4 research outputs found

    Evaluating tie points distribution, multiplicity and number on the accuracy of UAV photogrammetry blocks

    Get PDF
    Image orientation is a fundamental task in photogrammetric applications and it is performed by extracting keypoints with hand-crafted or learning-based methods, generating tie points among the images and running a bundle adjustment procedure. Nowadays, due to large number of extracted keypoints, tie point filtering approaches attempt to eliminate redundant tie points in order to increase accuracy and reduce processing time. This paper presents the results of an investigation concerning tie points impact on bundle adjustment results. Simulations and real data are processed in Australis and DBAT to evaluate different affecting factors, including tie point numbers, location accuracy, distribution and multiplicity. Achieved results show that increasing the amount of tie points improve the quality of bundle adjustment results, provided that the tie points are well-distributed on the image. Furthermore, bundle adjustment quality is improved as the multiplicity of tie points increases and their location uncertainty decrease. Based on simulation results, some suggestions for accurate tie points filtering in typical UAV photogrammetry blocks cases are derived

    A new multi-criteria tie point filtering approach to increase the accuracy of UAV photogrammetry models

    Get PDF
    Extracting accurate tie points plays an essential role in the accuracy of image orientation in Unmanned Aerial Vehicle (UAV) photogrammetry. In this study, a Multi-Criteria Decision Making (MCDM) automatic filtering method is presented. Based on the quality features of a photogrammetric model, the proposed method works at the level of sparse point cloud to remove low-quality tie points for refining the orientation results. In the proposed algorithm, different factors that affect the quality of tie points are identified. The quality measures are then aggregated by applying MCDM methods and a competency score for each 3D tie point. These scores are employed in an automatic filtering approach that selects a subset of high-quality points which are then used to repeat the bundle adjustment. To evaluate the proposed algorithm, various internal and external studies were conducted on different datasets. The findings suggest that our method is both effective and reliable. In addition, in comparison to the existing filtering techniques, the proposed strategy increases the accuracy of bundle adjustment and dense point cloud generation by about 40% and 70%, respectively
    corecore