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Abstract: The recent development and deployment of Wireless Acoustic Sensor Networks (WASN)
present new ways to address urban acoustic challenges in a smart city context. A focus on improving
quality of life forms the core of smart-city design paradigms and cannot be limited to simply
measuring objective environmental factors, but should also consider the perceptual, psychological
and health impacts on citizens. This study therefore makes use of short (1–2.7 s) recordings sourced
from a WASN in Milan which were grouped into various environmental sound source types and given
an annoyance rating via an online survey with N = 100 participants. A multilevel psychoacoustic
model was found to achieve an overall R2 = 0.64 which incorporates Sharpness as a fixed effect
regardless of the sound source type and Roughness, Impulsiveness and Tonality as random effects
whose coefficients vary depending on the sound source. These results present a promising step
toward implementing an on-sensor annoyance model which incorporates psychoacoustic features
and sound source type, and is ultimately not dependent on sound level.

Keywords: noise; annoyance evaluation; citizen; perceptive test; smart-city; annoyance modelling;
wireless acoustic sensor network

1. Introduction

Noise has been proven to have a wide impact on the social and economic aspects
of citizens’ lifes [1] and is regarded as one of the primary environmental health issues
referenced in the new environmental noise guidelines [2]. Over the past few years, sev-
eral research teams have analyzed the causes and the impact of this noise, revealing that
it causes more than 48,000 new cases of ischemic heart disease and around 12,000 deaths
in Europe each year [2]. Furthermore, it leads to chronic high annoyance for more than
22 million people, and sleep disturbance for more than 6.5 million people [3]. One of
the main noise sources according to research is road traffic noise [4], causing psycholog-
ical reactions in citizens [5] and even cardiovascular diseases [4]. Other studies analyze
the effects of aircraft noise on sleep [6] and learning impairments on children [7]. Also
railway noise has proven to cause annoyance due to its huge variety of sounds, e.g., rail
breaks, whistles, squeels and vibrations [8,9]. Most of the literature focuses on sound
level measurements and the corresponding annoyance [10], but other acoustical and psy-
choacoustical characteristics could be taken into account, e.g., loudness or sharpness [11],
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in order to understand the degree of noise annoyance and identify the characteristics of
sounds that may be more detrimental to psychological well-being and consequently for
health. Such knowledge is relevant for policy makers and urban planners in order to create
healthy environments.

Several tests used in studies to evaluate the effects of environmental noise for citi-
zens [12] can be used to design this model. This study uses real-life data and its sound
characterisation, thus focusing on noise sensitivity was not the closest approach to the prob-
lem. The tests used as a basis in this work have been defined with the purpose of finding
new ways of analyzing the impact of sound -usually traffic- on citizens in urban environ-
ments [13,14], in order to model the annoyance perception [15,16].

The perceptual tests were designed to measure the annoyance in people relating to
different urban sounds and their characteristics [17,18], by means of short excerpts of raw
acoustic audio obtained from the DYNAMAP project [19]. The most representative audio
excerpts were selected, using a wide range of sound types (sirens, airplanes, people talking,
dogs barking, etc.) [20,21], keeping the constants of location and sensor calibration. However,
sound annoyance depends on the acoustic characterization of each sample, and it is possible to
classify the acoustic excerpts depending on their characterization, which can be the basis to
ask participants about their perceptions. The characterisation is based on the psychoacoustic
measurements of loudness, sharpness and others defined by Zwicker [11].

The authors asked more than 100 people to conduct the perceptual tests [18]. Some pre-
liminary results of the three tests conducted were published in [17] in which the relationship
between sharpness and annoyance was analyzed by means of an A/B test [22], and later
on in [18], where some of the research questions were formulated. In this paper, we aim to
determine the parameters that have an effect in the individual annoyance scores. For this
reason, a multilevel psychoacoustic model is trained using the results of the MUSHRA [23]
test, essentially focused on annoyance evaluation by the participants over several different
types of sound, while loudness and sharpness were kept constant. The results show that
the differences in annoyance perception between the different demographic groups is not
statistically significant and that sharpness is the main predictor for annoyance.

The paper is structured as follows: Section 2 details the state-of-the-art of annoyance
modelling by means of subjective data collection. Section 3 describes the procedure fol-
lowed in this work, including the dataset and the design of the perceptual test. In Section 4,
the results obtained from the perceptive tests are presented and discussed, and the annoy-
ance model is proposed. Section 5 contains for the discussion and finally, Section 6 presents
the conclusions of the paper.

2. State of the Art of Annoyance Evaluation and Modelling

In this section we gather a short synthesis of the most relevant contributions of
the state-of-the-art on which the design of the tests and the modelling of the perceptual
annoyance have been based.

2.1. Evaluation of Annoyance

The evaluation of annoyance can be found in literature by means of the use of objective
parameters related to sound and noise [10]. Nevertheless, when the goal is to measure
the perception, the real annoyance experienced by people, one of the most frequently
used methods is to conduct a survey to measure the degree of annoyance produced by
different sounds [24–26]. Following the recommendation of the International Committee
for the Biological Effects of Noise (ICBEN), this evaluation should be done in a qualitative
way, using a verbal scale; this can be translated into not at all, slightly, moderately, very
and extremely, just to give a few examples. Also an 11-point numeric scale -also from
an ICBEN recommendation- can be used, where in this case, zero corresponds to not at all
and 10 corresponds to extremely disturbing.

Furthermore, taking advantage of the experience in soundscapes evaluation [27]
citizens can be asked about other aspects besides annoyance. To this end, a perceptual
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assessment based on a Likert scale [28] could be used. This scale defines five levels of
agreement with a given statement: Strongly disagree, Disagree, Neither agree nor disagree,
Agree and Strongly agree. This scale was used in [17,18] to evaluate several types of noise
sources according to a small group of attributes such as loud, shrill, noisy, disturbing, sharp,
exciting, calming and pleasant (see the complete list of adjectives in [27]).

Borrowing from the subjective assessment of audio quality, the MUSHRA method
has been also used for the evaluation of annoyance in [17,18]. MUSHRA, which stands
for MUlti Stimulus test with Hidden Reference and Anchor, was described and designed
by ITU-R under the recommendation ITU-R BS.1534-3 [23]. This recommendation gives
guidelines on listening tests and subjective assessment, as well as audio quality (among
other applications), assuming that the best way to evaluate audio quality is by means of
subjective listening.

Listening tests can be conducted in a controlled scenario (e.g., in an anechoic chamber)
thus allowing the organizer to have control over all the setup. Nevertheless, this approach
is expensive and time consuming. Alternatively, online listening tests have been widely
used in the perceptual evaluation of audio quality or speech synthesis systems, even
resorting to crowdsourcing strategies [29]. These tests can be run in parallel and anywhere,
thereby reducing costs and allowing to reach a wider audience [30].

2.2. Annoyance Prediction

After the design and the execution of the perceptual tests, the resulting evaluations
coming from participants are used to generate an model that can predict the annoyance
value depending on the type and the parameters of the noise excerpt under study. One of
the most representative examples of annoyance modelling is found in [15], where a model
based on the hypothesis that annoyance is primarily determined by the detection of
intruding sounds is presented. The model takes into account several measurable elements:
(i) signal-to-noise ratio (SNR), (ii) indoor background level, (iii) the activity conducted
by the listener—assuming that in the conducted tests, their main activity is not listening
to events—among others. The model is obtained from the results of a test evaluating
annoyance and acoustic data from a field experiment in a natural setting.

Another reference model for annoyance prediction is found in [16], where the authors
model and predict road traffic-noise annoyance based on: (i) noise perception, (ii) noise
exposure levels and (iii) demographics. The authors apply machine-learning algorithms
in order to conduct the prediction and measure the error rates, which give them a good
trade-off in the prediction of the traffic-noise annoyance, with a strong dependence on
subjective noise perception and predicted noise exposure levels, assuming that the classical
statistical approaches fail in their predictions in terms of accuracy.

A model of annoyance based on a combination of psychoacoustic metrics was pro-
posed by Zwicker and Fastl [11]. Generated from laboratory-collected data, this model
attempts to provide a method to directly calculate the relative annoyance values of single-
source sounds from the psychoacoustic Loudness, Roughness, Sharpness, and Fluctuation
Strength. This model has also been further expanded upon to include a term for the Tonality
of the sound [31]. However, this model was developed based on laboratory studies of
generated, simple sounds (i.e., not real recorded sounds) and does not take into account
the semantic information associated with the real environmental sounds present in an
urban environment.

In [32], the authors led us to a better understanding of the transportation noise-
annoyance response, in three different and relevant approximations: (i) to unravel the fac-
tors that affect the annoyance response of people in reference to the mixed transportation
noise, (ii) to contrast the noise-annoyance dependence in situations where road traffic
and railway noise dominate and (iii) to detail the differences between those two using
structural equation modelling. As expected, the results show that annoyance is largely
determined by noise disturbance and the noisiness perceived by citizens. Finally, in [33]
an approach to develop a road traffic noise annoyance prediction model is presented,
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and it takes into account: (i) social aspects, (ii) characteristics of traffic and (iii) urban
development. It is based on the creation of a local model, with a pilot in Istanbul (Turkey),
which uses all the information gathered for the creation of the noise maps as an input,
and provides annoyance levels prediction as an output, complementing the noise maps
that provide no subjective indicator.

3. Methods

In this section we detail the several methods applied our experiment from the perceptual
test design based on an urban sound dataset [21] to the multilevel linear regression modelling
applied to obtain the annoyance prediction described as contribution in this paper.

3.1. Dataset

In order to obtain a proper representation of the acoustic environment in the design
of the perceptual tests, a large quantity of recorded data is needed. The data gathered
in this project belongs to different recording times and urban locations, using the Wireless
Acoustic Sensor Network (WASN) deployed in Milan (Italy) in the framework of the LIFE
DYNAMAP project [19,21].

Gathering the data through a WASN facilitates the collection of a wide and accurate
representation of the acoustic events, because it keeps the same recording conditions
in every node and allows the retrieval of data at any time of the day. The dataset used
in this study has been obtained by homogeneously sampling several hours, in both weekday
and weekend, with 24 sensors distributed along the urban District 9 of Milan [34]. After that,
experts from the DYNAMAP developing team labelled the acoustic events of the recordings
manually to obtain a 151-h dataset [21]. Due to the nature of the project, that consisted
in removing events not related to traffic noise from the noise map computation, events
were grouped in RTN (Road Traffic Noise) that belongs to the 83.7% of the total time of
the dataset, and ANE (Anomalous Noise Event) with the 8.7% of the total time. Another
class was used to include overlapping and unidentified events: COMPLX (complex) with
7.6% of the total time [20]. During the labelling process, the DYNAMAP developers found
up to 26 types of anomalous events, which they decided to group in the following classes:
airplane, alarm, bell, bike, bird, blind, brake, bus door, construction, dog, door, glass, horn,
interference, music, people, rain, rubbish service, siren, squeak, step, thunder, tramway,
train, trolley, wind, works (construction) [35].

The most common sound classes were picked to evaluate the relationship between
the event measurements and the citizens’ perception of annoyance. These selected events
used in the study belong to the following 9 classes: airplane, bird, brake, construction, dog,
door, horn, people and siren [36]. As the selected events are the most common, those are
the ones that contain the widest variety of recording conditions, including different sensor
locations and recording hours [17]. The reason for that choice was double: (i) the availability
of a wide range of examples of each type of sound to choose for the design of the tests,
including the possibility of finding different samples that keep similar psychoacoustic
values, and (ii) the fact that the most common sounds are the most reasonable to evaluate
with people, as they are the most probable to generate annoyance due to their repetitiveness.

The comparison between the events is only be carried with sounds collected using
the same sensor, in order to respect the same recording conditions. For this reason, if the cho-
sen events for the perceptive tests belong to a sensor or another, depends on the availability
of the classes to be compared in each sensor. In all the cases, measures were taken to
ensure that the sensor containing the events has enough variety of samples with variate
psychoacoustic parameters, to ensure a proper representation of each category. To satisfy
these requirements, only data from four sensors have been used to make the comparisons,
as they provide enough information to carry the perceptual test, i.e., hb115, hb124, hb127
and hb133 [20]. More details about the event selection process and availability study of
the sensors are detailed in [17], and the time of each event in the sensors is depicted in [18].
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3.2. Design of the Perceptual Tests

In order to assess the degree of annoyance produced by the aforementioned classes
of sounds, an on-line test has been conducted using the Web Audio Evaluation Tool [30].
Specifically, the MUSHRA test method [23]—which was originally designed for the evalua-
tion of audio codecs—has been adapted for that purpose. Participants were given a clear
explanation of what they were asked, including detailed instructions on the operation of
the test. No training phase was therefore considered. A demographics survey was included
at the beginning of the test for all the 100 participants, asking for to identify age, gender,
and a subjective rating of the participant’s residential area (zr1- very quiet, zr2- quiet, zr3-
bit noisy, zr4- noisy, zr5- very noisy).

The second part of the test consists of five sets. Each set presents a group of short
acoustic events with similar values of loudness and sharpness but from different classes,
and recorded in the same sensor, in order to maintain the recording conditions and location
of the sounds under comparison. For each set, the participants were asked to evaluate
the annoyance produced by the presented audios, ordering them in a 0–10 scale, where zero
corresponds to not at all and 10 corresponds to extremely disturbing following the ICBEN
recommendation. The interface was customized including a color scale to help the partici-
pants place the stimuli according to the degree of annoyance that they perceive. Each audio
is represented with a green bar with a “play” icon on it and the audios are sorted randomly
along the MUSHRA scale (see Figure 1). An audio is reproduced when the corresponding
bar is clicked. The system ensures the participant listens to all the audios and moves all
the bars before they jump to the next set of audios. The sets were presented in a random
order to prevent learning biases. MUSHRA tests usually include hidden reference stimuli,
which in audio or speech quality evaluation corresponds to the highest quality samples
and that are used to remove outlier responses. Nonetheless, since stimuli pertaining to
different classes are compared, no audio reference was included, thus avoiding biases
towards a certain audio class. Moreover, the participants were asked to take the test
using headphones and to keep the same volume during all the tests, to maintain the same
conditions throughout the entire testing process. One hundred participants undertok this
test, 59 men and 41 women, with an average age of 33. Participants were volunteers, mainly
from the university and also gathered via social networks. The distribution according
to residential area is the following: 9 in zr1, 37 in zr2, 35 in zr3, 18 in zr4 and 1 in zr5.
The MUSHRA test allows us to (i) obtain an individual score of annoyance for each audio
and (ii) carry comparisons among the different types of events contained in a set. The detail
of the stimuli included in each of the five sets of the test can be found in Table 1.

Figure 1. Screenshot of the MUSHRA test conducted to assess the annoyance provoked by different
sounds. Title: sort the following sounds according to the caused annoyance. The scale ranges from
not annoying at all to extremely annoying.
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Table 1. Psychoacoustic parameters calculated for the 27 stimuli used in the listening experiment.

Sensor Label
Psychoacoustic Parameters

Loudness
(N5 sone)

Sharpness
(acum)

Roughness
(asper)

Tonality
(tuHMS)

Impulsiveness
(iu)

hb133 peop 15.1 1.46 0.032 0.204 0.270
hb133 door 16.8 1.43 0.029 0.113 0.354
hb133 dog 13.1 1.22 0.033 0.373 0.266
hb133 brak 16.0 1.76 0.030 0.326 0.241
hb133 bird 12.6 1.73 0.024 0.283 0.214
hb133 airp 13.0 1.27 0.060 0.438 0.231

hb127 sire 17.7 1.56 0.045 1.540 0.178
hb127 peop 16.1 1.62 0.035 0.410 0.417
hb127 horn 18.1 1.56 0.028 0.666 0.260
hb127 door 19.8 1.72 0.037 0.037 0.479
hb127 brak 19.0 1.95 0.034 0.251 0.281

hb127 sire 20.1 1.73 0.046 1.670 0.288
hb127 peop 22.0 1.96 0.036 0.322 0.452
hb127 horn 19.9 2.16 0.034 1.290 0.336
hb127 brak 21.0 1.81 0.030 1.170 0.275
hb127 airp 24.4 1.65 0.056 0.172 0.446

hb115 wrks 20.3 1.97 0.054 0.227 0.267
hb115 trck 24.4 1.60 0.033 0.040 0.276
hb115 sire 19.5 1.46 0.054 0.861 0.333
hb115 peop 25.1 1.79 0.032 0.411 0.331
hb115 horn 22.3 2.00 0.032 0.806 0.155
hb115 door 26.3 1.62 0.038 0.045 0.397
hb115 brak 20.6 1.93 0.034 0.216 0.313

hb115 wrks 24.6 1.92 0.064 0.447 0.317
hb115 sire 26.6 1.77 0.044 0.626 0.290
hb115 horn 29.5 2.35 0.039 0.486 0.262
hb115 door 31.3 1.88 0.048 0.223 0.402

3.3. Psychoacoustic Data Analysis

The dataset resulted in 27 audio-recordings of identified sound events with durations
ranging between 1.01 and 2.69 s. The calibrated audio files were imported in the ArtemiS
Suite software (v. 11.5, HEAD acoustics GmbH) and the following psychoacoustic pa-
rameters were computed: loudness, sharpness, roughness, tonality, and impulsiveness [11];
values for these parameters are reported in Table 1. The rationale for selecting a relatively
large set of psychoacoustic metrics is that they are often used as indicators to predict
perceptual constructs (such as annoyance) in perceptual studies, as shown in recent sound-
scape literature [37,38]. Fluctuation Strength, which could otherwise be included in this
list of psychoacoustic parameters as in Zwicker’s annoyance model, was not included as
the length of the recordings are too short to obtain a valid value. Loudness was calculated
according to the DIN 45631/A1 standard for time-varying sounds, in a free-field [39].
As recommended by the standard, in order to avoid the under-estimation of evaluated
loudness which is seen when using the arithmetic average of the loudness curve, the N5
value (the 5% percentile value of the time-dependent loudness curve) is used as the single
value of loudness. Sharpness was calculated according to DIN 45692, in a free-field [39].
With this sharpness method, the absolute loudness of the sound is not accounted for, so
there should not be a duplication of information across the loudness and sharpness metrics.
Roughness was calculated according to the hearing model by Sottek [40], with the option to
skip the first 0.5 s in order to not distort the single value. Impulsiveness was also calculated



Sustainability 2021, 13, 5779 7 of 13

according to the hearing model by Sottek, with a 0.5 s skip interval. Finally, tonality was
calculated according the ECMA-74 (17th edition), which is based on the hearing model of
Sottek, with a frequency range of 20 Hz to 20 kHz [41].

3.4. Multi-Level Linear Regression Modelling

The analysis for this study utilizes multi-level linear regression modelling (MLM),
with a random intercept and a random slope, using backward step feature selection. MLM’s
are commonly used in psychological research for repeated measures studies [42,43] and for
applied prediction models [44,45]. Multi-level modelling allows for the incorporation of
nested and non-nested group effects within the structure of the model, where the coeffi-
cients and intercepts for the independent variables are allowed to vary across groups. For
this study, the data is are grouped into two non-nested sets to form a two-level model: by
repeated measures per respondent (‘user’) and by sound type (‘label’). In order to take into
account the repeated measures across participants, and to correct for the participant’s mean
annoyance level, the ‘user’ variable is included in the second-level as a random intercept.
We then include the psychoacoustic features as label effects, with coefficients which are
allowed to vary across the sound type labels. The psychoacoustic features are also included
as fixed effects in the first level, which do not vary across either the user or label groups.

The initial model structure, as written in Wilkinson-Rogers notation [46], is thus:

annoyance ∼ Loudness + Roughness + Sharpness + Tonality + Impulsiveness

+(1 | user) + (1 + Loudness + Roughness + Sharpness + Tonality + Impulsiveness | label)
(1)

Feature Selection

The MLM is initially fitted with all of the potential features included within both levels.
In order to reduce the complexity of the model, a backwards step feature selection process
is applied to both levels of the model. This process involves fitting the full model which
includes all of the potential independent features (i.e., Equation (1)). The feature with
the highest p-value (least significant) is then removed from the candidates and the model is
refit. This process is repeated until all features meet the predefined significance threshold
of p < 0.05. For a two-level model, first backward elimination of the second level is
performed, followed by backward elimination of the first-level (or fixed) part.

If more than one feature is selected in the first-level, then the variance inflation
factor (VIF) is calculated in order to check for multicollinearity, with a pre-determined
threshold of VIF < 5. Any features which remain after the backwards stepwise selection
and exceeded this threshold were investigated and removed if they were highly collinear
with the other features. Once the feature selection process is completed, the final model
with only significant features of interest included is fit and the table of the model coefficients
is printed along with plots of the random effects and standardized estimates terms. Finally,
quantile plots of the residuals and random effects are examined to confirm they are normally
distributed [47].

The input and output features are z-scaled prior to the analysis and model building
by subtracting the mean and dividing by the standard deviation in order to directly
compare the coefficient values of independent variables measured on different scales [47].
The model fitting and feature selection was performed using the ‘step’ function from
‘lmerTest’ (v. 3.1.3) [48] in the R statistical software (v. 4.0.5) [49]. The summaries and plots
were created using the ‘sjPlot’ package (v. 2.8.7) [50] and the multi-level R2 values were
calculated using ‘MuMIn’ (v. 1.43.17) [51].

4. Results
4.1. Differences in Annoyance between Groups

The average annoyance score of all users across all stimuli was M = 0.58 (SD = 0.05).
Since some basic demographic information about the 100 participants of the perceptual
test was known, it seemed logical to explore possible differences in annoyance scores
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between different groups/levels of stratification of the sample, mostly for descriptive
purposes. Therefore, Areas of residence and Gender were considered as factors in this
analysis. Gender was treated as a binary variable (F/M), while Areas of residence was
treated as a five-level categorical variable based on people’s self-reported character of
the area where they typically reside (range: 1–5; very quiet–very noisy). One-way repeated
measures ANOVA was deemed to be the most appropriate approach to take into account
the multiple responses that each of the 100 participants provided for the different recordings
(N = 27). A first analysis was then conducted to determine whether there was a statistically
significant difference in annoyance between Areas of residence: no statistically significant
differences were observed in this case F (4.95) = 1.374, p = 0.249. Likewise, a second one-
way repeated measure ANOVA was carried out to check whether statistically significant
differences in annoyance existed between females and males: no statistically significant
effect was observed in this case either F (1.98) = 0.714, p = 0.400. Such small differences
between groups can indeed be observed in Figure 2.

Figure 2. Estimated Marginal Means for Annoyance as a function of Areas of residence (left)
and Gender (right).

4.2. Annoyance Model

The modelling process returned some interesting results about the parameters that
have an effect in predicting the individual annoyance scores. In the context of the multi-
level linear regression modelling, the included variables were assumed to have an effect at
two levels: the first level (i.e., fixed effect(s)), and the second level, where annoyance score
intercepts are allowed to vary as a function of users (i.e., the 100 participants), and where
each feature of interest is allowed its own coefficient as a function of labels (i.e., the 7 types
of sounds). Sharpness came up as the main predictor with a strong statistical significance
in the fixed-effect level, as reported in Table 2. This implies that, regardless of any other
factors, the sharper the sounds, the more annoying these are perceived to be.

The second-level effects presented in Figure 3 show that level- and loudness-based
acoustic parameters do not play a significant role in predicting annoyance when consid-
ering other psychoacoustic factors and specific sound sources. The variables selected by
the feature selection algorithm within the type of sound (label) level include: Impulsiveness,
Roughness, Tonality. Among those, the effects of Impulsiveness, Tonality and type of sound
are relatively small, while Roughness appears to be more important. For instance, when
other effects are controlled, the sound type “horn” seems to be less annoying, the rougher
it is; while for the types of sound “bird” and “siren”, higher Roughness values will lead
to higher annoyance scores. Looking at the model from the point of view of the types of
sound, one could observe that “horns” tend to be more annoying than other sounds if they
are more impulsive, while “people” or “birds” or “brakes” result in more annoying scores
compared to other sounds if they tonal component is more prominent. Overall, for this
model, the marginal and conditional R2 values are 0.08 and 0.64, accordingly. Marginal
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R2 provides the variance explained by the fixed effects only, and conditional R2 provides
the variance explained by the whole model, i.e., both fixed effects and second-level ef-
fects.Thus, the majority of variance is explained by second-level factors, while a smaller
portion (8%) is covered by Sharpness alone.

Table 2. Random intercept-random slope multi-level model of psychoacoustic annoyance, accounting
for repeated measures (user) and sound source type (label) within the second level. Coefficients
and confidence intervals given are for z-scaled data.

Annoyance

Predictors Estimates CI p
(Intercept) 0.02 −0.13–0.16 0.811
Sharpness 0.33 0.25–0.40 <0.001

Random Effects

σ2 0.47
τ00user 0.28
τ00label 0.02

ICC 0.39
Nuser 100
Nlabel 10

Observations 2700
Marginal R2/Conditional R2 0.08/0.64

Figure 3. Second-level effects figures representing the regression coefficients by types of sound (label)
and for different psychoacoustic parameters.

5. Discussion

Being able to predict noise annoyance from recorded sounds is particularly helpful from
a public health perspective. In the context of a smart-city framework, one could imagine
a wireless acoustic sensor network (WASN) large enough to cover a whole urban area; having
a noise annoyance prediction algorithm at the node position that can return live annoyance
scores to a central server from sounds recorded locally by the sensor would make for a useful
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application for environmental protection officers and other stakeholders at community or
local authority level [52]. A relevant issue to consider from the WASN perspective, is that
previous studies conducted in both urban [21] and suburban [20] environments, there is
a clear influence of the type of environment around the sensor location on the types of noise
detected. Not all the urban or suburban locations for sensors have frequent sirens or horns,
it depends on the more common activities (leisure, hospitals, etc.), the type of road (wide,
narrow) and even the type of building or house existing in the surroundings, the types of
noise detected in the street and their frequency of occurrence varies widely. In the design of
a generalist model for quality of life, the number of occurrences, together with the duration
and the annoyance caused by all and each noise source should be taken into account, so
the former variables in cities and suburban environments is considered.

The fact that no significant differences in annoyance scores were observed between sample
groups (i.e., gender or area of residence) is particularly interesting: it is common to assume
in soundscape studies that personal and contextual factors play a strong role in how people
respond to urban acoustic environments [53]. However, this is probably more relevant when
complex sound environments (e.g., multi-source) are being considered and when dealing with
relatively longer duration of exposures (e.g., several minutes) as seen in in-situ surveys. For
clearly identifiable sources of environmental noise, with signals of short duration (i.e., 1–3 s)
like those used for this experiment, it is likely it was easier for the sample to converge on
similar annoyance scores, regardless of other demographic factors.

Regarding the noise annoyance scores, sharpness came up as an important predic-
tor in the first level of the modelling stage (explaining up to 8% of the variance alone).
It is important to highlight that the sharpness calculation method used in this study did
not include any loudness correction; nor any loudness-related parameter was selected
by the feature selection algorithm. To some extent, this is possibly due to fact that, be-
ing an online experiment, it was not possible for the research team to actually calibrate
the loudness playback level accurately for the remote participants. On the other hand,
considering this aspect from the WASN implementation perspective, this could be seen
as an encouraging finding, since calibrating a diffuse acoustic monitoring network may
not be practical in real-world scenarios, so it is good to have models that can achieve up to
64% of variance explained regardless of actual levels. Furthermore, in complex acoustic
environments, loudness would likely vary over time depending on the relative positions
between sound sources and (human) listeners in ways in which the other psychoacoustic
parameters such as sharpness and tonality are less likely to. This is something that is
impossible for fixed sensors to take into account, so once again it is preferable not to rely
on loudness as a predictor.

6. Conclusions

In this study, an online listening experiment was conducted with 100 participants to
assess the noise annoyance induced by short recordings of individual environmental noise
sources gathered via a wireless acoustic sensors network in Milan. The main conclusions
of this study are:

• the acoustic samples gathered from selected sensors in Milan WASN of the DY-
NAMAP project led us to a structured MUSHRA test to evaluate the annoyance in an
off-line perceptual test;

• when considering short recordings of single-source environmental sounds, no sig-
nificant differences in noise annoyance were observed as a function of demographic
factors, such as gender and self-reported area of residence (i.e., from very quiet to
very noisy);

• the multi-level linear regression model derived from this case study achieved an over-
all R2 = 0.64, using sharpness as a fixed effect (the first level), and impulsiveness,
roughness, tonality as random effects allowed to vary according to the type of sound
(the second level) as predictors for perceived noise annoyance.



Sustainability 2021, 13, 5779 11 of 13

Taken together, the results of this study encourage us to continue our research work at
the all the stages described in this paper. The improvement of the real-time algorithms to
automatically detect the predefined sound sources under study is the first stage to gathering
the most relevant samples in all and each of the sensors of a WASN. The application of
the annoyance modelling can give the WASN a dimension without precedent; the availability of
the objective acoustic measurements conducted by the sensors, and the estimated of annoyance
in a real-time evaluation by means of the model. We can start to think about a dynamic
annoyance map, which could be more far-reaching than a dynamic noise map.
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