12 research outputs found

    Traffic Sign Detection and Recognition Based on Convolutional Neural Network

    Get PDF
    As autonomous vehicles are developing and maturing the technology to implement the domestic autonomous vehicles. The critical technological problem for self-driving vehicles is traffic sign detection and recognition. A traffic sign recognition system is essential for an intelligent transportation system. The digital image processing techniques for object recognition and extraction of features from visual objects is a huge process and include many conversions and pre-processing steps. A deep learning-based convolutional neural network (CNN) model is one of the suitable approach for traffic sign detection and recognition. This model has overcome significant shortcomings of traditional visual object detection approaches. This paper proposed a traffic sign identification and detection system. The proposed design and strategy are implemented using the Tensorflow framework in google colab environment. The experiment is applied on the publicly available traffic sign data sets. The defined deep convolution neural network based model experimental results achieved 94.52% and 80.85% precision and recall respectively. Improving the seep of recognition and identifying appropriate features of traffic sign objects are addressed using deep learning-based encoders and transformers. &nbsp

    Did You Miss the Sign? A False Negative Alarm System for Traffic Sign Detectors

    Full text link
    Object detection is an integral part of an autonomous vehicle for its safety-critical and navigational purposes. Traffic signs as objects play a vital role in guiding such systems. However, if the vehicle fails to locate any critical sign, it might make a catastrophic failure. In this paper, we propose an approach to identify traffic signs that have been mistakenly discarded by the object detector. The proposed method raises an alarm when it discovers a failure by the object detector to detect a traffic sign. This approach can be useful to evaluate the performance of the detector during the deployment phase. We trained a single shot multi-box object detector to detect traffic signs and used its internal features to train a separate false negative detector (FND). During deployment, FND decides whether the traffic sign detector (TSD) has missed a sign or not. We are using precision and recall to measure the accuracy of FND in two different datasets. For 80% recall, FND has achieved 89.9% precision in Belgium Traffic Sign Detection dataset and 90.8% precision in German Traffic Sign Recognition Benchmark dataset respectively. To the best of our knowledge, our method is the first to tackle this critical aspect of false negative detection in robotic vision. Such a fail-safe mechanism for object detection can improve the engagement of robotic vision systems in our daily life.Comment: Submitted to the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019

    VSSA-NET: Vertical Spatial Sequence Attention Network for Traffic Sign Detection

    Full text link
    Although traffic sign detection has been studied for years and great progress has been made with the rise of deep learning technique, there are still many problems remaining to be addressed. For complicated real-world traffic scenes, there are two main challenges. Firstly, traffic signs are usually small size objects, which makes it more difficult to detect than large ones; Secondly, it is hard to distinguish false targets which resemble real traffic signs in complex street scenes without context information. To handle these problems, we propose a novel end-to-end deep learning method for traffic sign detection in complex environments. Our contributions are as follows: 1) We propose a multi-resolution feature fusion network architecture which exploits densely connected deconvolution layers with skip connections, and can learn more effective features for the small size object; 2) We frame the traffic sign detection as a spatial sequence classification and regression task, and propose a vertical spatial sequence attention (VSSA) module to gain more context information for better detection performance. To comprehensively evaluate the proposed method, we do experiments on several traffic sign datasets as well as the general object detection dataset and the results have shown the effectiveness of our proposed method

    Localización y reconocimiento de señales de tráfico del Ecuador: Casos Pare y Ceda el Paso

    Get PDF
    En el mundo y en el Ecuador, las altas tasas de accidentes de tráfico son generadas, principalmente, por la falta de respeto a la normativa vial por parte de los usuarios viales, generando costos humanos y materiales de importancia. En este sentido, la localización y el reconocimiento de las señales de tráfico es esencial para la construcción de dispositivos capaces de prevenir situaciones que puedan generar accidentes de tráfico. Por lo tanto, en este trabajo se presenta un nuevo enfoque para la construcción de un sistema para la detección de señales de tráfico, usando las siguientes innovaciones, i) un método de segmentación por color para la generación de regiones de interés (ROIs) basado en los algoritmos −, con −, ii) una nueva versión del descriptor HOG (Histograms of oriented gradients) para la extracción de características, y iii) el entrenamiento del algoritmo SVM no-lineal para multi-clasificación. El enfoque propuesto ha sido probado sobre las señales de tráfico ecuatorianas de Pare y Ceda el Paso. Un sinnúmero de experimentos han sido desarrollados sobre varias secuencias de videos capturadas con vehículo experimental en condiciones reales de conducción en varias ciudades ecuatorianas, bajo diferentes condiciones de iluminación como son normal, soleado y nublado. Este sistema ha mostrado un rendimiento de 98.7% para la segmentación, 99.49% para la clasificación y una precisión del 96% para la detección

    Self-supervised few-shot learning for real-time traffic sign classification

    Get PDF
    Although supervised approaches for traffic sign classification have demonstrated excellent performance, they are limited to classifying several traffic signs defined in the training dataset. This prevents them from being applied to different domains, i.e., different countries. Herein, we propose a self-supervised approach for few-shot learning-based traffic sign classification. A center-awareness similarity network is designed for the traffic sign problem and trained using an optical flow dataset. Unlike existing supervised traffic sign classification methods, the proposed method does not depend on traffic sign categories defined by the training dataset. It applies to any traffic signs from different countries. We construct a Korean traffic sign classification (KTSC) dataset, including 6000 traffic sign samples and 59 categories. We evaluate the proposed method with baseline methods using the KTSC, German traffic sign, and Belgian traffic sign classification datasets. Experimental results show that the proposed method extends the ability of existing supervised methods and can classify any traffic sign, regardless of region/country dependence. Furthermore, the proposed approach significantly outperforms baseline methods for patch similarity. This approach provides a flexible and robust solution for classifying traffic signs, allowing for accurate categorization of every traffic sign, regardless of regional or national differences

    Traffic sign recognition with deep convolutional neural networks

    Get PDF
    The problem of detection and recognition of traffic signs is becoming an important problem when it comes to the development of self driving cars and advanced driver assistance systems. In this thesis we will develop a system for detection and recognition of traffic signs. For the problem of detection we will use aggregate channel features and for the problem of recognition we will use a deep convolutional neural network. We will describe how convolutional neural networks work, how they are constructed and we will explain the use of every layer. We will describe the steps we took to develop our convolutional neural network. We will evaluate the results of detection and classification on established traffic sign datasets

    Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions

    Full text link
    [EN] Advances in information and signal processing technologies have a significant impact on autonomous driving (AD), improving driving safety while minimizing the efforts of human drivers with the help of advanced artificial intelligence (AI) techniques. Recently, deep learning (DL) approaches have solved several real-world problems of complex nature. However, their strengths in terms of control processes for AD have not been deeply investigated and highlighted yet. This survey highlights the power of DL architectures in terms of reliability and efficient real-time performance and overviews state-of-the-art strategies for safe AD, with their major achievements and limitations. Furthermore, it covers major embodiments of DL along the AD pipeline including measurement, analysis, and execution, with a focus on road, lane, vehicle, pedestrian, drowsiness detection, collision avoidance, and traffic sign detection through sensing and vision-based DL methods. In addition, we discuss on the performance of several reviewed methods by using different evaluation metrics, with critics on their pros and cons. Finally, this survey highlights the current issues of safe DL-based AD with a prospect of recommendations for future research, rounding up a reference material for newcomers and researchers willing to join this vibrant area of Intelligent Transportation Systems.This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the Korea Government (MSIT) (2019-0-00136, Development of AI-Convergence Technologies for Smart City Industry Productivity Innovation); The work of Javier Del Ser was supported by the Basque Government through the EMAITEK and ELKARTEK Programs, as well as by the Department of Education of this institution (Consolidated Research Group MATHMODE, IT1294-19); VHCA received support from the Brazilian National Council for Research and Development (CNPq, Grant #304315/2017-6 and #430274/2018-1).Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; De Albuquerque, VHC. (2021). Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Transactions on Intelligent Transportation Systems. 22(7):4316-4336. https://doi.org/10.1109/TITS.2020.30322274316433622
    corecore