2,710 research outputs found

    nuScenes Knowledge Graph -- A comprehensive semantic representation of traffic scenes for trajectory prediction

    Full text link
    Trajectory prediction in traffic scenes involves accurately forecasting the behaviour of surrounding vehicles. To achieve this objective it is crucial to consider contextual information, including the driving path of vehicles, road topology, lane dividers, and traffic rules. Although studies demonstrated the potential of leveraging heterogeneous context for improving trajectory prediction, state-of-the-art deep learning approaches still rely on a limited subset of this information. This is mainly due to the limited availability of comprehensive representations. This paper presents an approach that utilizes knowledge graphs to model the diverse entities and their semantic connections within traffic scenes. Further, we present nuScenes Knowledge Graph (nSKG), a knowledge graph for the nuScenes dataset, that models explicitly all scene participants and road elements, as well as their semantic and spatial relationships. To facilitate the usage of the nSKG via graph neural networks for trajectory prediction, we provide the data in a format, ready-to-use by the PyG library. All artefacts can be found here: https://github.com/boschresearch/nuScenes_Knowledge_GraphComment: Accepted to the 2023 IEEE/CVF International Converence on Computer Vision (ICCV) workshop on Scene Graphs and Graph Representation Learning (SG2RL

    Imitating Driver Behavior with Generative Adversarial Networks

    Full text link
    The ability to accurately predict and simulate human driving behavior is critical for the development of intelligent transportation systems. Traditional modeling methods have employed simple parametric models and behavioral cloning. This paper adopts a method for overcoming the problem of cascading errors inherent in prior approaches, resulting in realistic behavior that is robust to trajectory perturbations. We extend Generative Adversarial Imitation Learning to the training of recurrent policies, and we demonstrate that our model outperforms rule-based controllers and maximum likelihood models in realistic highway simulations. Our model both reproduces emergent behavior of human drivers, such as lane change rate, while maintaining realistic control over long time horizons.Comment: 8 pages, 6 figure

    Multilevel annoyance modelling of short environmental sound recordings

    Get PDF
    The recent development and deployment of Wireless Acoustic Sensor Networks (WASN) present new ways to address urban acoustic challenges in a smart city context. A focus on improving quality of life forms the core of smart-city design paradigms and cannot be limited to simply measuring objective environmental factors, but should also consider the perceptual, psychological and health impacts on citizens. This study therefore makes use of short (1–2.7 s) recordings sourced from a WASN in Milan which were grouped into various environmental sound source types and given an annoyance rating via an online survey with N = 100 participants. A multilevel psychoacoustic model was found to achieve an overall R = 0.64 which incorporates Sharpness as a fixed effect regardless of the sound source type and Roughness, Impulsiveness and Tonality as random effects whose coefficients vary depending on the sound source. These results present a promising step toward implementing an on-sensor annoyance model which incorporates psychoacoustic features and sound source type, and is ultimately not dependent on sound level.

    Spatiotemporal graphical modeling for cyber-physical systems

    Get PDF
    Cyber-Physical Systems (CPSs) are combinations of physical processes and network computation. Modern CPSs such as smart buildings, power plants, transportation networks, and power-grids have shown tremendous potential for increased efficiency, robustness, and resilience. However, such modern CPSs encounter a large variety of physical faults and cyber anomalies, and in many cases are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among their sub-systems. To address these issues, this study proposes a graphical modeling framework to monitor and predict the performance of CPSs in a scalable and robust way. This thesis investigates on two critical CPS applications to evaluate the effectiveness of this proposed framework, namely (i) health monitoring of highway traffic sensors and (ii) building energy consumption prediction. In highway traffic sensor networks, accurate traffic sensor data is essential for traffic operation management systems and acquisition of real-time traffic surveillance data depends heavily on the reliability of the physical systems. Therefore, detecting the health status of the sensors in a traffic sensor network is critical for the departments of transportation as well as other public and private entities, especially in the circumstances where real-time decision making is required. With the purpose of efficiently determining the traffic network status and identifying failed sensor(s), this study proposes a cost-effective spatiotemporal graphical modeling approach called spatiotemporal pattern network (STPN). Traffic speed and volume measurement sensors are used in this work to formulate and analyze the proposed sensor health monitoring system. The historical time-series data from the networked traffic sensors on the Interstate 35 (I-35) within the state of Iowa is used for validation. Based on the validation results, this study demonstrates that the proposed graphical modeling approach can: (i) extract spatiotemporal dependencies among the different sensors which lead to an efficient graphical representation of the sensor network in the information space, and (ii) distinguish and quantify a sensor issue by leveraging the extracted spatiotemporal relationship of the candidate sensor(s) to the other sensors in the network. In the building energy consumption prediction case, we consider the fact that energy performance of buildings is primarily affected by the heat exchange with the building outer skin and the surrounding environment. In addition, it is a common practice in building energy simulation (BES) to predict energy usage with a variable degree of accuracy. Therefore, to account for accurate building energy consumption, especially in urban environments with a lot of anthropogenic heat sources, it is necessary to consider the microclimate conditions around the building. These conditions are influenced by the immediate environment, such as surrounding buildings, hard surfaces, and trees. Moreover, deployment of sensors to monitor the microclimate information of a building can be quite challenging and therefore, not scalable. Instead of applying local weather data directly on building energy simulation (BES) tools, this work proposes a spatiotemporal pattern network (STPN) based machine learning framework to predict the microclimate information based on the local weather station, which leads to better energy consumption prediction in buildings

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Analysis of Trajectories by Preserving Structural Information

    Get PDF
    The analysis of trajectories from traffic data is an established and yet fast growing area of research in the related fields of Geo-analytics and Geographic Information Systems (GIS). It has a broad range of applications that impact lives of millions of people, e.g., in urban planning, transportation and navigation systems and localized search methods. Most of these applications share some underlying basic tasks which are related to matching, clustering and classification of trajectories. And, these tasks in turn share some underlying problems, i.e., dealing with the noisy and variable length spatio-temporal sequences in the wild. In our view, these problems can be handled in a better manner by exploiting the spatio-temporal relationships (or structural information) in sampled trajectory points that remain considerably unharmed during the measurement process. Although, the usage of such structural information has allowed breakthroughs in other fields related to the analysis of complex data sets [18], surprisingly, there is no existing approach in trajectory analysis that looks at this structural information in a unified way across multiple tasks. In this thesis, we build upon these observations and give a unified treatment of structural information in order to improve trajectory analysis tasks. This treatment explores for the first time that sequences, graphs, and kernels are common to machine learning and geo-analytics. This common language allows to pool the corresponding methods and knowledge to help solving the challenges raised by the ever growing amount of movement data by developing new analysis models and methods. This is illustrated in several ways. For example, we introduce new problem settings, distance functions and a visualization scheme in the area of trajectory analysis. We also connect the broad fild of kernel methods to the analysis of trajectories, and, we strengthen and revisit the link between biological sequence methods and analysis of trajectories. Finally, the results of our experiments show that - by incorporating the structural information - our methods improve over state-of-the-art in the focused tasks, i.e., map matching, clustering and traffic event detection

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Formal Logic Enabled Personalized Federated Learning Through Property Inference

    Full text link
    Recent advancements in federated learning (FL) have greatly facilitated the development of decentralized collaborative applications, particularly in the domain of Artificial Intelligence of Things (AIoT). However, a critical aspect missing from the current research landscape is the ability to enable data-driven client models with symbolic reasoning capabilities. Specifically, the inherent heterogeneity of participating client devices poses a significant challenge, as each client exhibits unique logic reasoning properties. Failing to consider these device-specific specifications can result in critical properties being missed in the client predictions, leading to suboptimal performance. In this work, we propose a new training paradigm that leverages temporal logic reasoning to address this issue. Our approach involves enhancing the training process by incorporating mechanically generated logic expressions for each FL client. Additionally, we introduce the concept of aggregation clusters and develop a partitioning algorithm to effectively group clients based on the alignment of their temporal reasoning properties. We evaluate the proposed method on two tasks: a real-world traffic volume prediction task consisting of sensory data from fifteen states and a smart city multi-task prediction utilizing synthetic data. The evaluation results exhibit clear improvements, with performance accuracy improved by up to 54% across all sequential prediction models
    • …
    corecore