which we achieve excellent results as well. We will show that combining a block-matching procedure with MLPs can further improve the results on certain images. In a second paper, we detail the training trade-offs and the inner mechanisms of our MLPs

    Enhancing Decision Tree based Interpretation of Deep Neural Networks through L1-Orthogonal Regularization

    Full text link
    One obstacle that so far prevents the introduction of machine learning models primarily in critical areas is the lack of explainability. In this work, a practicable approach of gaining explainability of deep artificial neural networks (NN) using an interpretable surrogate model based on decision trees is presented. Simply fitting a decision tree to a trained NN usually leads to unsatisfactory results in terms of accuracy and fidelity. Using L1-orthogonal regularization during training, however, preserves the accuracy of the NN, while it can be closely approximated by small decision trees. Tests with different data sets confirm that L1-orthogonal regularization yields models of lower complexity and at the same time higher fidelity compared to other regularizers.Comment: 8 pages, 18th IEEE International Conference on Machine Learning and Applications (ICMLA) 201

    Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks

    Full text link
    In this paper we propose and investigate a novel nonlinear unit, called LpL_p unit, for deep neural networks. The proposed LpL_p unit receives signals from several projections of a subset of units in the layer below and computes a normalized LpL_p norm. We notice two interesting interpretations of the LpL_p unit. First, the proposed unit can be understood as a generalization of a number of conventional pooling operators such as average, root-mean-square and max pooling widely used in, for instance, convolutional neural networks (CNN), HMAX models and neocognitrons. Furthermore, the LpL_p unit is, to a certain degree, similar to the recently proposed maxout unit (Goodfellow et al., 2013) which achieved the state-of-the-art object recognition results on a number of benchmark datasets. Secondly, we provide a geometrical interpretation of the activation function based on which we argue that the LpL_p unit is more efficient at representing complex, nonlinear separating boundaries. Each LpL_p unit defines a superelliptic boundary, with its exact shape defined by the order pp. We claim that this makes it possible to model arbitrarily shaped, curved boundaries more efficiently by combining a few LpL_p units of different orders. This insight justifies the need for learning different orders for each unit in the model. We empirically evaluate the proposed LpL_p units on a number of datasets and show that multilayer perceptrons (MLP) consisting of the LpL_p units achieve the state-of-the-art results on a number of benchmark datasets. Furthermore, we evaluate the proposed LpL_p unit on the recently proposed deep recurrent neural networks (RNN).Comment: ECML/PKDD 201

    Neural network-based colonoscopic diagnosis using on-line learning and differential evolution

    Get PDF
    In this paper, on-line training of neural networks is investigated in the context of computer-assisted colonoscopic diagnosis. A memory-based adaptation of the learning rate for the on-line back-propagation (BP) is proposed and used to seed an on-line evolution process that applies a differential evolution (DE) strategy to (re-) adapt the neural network to modified environmental conditions. Our approach looks at on-line training from the perspective of tracking the changing location of an approximate solution of a pattern-based, and thus, dynamically changing, error function. The proposed hybrid strategy is compared with other standard training methods that have traditionally been used for training neural networks off-line. Results in interpreting colonoscopy images and frames of video sequences are promising and suggest that networks trained with this strategy detect malignant regions of interest with accuracy
    • …
    corecore