2,702 research outputs found

    Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms: support vector regression forecast combinations

    Get PDF
    The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm

    Modelling and trading the Greek stock market with gene expression and genetic programing algorithms

    Get PDF
    This paper presents an application of the gene expression programming (GEP) and integrated genetic programming (GP) algorithms to the modelling of ASE 20 Greek index. GEP and GP are robust evolutionary algorithms that evolve computer programs in the form of mathematical expressions, decision trees or logical expressions. The results indicate that GEP and GP produce significant trading performance when applied to ASE 20 and outperform the well-known existing methods. The trading performance of the derived models is further enhanced by applying a leverage filter

    A forecasting of indices and corresponding investment decision making application

    Get PDF
    Student Number : 9702018F - MSc(Eng) Dissertation - School of Electrical and Information Engineering - Faculty of Engineering and the Built EnvironmentDue to the volatile nature of the world economies, investing is crucial in ensuring an individual is prepared for future financial necessities. This research proposes an application, which employs computational intelligent methods that could assist investors in making financial decisions. This system consists of 2 components. The Forecasting Component (FC) is employed to predict the closing index price performance. Based on these predictions, the Stock Quantity Selection Component (SQSC) recommends the investor to purchase stocks, hold the current investment position or sell stocks in possession. The development of the FC module involved the creation of Multi-Layer Perceptron (MLP) as well as Radial Basis Function (RBF) neural network classifiers. TCategorizes that these networks classify are based on a profitable trading strategy that outperforms the long-term “Buy and hold” trading strategy. The Dow Jones Industrial Average, Johannesburg Stock Exchange (JSE) All Share, Nasdaq 100 and the Nikkei 225 Stock Average indices are considered. TIt has been determined that the MLP neural network architecture is particularly suited in the prediction of closing index price performance. Accuracies of 72%, 68%, 69% and 64% were obtained for the prediction of closing price performance of the Dow Jones Industrial Average, JSE All Share, Nasdaq 100 and Nikkei 225 Stock Average indices, respectively. TThree designs of the Stock Quantity Selection Component were implemented and compared in terms of their complexity as well as scalability. TComplexity is defined as the number of classifiers employed by the design. Scalability is defined as the ability of the design to accommodate the classification of additional investment recommendations. TDesigns that utilized 1, 4 and 16 classifiers, respectively, were developed. These designs were implemented using MLP neural networks, RBF neural networks, Fuzzy Inference Systems as well as Adaptive Neuro-Fuzzy Inference Systems. The design that employed 4 classifiers achieved low complexity and high scalability. As a result, this design is most appropriate for the application of concern. It has also been determined that the neural network architecture as well as the Fuzzy Inference System implementation of this design performed equally well

    European exchange trading funds trading with locally weighted support vector regression

    Get PDF
    In this paper, two different Locally Weighted Support Vector Regression (wSVR) algorithms are generated and applied to the task of forecasting and trading five European Exchange Traded Funds. The trading application covers the recent European Monetary Union debt crisis. The performance of the proposed models is benchmarked against traditional Support Vector Regression (SVR) models. The Radial Basis Function, the Wavelet and the Mahalanobis kernel are explored and tested as SVR kernels. Finally, a novel statistical SVR input selection procedure is introduced based on a principal component analysis and the Hansen, Lunde, and Nason (2011) model confidence test. The results demonstrate the superiority of the wSVR models over the traditional SVRs and of the v-SVR over the ε-SVR algorithms. We note that the performance of all models varies and considerably deteriorates in the peak of the debt crisis. In terms of the kernels, our results do not confirm the belief that the Radial Basis Function is the optimum choice for financial series

    Financial Trading Model with Stock Bar Chart Image Time Series with Deep Convolutional Neural Networks

    Full text link
    Even though computational intelligence techniques have been extensively utilized in financial trading systems, almost all developed models use the time series data for price prediction or identifying buy-sell points. However, in this study we decided to use 2-D stock bar chart images directly without introducing any additional time series associated with the underlying stock. We propose a novel algorithmic trading model CNN-BI (Convolutional Neural Network with Bar Images) using a 2-D Convolutional Neural Network. We generated 2-D images of sliding windows of 30-day bar charts for Dow 30 stocks and trained a deep Convolutional Neural Network (CNN) model for our algorithmic trading model. We tested our model separately between 2007-2012 and 2012-2017 for representing different market conditions. The results indicate that the model was able to outperform Buy and Hold strategy, especially in trendless or bear markets. Since this is a preliminary study and probably one of the first attempts using such an unconventional approach, there is always potential for improvement. Overall, the results are promising and the model might be integrated as part of an ensemble trading model combined with different strategies.Comment: accepted to be published in Intelligent Automation and Soft Computing journa

    Optimization of Trading Physics Models of Markets

    Get PDF
    We describe an end-to-end real-time S&P futures trading system. Inner-shell stochastic nonlinear dynamic models are developed, and Canonical Momenta Indicators (CMI) are derived from a fitted Lagrangian used by outer-shell trading models dependent on these indicators. Recursive and adaptive optimization using Adaptive Simulated Annealing (ASA) is used for fitting parameters shared across these shells of dynamic and trading models

    Design Analysis and Implementation of Stock Market Forecasting System using Improved Soft Computing Technique

    Get PDF
    In this paper, a stock market prediction model was created utilizing artificial neural networks. Many people nowadays are attempting to predict future trends in bonds, currencies, equities, and stock markets. It is quite challenging for a capitalist and an industry to forecast changes in stock market prices. Due to the numerous economic, political, and psychological aspects at play, forecasting future value changes on the stock markets is quite challenging. In addition, stock market forecasting is a difficult endeavor because it relies on a wide range of known and unknown variables. Many approaches, including technical analysis, fundamental analysis, time series analysis, and statistical analysis are used to attempt to predict the share price; however, none of these methods has been demonstrated to be a consistently effective prediction tool. Artificial neural networks (ANNs), a subfield of artificial intelligence, are one of the most modern and promising methods for resolving financial issues, such as categorizing corporate bonds and anticipating stock market indexes and bankruptcy (AI). Artificial neural networks (ANN) are a prominent technology used to forecast the future of the stock market. In order to understand financial time series, it is often essential to extract relevant information from enormous data sets using artificial neural networks. An outcome prediction neural network with three layers is trained using the back propagation method. Analysis shows that ANN outperforms every other prediction technique now available to academics in terms of stock market price predictions. It is concluded that ANN is a useful technique for predicting stock market movements globally
    corecore