98 research outputs found

    Quality of service over ATM networks

    Get PDF
    PhDAbstract not availabl

    A new charging scheme for ATM based on QoS

    Get PDF
    PhDNew services are emerging rapidly within the world of telecommunications. Charging strategies that were appropriate for individual transfer capabilities are no longer appropriate for an integrated broadband communications network. There is currently a range of technologies (such as cable television, telephony and narrow band ISDN) for the different services in use and a limited number of charging schemes are applicable for each of the underlying technologies irrespective of the services used over it. Difficulties arise when a wide range of services has to be supported on the same integrated technology such as asynchronous transfer mode (ATM); in such cases the type of service in use and the impact it has on the network becomes much more important. The subject of this thesis, therefore, is the charging strategies for integrated broadband communications networks. That is, the identification of the requirements associated with ATM charging schemes and the proposal of a new approach to charging for ATM called the “quality of service based charging scheme”. Charging for ATM is influenced by three important components: the type and content of a service being offered; the type of customer using the services; and the traffic characteristics belonging to the application supporting the services. The first two issues will largely be dependent on the business and regulatory requirements of the operators. The last item, and an essential one for ATM, is the bridge between technology and business; how are the resources used by a service quantified? Charging that is based on resource usage at the network level was the prime focus of the research reported here. With the proposed charging scheme, a distinction is first made between the four different ATM transfer capabilities that will support various services and the different quality of service requirements that may be applicable to each of them. Then, resources are distributed among buffers set-up to support the combination of these transfer capabilities and quality of services. The buffers are dimensioned according to the M/D/1/K and the ND/D/1 queuing analysis to determine the buffer efficiency and quality of service requirements. This dimensioning provides the basis for fixing the price per unit of resource and time. The actual resource used by a connection is based on the volume of cells transmitted or peak cell rate allocation in combination with traffic shapers if appropriate. Shapers are also dimensioned using the quality of service parameters. Since the buffer 4 efficiency is dependent on the quality of service requirements, users (customers) of ATM networks buy quality of service. The actual price of a connection is further subjected to a number of transformations based on the size of the resource purchased, the time of the day at which a connection is made, and the geographical locality of the destination switch. It is demonstrated that the proposed charging scheme meets all the requirements of customers and of network operators. In addition the result of the comparison of the new scheme with a number of existing, prominent, ATM charging schemes is presented, showing that the performance of the proposed scheme is better in terms of meeting the expectations of both the customers and the network operators

    Methods of Congestion Control for Adaptive Continuous Media

    Get PDF
    Since the first exchange of data between machines in different locations in early 1960s, computer networks have grown exponentially with millions of people now using the Internet. With this, there has also been a rapid increase in different kinds of services offered over the World Wide Web from simple e-mails to streaming video. It is generally accepted that the commonly used protocol suite TCP/IP alone is not adequate for a number of modern applications with high bandwidth and minimal delay requirements. Many technologies are emerging such as IPv6, Diffserv, Intserv etc, which aim to replace the onesize-fits-all approach of the current lPv4. There is a consensus that the networks will have to be capable of multi-service and will have to isolate different classes of traffic through bandwidth partitioning such that, for example, low priority best-effort traffic does not cause delay for high priority video traffic. However, this research identifies that even within a class there may be delays or losses due to congestion and the problem will require different solutions in different classes. The focus of this research is on the requirements of the adaptive continuous media class. These are traffic flows that require a good Quality of Service but are also able to adapt to the network conditions by accepting some degradation in quality. It is potentially the most flexible traffic class and therefore, one of the most useful types for an increasing number of applications. This thesis discusses the QoS requirements of adaptive continuous media and identifies an ideal feedback based control system that would be suitable for this class. A number of current methods of congestion control have been investigated and two methods that have been shown to be successful with data traffic have been evaluated to ascertain if they could be adapted for adaptive continuous media. A novel method of control based on percentile monitoring of the queue occupancy is then proposed and developed. Simulation results demonstrate that the percentile monitoring based method is more appropriate to this type of flow. The problem of congestion control at aggregating nodes of the network hierarchy, where thousands of adaptive flows may be aggregated to a single flow, is then considered. A unique method of pricing mean and variance is developed such that each individual flow is charged fairly for its contribution to the congestion

    Multi-tenant Admission Control for future networks

    Get PDF
    The global telecommunications landscape is going to shift considerably due to the impact of the new generation of future networks. It is estimated that by 2025, one-third of the global population will use 5G. Accordingly, all industry players are searching to develop new business cases. One of the main capabilities of 5G to answer these new requirements is Network Slicing since it allows splitting a common infrastructure into several virtual networks, enabling Multi-tenancy. In this case, the admission control function plays a vital role in ensuring the correct operation of these virtual networks by providing the required QoS to the services by allocating radio resources to them. Consequently, the purpose of this thesis is to study a new method to implement the admission control function, which allows optimizing the use of radio resources, to increase the available capacity of tenants, and offer flexibility under different traffic loads. Several simulations are performed to evaluate the algorithm within a multi-tenant, multi-cell environment using MATLAB, where the simplicity and flexibility of our proposal are assessed in each cell and the whole scenario. We obtain a 127% improvement in the bit rate when compared with a baseline scheme, and a gain of 17% when compared to a reference scheme that allows using extra capacity left by other tenants

    Implementation of charging schemes to transport and service level ATM networks

    Get PDF
    Nowadays, telecommunications networks like telephony networks, computer networks, and packet switched networks are all dedicated to only one or just a few types of services When a user wants to subscribe to various telecommunications services, he needs to be connected to different types of networks, which raises the cost of connection, and reduces the efficiency of the utilisation of the network

    A review of connection admission control algorithms for ATM networks

    Get PDF
    The emergence of high-speed networks such as those with ATM integrates large numbers of services with a wide range of characteristics. Admission control is a prime instrument for controlling congestion in the network. As part of connection services to an ATM system, the Connection Admission Control (CAC) algorithm decides if another call or connection can be admitted to the Broadband Network. The main task of the CAC is to ensure that the broadband resources will not saturate or overflow within a very small probability. It limits the connections and guarantees Quality of Service for the new connection. The algorithm for connection admission is crucial in determining bandwidth utilisation efficiency. With statistical multiplexing more calls can be allocated on a network link, while still maintaining the Quality of Service specified by the connection with traffic parameters and type of service. A number of algorithms for admission control for Broadband Services with ATM Networks are described and compared for performance under different traffic loads. There is a general description of the ATM Network as an introduction. Issues to do with source distributions and traffic models are explored in Chapter 2. Chapter 3 provides an extensive presentation of the CAC algorithms for ATM Broadband Networks. The ideas about the Effective Bandwidth are reviewed in Chapter 4, and a different approach to admission control using online measurement is presented in Chapter 5. Chapter 6 has the numerical evaluation of four of the key algorithms, with simulations. Finally Chapter 7 has conclusions of the findings and explores some possibilities for further work

    Reactive traffic control mechanisms for communication networks with self-similar bandwidth demands

    Get PDF
    Communication network architectures are in the process of being redesigned so that many different services are integrated within the same network. Due to this integration, traffic management algorithms need to balance the requirements of the traffic which the algorithms are directly controlling with Quality of Service (QoS) requirements of other classes of traffic which will be encountered in the network. Of particular interest is one class of traffic, termed elastic traffic, that responds to dynamic feedback from the network regarding the amount of available resources within the network. Examples of this type of traffic include the Available Bit Rate (ABR) service in Asynchronous Transfer Mode (ATM) networks and connections using Transmission Control Protocol (TCP) in the Internet. Both examples aim to utilise available bandwidth within a network. Reactive traffic management, like that which occurs in the ABR service and TCP, depends explicitly on the dynamic bandwidth requirements of other traffic which is currently using the network. In particular, there is significant evidence that a wide range of network traffic, including Ethernet, World Wide Web, Varible Bit Rate video and signalling traffic, is self-similar. The term self-similar refers to the particular characteristic of network traffic to remain bursty over a wide range of time scales. A closely associated characteristic of self-similar traffic is its long-range dependence (LRD), which refers to the significant correlations that occur with the traffic. By utilising these correlations, greater predictability of network traffic can be achieved, and hence the performance of reactive traffic management algorithms can be enhanced. A predictive rate control algorithm, called PERC (Predictive Explicit Rate Control), is proposed in this thesis which is targeted to the ABR service in ATM networks. By incorporating the LRD stochastic structure of background traffic, measurements of the bandwidth requirements of background traffic, and the delay associated with a particular ABR connection, a predictive algorithm is defined which provides explicit rate information that is conveyed to ABR sources. An enhancement to PERC is also described. This algorithm, called PERC+, uses previous control information to correct prediction errors that occur for connections with larger round-trip delay. These algorithms have been extensively analysed with regards to their network performance, and simulation results show that queue lengths and cell loss rates are significantly reduced when these algorithms are deployed. An adaptive version of PERC has also been developed using real-time parameter estimates of self-similar traffic. This has excellent performance compared with standard ABR rate control algorithms such as ERICA. Since PERC and its enhancement PERC+ have explicitly utilised the index of self-similarity, known as the Hurst parameter, the sensitivity of these algorithms to this parameter can be determined analytically. Research work described in this thesis shows that the algorithms have an asymmetric sensitivity to the Hurst parameter, with significant sensitivity in the region where the parameter is underestimated as being close to 0.5. Simulation results reveal the same bias in the performance of the algorithm with regards to the Hurst parameter. In contrast, PERC is insensitive to estimates of the mean, using the sample mean estimator, and estimates of the traffic variance, which is due to the algorithm primarily utilising the correlation structure of the traffic to predict future bandwidth requirements. Sensitivity analysis falls into the area of investigative research, but it naturally leads to the area of robust control, where algorithms are designed so that uncertainty in traffic parameter estimation or modelling can be accommodated. An alternative robust design approach, to the standard maximum entropy approach, is proposed in this thesis that uses the maximum likelihood function to develop the predictive rate controller. The likelihood function defines the proximity of a specific traffic model to the traffic data, and hence gives a measure of the performance of a chosen model. Maximising the likelihood function leads to optimising robust performance, and it is shown, through simulations, that the system performance is close to the optimal performance as compared with maximising the spectral entropy. There is still debate regarding the influence of LRD on network performance. This thesis also considers the question of the influence of LRD on traffic predictability, and demonstrates that predictive rate control algorithms that only use short-term correlations have close performance to algorithms that utilise long-term correlations. It is noted that predictors based on LRD still out-perform ones which use short-term correlations, but that there is Potential simplification in the design of predictors, since traffic predictability can be achieved using short-term correlations. This thesis forms a substantial contribution to the understanding of control in the case where self-similar processes form part of the overall system. Rather than doggedly pursuing self-similar control, a broader view has been taken where the performance of algorithms have been considered from a number of perspectives. A number of different research avenues lead on from this work, and these are outlined

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio
    corecore