1,917 research outputs found

    Training Echo State Networks with Regularization through Dimensionality Reduction

    Get PDF
    In this paper we introduce a new framework to train an Echo State Network to predict real valued time-series. The method consists in projecting the output of the internal layer of the network on a space with lower dimensionality, before training the output layer to learn the target task. Notably, we enforce a regularization constraint that leads to better generalization capabilities. We evaluate the performances of our approach on several benchmark tests, using different techniques to train the readout of the network, achieving superior predictive performance when using the proposed framework. Finally, we provide an insight on the effectiveness of the implemented mechanics through a visualization of the trajectory in the phase space and relying on the methodologies of nonlinear time-series analysis. By applying our method on well known chaotic systems, we provide evidence that the lower dimensional embedding retains the dynamical properties of the underlying system better than the full-dimensional internal states of the network

    Bidirectional deep-readout echo state networks

    Full text link
    We propose a deep architecture for the classification of multivariate time series. By means of a recurrent and untrained reservoir we generate a vectorial representation that embeds temporal relationships in the data. To improve the memorization capability, we implement a bidirectional reservoir, whose last state captures also past dependencies in the input. We apply dimensionality reduction to the final reservoir states to obtain compressed fixed size representations of the time series. These are subsequently fed into a deep feedforward network trained to perform the final classification. We test our architecture on benchmark datasets and on a real-world use-case of blood samples classification. Results show that our method performs better than a standard echo state network and, at the same time, achieves results comparable to a fully-trained recurrent network, but with a faster training

    Integer Echo State Networks: Hyperdimensional Reservoir Computing

    Full text link
    We propose an approximation of Echo State Networks (ESN) that can be efficiently implemented on digital hardware based on the mathematics of hyperdimensional computing. The reservoir of the proposed Integer Echo State Network (intESN) is a vector containing only n-bits integers (where n<8 is normally sufficient for a satisfactory performance). The recurrent matrix multiplication is replaced with an efficient cyclic shift operation. The intESN architecture is verified with typical tasks in reservoir computing: memorizing of a sequence of inputs; classifying time-series; learning dynamic processes. Such an architecture results in dramatic improvements in memory footprint and computational efficiency, with minimal performance loss.Comment: 10 pages, 10 figures, 1 tabl

    Empirical Analysis of the Necessary and Sufficient Conditions of the Echo State Property

    Full text link
    The Echo State Network (ESN) is a specific recurrent network, which has gained popularity during the last years. The model has a recurrent network named reservoir, that is fixed during the learning process. The reservoir is used for transforming the input space in a larger space. A fundamental property that provokes an impact on the model accuracy is the Echo State Property (ESP). There are two main theoretical results related to the ESP. First, a sufficient condition for the ESP existence that involves the singular values of the reservoir matrix. Second, a necessary condition for the ESP. The ESP can be violated according to the spectral radius value of the reservoir matrix. There is a theoretical gap between these necessary and sufficient conditions. This article presents an empirical analysis of the accuracy and the projections of reservoirs that satisfy this theoretical gap. It gives some insights about the generation of the reservoir matrix. From previous works, it is already known that the optimal accuracy is obtained near to the border of stability control of the dynamics. Then, according to our empirical results, we can see that this border seems to be closer to the sufficient conditions than to the necessary conditions of the ESP.Comment: 23 pages, 14 figures, accepted paper for the IEEE IJCNN, 201

    Reservoir computing approaches for representation and classification of multivariate time series

    Get PDF
    Classification of multivariate time series (MTS) has been tackled with a large variety of methodologies and applied to a wide range of scenarios. Reservoir Computing (RC) provides efficient tools to generate a vectorial, fixed-size representation of the MTS that can be further processed by standard classifiers. Despite their unrivaled training speed, MTS classifiers based on a standard RC architecture fail to achieve the same accuracy of fully trainable neural networks. In this paper we introduce the reservoir model space, an unsupervised approach based on RC to learn vectorial representations of MTS. Each MTS is encoded within the parameters of a linear model trained to predict a low-dimensional embedding of the reservoir dynamics. Compared to other RC methods, our model space yields better representations and attains comparable computational performance, thanks to an intermediate dimensionality reduction procedure. As a second contribution we propose a modular RC framework for MTS classification, with an associated open-source Python library. The framework provides different modules to seamlessly implement advanced RC architectures. The architectures are compared to other MTS classifiers, including deep learning models and time series kernels. Results obtained on benchmark and real-world MTS datasets show that RC classifiers are dramatically faster and, when implemented using our proposed representation, also achieve superior classification accuracy
    • …
    corecore