525 research outputs found

    Unified and Distributed QoS-Driven Cell Association Algorithms in Heterogeneous Networks

    Full text link
    This paper addresses the cell association problem in the downlink of a multi-tier heterogeneous network (HetNet), where base stations (BSs) have finite number of resource blocks (RBs) available to distribute among their associated users. Two problems are defined and treated in this paper: sum utility of long term rate maximization with long term rate quality of service (QoS) constraints, and global outage probability minimization with outage QoS constraints. The first problem is well-suited for low mobility environments, while the second problem provides a framework to deal with environments with fast fading. The defined optimization problems in this paper are solved in two phases: cell association phase followed by the optional RB distribution phase. We show that the cell association phase of both problems have the same structure. Based on this similarity, we propose a unified distributed algorithm with low levels of message passing to for the cell association phase. This distributed algorithm is derived by relaxing the association constraints and using Lagrange dual decomposition method. In the RB distribution phase, the remaining RBs after the cell association phase are distributed among the users. Simulation results show the superiority of our distributed cell association scheme compared to schemes that are based on maximum signal to interference plus noise ratio (SINR)

    A Submodular Optimization Framework for Outage-Aware Cell Association in Heterogeneous Cellular Networks

    Get PDF
    In cellular heterogeneous networks (HetNets), offloading users to small cell base stations (SBSs) leads to a degradation in signal to interference plus noise ratio (SINR) and results in high outage probabilities for offloaded users. In this paper, we propose a novel framework to solve the cell association problem with the intention of improving user outage performance while achieving load balancing across different tiers of BSs. We formulate a combinatorial utility maximization problem with weighted BS loads that achieves proportional fairness among users and also takes into account user outage performance. A formulation of the weighting parameters is proposed to discourage assigning users to BSs with high outage probabilities. In addition, we show that the combinatorial optimization problem can be reformulated as a monotone submodular maximization problem and it can be readily solved via a greedy algorithm with lazy evaluations. The obtained solution offers a constant performance guarantee to the cell association problem. Simulation results show that our proposed approach leads to over 30% reduction in outage probabilities for offloaded users and achieves load balancing across macrocell and small cell BSs

    Multiobjective auction-based switching-off scheme in heterogeneous networks: to bid or not to bid?

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The emerging data traffic demand has caused a massive deployment of network infrastructure, including Base Stations (BSs) and Small Cells (SCs), leading to increased energy consumption and expenditures. However, the network underutilization during low traffic periods enables the Mobile Network Operators (MNOs) to save energy by having their traffic served by third party SCs, thus being able to switch off their BSs. In this paper, we propose a novel market approach to foster the opportunistic utilization of the unexploited SCs capacity, where the MNOs, instead of requesting the maximum capacity to meet their highest traffic expectations, offer a set of bids requesting different resources from the third party SCs at lower costs. Motivated by the conflicting financial interests of the MNOs and the third party, the restricted capacity of the SCs that is not adequate to carry the whole traffic in multi-operator scenarios, and the necessity for energy efficient solutions, we introduce a combinatorial auction framework, which includes i) a bidding strategy, ii) a resource allocation scheme, and iii) a pricing rule. We propose a multiobjective framework as an energy and cost efficient solution for the resource allocation problem, and we provide extensive analytical and experimental results to estimate the potential energy and cost savings that can be achieved. In addition, we investigate the conditions under which the MNOs and the third party companies should take part in the proposed auction.Peer ReviewedPostprint (author's final draft
    • …
    corecore