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Abstract: Extracting accurate tie points plays an essential role in the accuracy of image orientation in
Unmanned Aerial Vehicle (UAV) photogrammetry. In this study, a Multi-Criteria Decision Making
(MCDM) automatic filtering method is presented. Based on the quality features of a photogrammetric
model, the proposed method works at the level of sparse point cloud to remove low-quality tie
points for refining the orientation results. In the proposed algorithm, different factors that affect the
quality of tie points are identified. The quality measures are then aggregated by applying MCDM
methods and a competency score for each 3D tie point. These scores are employed in an automatic
filtering approach that selects a subset of high-quality points which are then used to repeat the
bundle adjustment. To evaluate the proposed algorithm, various internal and external studies were
conducted on different datasets. The findings suggest that our method is both effective and reliable.
In addition, in comparison to the existing filtering techniques, the proposed strategy increases the
accuracy of bundle adjustment and dense point cloud generation by about 40% and 70%, respectively.

Keywords: tie-points; Multi-Criteria Decision Making; bundle block adjustment; image orientation;
UAV photogrammetry

1. Introduction

Unmanned Aerial Vehicles (UAVs) are a feasible alternative to traditional photogram-
metric workflow due to their promising results in a variety of applications such as 3D
reconstruction of buildings [1], documentation of cultural heritage [2], infrastructure inspec-
tion/monitoring [3–5] and urban change detection [6]. However, processing the UAV image
datasets generally encounters several issues. Irrespective of the employed camera type
and the image network design, the quality of 3D data obtained using UAV images strongly
depends on the precision of the camera calibration and orientation results [7]. This in turn
depends on the quality of the keypoints extracted from the set of acquired images. Current
feature-based matching algorithms such as Scale-Invariant Feature Transform (SIFT) [8] or
Speeded Up Robust Features (SURF) [9] automatically extract a large number of keypoints.
However, the use of such matching methods provides less control over the processing steps
and the quality of selected tie points. Thus, wrong matches can have a negative effect on
the bundle adjustment outcomes and return noisy dense point clouds. Furthermore, in
large-scale blocks with a large number of images, the huge number of matched keypoints
leads to a high number of tie points. All these tie points generate constraints which are
significantly greater than the number of constraints required for the computation of the
unknowns [10]. As a result, bundle adjustment, which is a part of the whole Structure from
Motion (SfM) process, becomes an extremely time-consuming process and its efficiency
could be degraded due to computational and memory suffer [11–13].

Using clustering or graph-based approaches, some research reduced the number of
images and, consequently retrieved the number of extracted tie points. In most UAV
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photogrammetry applications, reducing images makes large-scale bundle adjustments
more feasible, but the scene structure cannot be guaranteed [12]. Other studies examined
how tie point observations affect bundle adjustment. According to such studies, having
enough tie points enhances the bundle adjustment. However, the number of tie points
has a limited effect on network precision and the quality of outcomes depends primarily
on their correctness [14]. Multiplicity, spatial distribution and location accuracy affect tie
point quality and bundle adjustment results [11]. Poor precision and spatial distribution
of tie points prevent reliable measurement of camera orientation and accurate modelling
of the systematic errors caused by camera optics. Consequently, output point clouds
become deformed and inaccurate [15]. Unfortunately, only a few studies provide a tie point
selection/filtering schema to find a more robust subset of tie points for bundle adjustment
while it can increase both the accuracy and efficiency of camera calibration and orientation.

Most existing tie point selection methods employ either a single quality parameter
or a priority order-based procedure to eliminate bad tie points. The former ones select
only tie points that ensure a single photogrammetric quality parameter. Examples are:
selecting tie points with high-scale [16,17] or persevering tie points with good distribution
in image/object spaces [18,19]. Other methods combine some of quality parameters within
a priority order-based manner for tie point selection [7,12,20,21]. However, for an efficient
tie point filtering algorithm, all effective quality factors (i.e., tie point spatial distribution
and their accuracy in image) should simultaneously be considered. Unfortunately, most of
the quality criteria impose conflicting requirements to tie point selection, making tie point
filtering a challenging problem.

Based on our extensive review of the literature, the research lacks a strategy that
includes all influencing parameters. In this study, we use Multi-Criteria Decision Making
(MCDM) to pick high-quality tie points to optimize image orientation. The proposed
method provides more accurate camera parameters. All effective quality factors of tie
points selection are first computed for each point, then aggregated using MCDM methods
to choose a subset of well-distributed tie points. As will also been seen, although enhancing
the processing time of bundle adjustment is not the primary goal in this study, it is also
improved during the filtering process. The contributions of our work are as follows:

• Development of a novel and effective tie point selection/filtering methodology based
on MCDM algorithms to find a subset of competence tie points. As will be shown, the
approach inherits the power of decision-making techniques and, thus, is a sustainable
solution to a complex tie point selection problem.

• Using various UAV datasets, a comprehensive evaluation of the proposed algorithm
against original and recent tie point filtering approaches is conducted. In addi-
tion to standard tests, we analysed our dense point clouds’ surface deviation and
geometric accuracy.

The remainder of this paper is organized as follows: Section 2 presents a compre-
hensive review of state-of-the-art approaches. Section 3 presents the proposed method
including the tie point selection criteria and elaboration of the tie point filtering algorithm.
In Section 4, the proposed method is thoroughly evaluated, and the obtained results are
discussed. Finally, the conclusions are drawn, and some suggestions for future research
directions are presented.

2. Related Work

Over the past years, different methods have been proposed to improve the efficiency
and precision of bundle adjustment within the Structure from Motion (SfM) step. These
methods can be classified into (a) algorithms developed to reduce or cluster images and
(b) algorithms that aim to filter/select tie points.

The first group tries to control the number of images processed in the SfM pipeline
using clustering or graph-based concepts. For example, Snavely et al. [22] proposed a
skeleton representation of the dominant images to accelerate the subsequent incremental
camera additions and scene reconstruction. Li et al. [23] first clustered a set of images to
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identify the ‘iconic images’, then computed the 3D scene incrementally using spanning trees.
Similarly, in research by Chen et al. [24] research, large-scale SfM is modelled as a graph
problem with graphs constructed during the image clustering and local reconstruction
merging steps, respectively. The large-scale datasets are handled in a divide-and-conquer
manner using the strength of graph structure. In another study, Cui et al. [25] proposed
an incremental framework for viewgraph construction that propagates the robustness of
matched pairs with a large number of feature matches to their connected images. Then a
verified maximal spanning tree is built from the match graph to assure the completeness
of the scene. The edges are weighted according to the number of matched features, and
the verification is performed to increase the robustness of reconstruction. Furthermore, the
incremental method proposed by Xiao et al. [26] selects a pair of camera seeds from the
edges of the view-graph, and then, the other cameras are incrementally registered based
on the connection of cameras in the view-graph. Although image reduction/selection
methods make the large-scale adjustment more manageable, the scene completeness cannot
be guaranteed.

The second group of algorithms, provide a tie point selection/filtering schema to
enhance the performances of bundle adjustment [12,20,21,27]. Calculation efficiency and
the scalability of orientation results could be increased through selecting only a subset of
tie points [12].

Most filtering strategies use a single parameter to select high-quality tie points. Some
studies use scale ordering to select tie points from high-scale feature matches. For in-
stance, [28] proposed a match selection method, known as pre-emptive matching algorithm,
to quickly judge whether two images could be matched. In another approach developed
by [29,30], only keypoints from the upper levels of the scale pyramid are extracted and
their location accuracy is improved by least squares matching. Moreover, Shah et al. [17]
proposed a similar method in which a coarse 3D reconstruction is built using a fraction of
high-scale features from images. In addition, Liu et al. [16] proposed a ranking function
based on keypoints scales to select a subset of good quality matches to enhance the accu-
racy of two-view SfM. Later, Kerner et al. [18] investigated the impact of tie points spatial
distribution on the orientation of aerial images and concluded that in challenging scenarios,
promoting the spatial distribution of points at the matching stage can be beneficial in
preventing degenerate configurations.

In some recent studies, the combination of some quality parameters in a priority
order-based manner is considered for tie point selection. For example, [12] proposed a
filtering method in which three criteria of tie-points’ length, scale and re-projection error
are considered. Tie-points are initially ranked based on the first two criteria. Then, each
camera is weighted by the number of neighbours and the re-projection error of its tie points.
Finally, to guarantee the completeness of scene structure, multiple spanning trees of the
Epipolar geometry graph are built by selecting the camera with the largest weight as each
spanning tree’s root.

Furthermore, Giang et al. [21] proposed a method-called SIROP, which aims to enhance
the accuracy of image orientation by adding a spatial filtering step to the second iteration
of photogrammetric processing. In their method, new tie-points are selected based on three
quality metrics: correlation, multiplicity and spatial distribution. First, a Global Correlation
Score is computed for each tie-point based on the first two criteria. Then, to assure the
homogenous spatial distribution of selected points, the neighbour tie points with a low
correlation score are filtered. Later, Barba et al. [7] proposed a two-step filtering strategy
which analyses two quality measures of re-projection error and the intersection angles.
The filtering method consists of an outlier detection at the first step which considers the
statistical distribution of re-projection errors to compute a threshold to remove points. In
the next step, a noise reduction procedure removes points with small intersection angles.

The recent work by Farella et al. [20] (Farella method) suggested a linear aggregation
of different parameters instead of priority order-based to create a single quality score
for each tie point. An automatic filtering procedure was proposed, that considers four
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quality indicators of re-projection error, multiplicity, maximum intersection angle and
standard deviation of object coordinates. An overall aggregated quality score is computed
using normalized quality parameters for each tie point. A filtering threshold for removing
low-quality points is computed based on the statistical analysis of the considered quality
parameters. However, the spatial distribution of selected tie points is ignored in their
filtering algorithm, which is crucial to improve the bundle adjustment results.

Looking at the above techniques, we can see that filtering methods which use a
single quality parameter are ineffective for accurate bundle adjustment, as they ignore
several important aspects of tie point filtering. Additionally, methods that use more quality
indicators mostly consider a parameter priority order-based manner to rank tie points.
However, since most of these quality criteria are highly correlated, they impose opposing
requirements to tie points selection process and thus their efficiency is not high. As a
result, despite promising results by some of the existing algorithms, they cannot effectively
enhance the bundle adjustment accuracy. Thus, developing a new technique to filter and
eliminate inappropriate tie points, according to the so-called quality feature indicators, is
still a vital requirement in the photogrammetry pipeline, especially for UAV datasets.

In this study, we present a new tie point filtering based on MCDM technique that
adopts aggregation of different quality parameters simultaneously and ensures a proper
distribution of the tie points across the images. Details of the proposed method are given
in the next section.

3. Strategy and Approach

In this section, the proposed strategy for the tie point filtering is presented. At first,
the quality measures used for tie point selection are described. Then, the framework of our
proposed algorithm is discussed in detail.

3.1. The Quality Parameters of Tie Points

According to the literature, different quality measures can be used to assess the quality
of tie points. These parameters represent the geometric quality of the image network, the
correctness of the image matching, the accuracy of the adjustment step and the reliability of
the reconstructed 3D points. Our filtering method takes into account the following quality
features of the sparse point cloud generated during the bundle adjustment process:

• Re-projection error: In image space, re-projection error denotes the Euclidean distance
between a measured image point and the back-projected position of the corresponding
3D point in the same image. An accurate tie point should have both small average
re-projection error and small standard deviation which represents a tie point’s stability.
Large re-projection errors adversely affect the quality of image orientation; however, a
small re-projection error does not necessarily indicate a good 3D point.

• Accuracy: In automatic keypoint extraction algorithms, a Gaussian image pyramid
is usually constructed by convolving the original image with a sequence of Gaussian
kernels with different widths to achieve the scale invariance property. Strong local
extrema in the scale-space are then selected as keypoints and are applied in the
matching process. The keypoint/tie point location accuracy is directly affected by the
used level of the image pyramid. High resolution tie points (first level of the image
pyramid) are based on high frequency gradients and thus will in most cases have the
highest location accuracy than low-resolution ones. Thus, the low-scale tie points
should have a higher priority to be selected. Considering δi as the scale of keypoints
visible in N images, the accuracy of a tie point (Ai) could be computed using the
following Equation:

Ai =
δ1 + δ2 + · · ·+ δN

N
(1)

• Multiplicity: The number of images used to calculate a 3D point is regarded as
the tie point multiplicity (image redundancy). This value is related to the number
of images in which a point has been measured and indicates the excess of image
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observations concerning the number of unknown 3D object coordinates. Assuming
a good intersection angle, the higher redundancy (and thus the multiplicity) shows
that multiple intersecting rays contribute to compute the point position, resulting in
greater reliability and precision of the computed 3D tie points.

• Spatial distribution: The distribution of tie points in object/mage space. In pho-
togrammetric blocks, where there are small matchable objects in an image, the spatial
distribution of tie points becomes a vital challenge. Ignoring the distribution of tie
points may result in the majority of the tie points being located either in a small part
of the image or in a linear alignment which negatively influences the quality of image
exterior orientation. To analyse the distribution of tie points, two different criteria
have been considered. The first criterion measures the distance of keypoints from the
image centre to select the tie points whose keypoints cover larger area on their images.
A spatial distribution analysis (Si) with Euclidean distance is used to measure the
distribution of tie points in the image space.

Dj =

√(
xj −

w
2

)2
+

(
yj −

h
2

)2
(2)

where, Di is the distance from the image center and w and h are width and height of
the image. Considering N as the number of visible images for the ith tie point, the
spatial distribution of a tie point (Si) could be computed using the following Equation:

Si =
D1 + D2 + · · ·+ DN

N
(3)

As the second criterion, a radial nearest neighbour analysis is applied in to find the
number of tie points around the ith tie point in order to control the density of the tie
points in image. In this criterion, keeping tie points in areas with lower density is
preferred over the areas with higher densities. The radial nearest neighbour (Ni) is
analysed around the ith tie point as follows:

Ni =
{

dik : dij ≥ r
}

dij =
√(

xi − xj
)2

+
(
yi − yj

)2
(4)

where (xi, yi) and (xj, yj) are image coordinates, dij is the distance between two adja-
cent tie points and Ni is the number of tie points located inside the local region with
radius r.

• Maximum intersection angle: As 3D from images is determined by the triangulation,
this criterion refers to the maximum angle between intersecting rays contributing
to the creation of a 3D point. More precise 3D data are obtained at larger angles of
intersection between homologous rays.

• Posteriori standard deviation of object coordinates: Using bundle adjustment results,
the standard deviations of all unknown parameters can be calculated. Increased
standard deviation values for the 3D points can be used to distinguish areas with
inappropriate precision.

3.2. The Proposed Tie Point Filtering Algorithm

The basic idea behind our method is that a sufficient number of well-distributed tie
points in overlapping images could be all that is needed for an accurate and reliable image
orientation. However, the filtering process may be difficult since the tie points quality
parameters are highly correlated and should be considered simultaneously. Moreover, since
the distribution of selected tie points affects the bundle adjustment results, controlling the
amount of eliminated tie points and their distribution is crucial. Therefore, the proposed
strategy and technique uses the strength of MCDM methods as a helpful support to complex
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decision-making problems. MCDM represents a collection of techniques which determine
a preference ordering among alternative decision options, whose performance is scored
against multiple quality metrics.

The proposed method begins with the well-known process of SfM, within which the
quality parameters for each tie point are firstly computed. Then, a MCDM method is used
to aggregate the quality measures and create a competency score for each 3D tie point.
These competency scores are then employed in an automatic filtering process to discard
low-quality points before running a new bundle adjustment to refine the results. Since our
method acts as an intermediate step in the whole SfM pipeline, it can be embedded into
any SfM application. The details are described in the following sections.

3.2.1. Outline of the Proposed Method

Figure 1 shows the workflow of the proposed algorithm. Given the initial camera
calibrations parameters and exterior orientation parameters, the proposed strategy can be
explained as follows:

(A) Keypoints are extracted from images and matched to generate the initial tie points.
(B) An initial bundle adjustment is conducted to compute interior/exterior camera pa-

rameters and sparse point cloud.
(C) Tie points quality parameters are computed based on the matching results and the

sparse point cloud.
(D) A pre-processing stage is performed to remove grossly erroneous tie points.
(E) A competency score is generated by aggregation of quality criteria using the MCDM method.
(F) A statistical analysis is performed on the computed quality parameters to identify a

suitable filtering threshold (CM) for each dataset.
(G) 3D tie points with competency scores lower than the computed threshold are filtered

out to develop a new set of tie points.
(H) A new bundle adjustment is conducted to obtain refined camera parameters and a

more accurate sparse point cloud.

3.2.2. Pre-Processing

Since the tie points are usually extracted automatically, some mismatches may occur,
which lead to grossly erroneous tie points. We find and eliminate these points through
a pre-processing stage. Given the re-projection error for each tie point on each of its
visible images, the average re-projection error and standard deviation are calculated first.
Standard deviation is calculated to eliminate erroneous keypoint matches which could not
be detected by the average re-projection error. A smaller standard deviation represents
the stability of tie points. Hence, when the average re-projection errors of two tie points
are similar, the tie point with a larger standard deviation is considered as less accurate.
A threshold is defined to eliminate the tie points with a large re-projection error which is
defined as follows:

α = µ + 2σ (5)

where µ and σ denote the average re-projection error and the standard deviation of the ith
tie point, respectively.

3.2.3. MCDM-Based Tie Point Selection

Once the quality parameters are calculated and wrong tie points are removed, a
competency score is computed by aggregation of the quality criteria and it is considered
as an indicator to filter out the low-quality ones. Our proposed filtering strategy uses the
MCDM techniques to compute the competency score of each tie point. A wide range of
MCDM algorithms can be used. Our solution is general in this regard, as it does not depend
on the type of the applied MCDM method and can easily work with all MCDM algorithms
of different properties. The computational details of the MCDM method are explained in
the following.
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Definition of Decision Matrix

The applied MCDM problem is characterized by a set of m alternatives (tie points),
denoted as {Ai| i = 1, 2, 3, · · · , m}, that are evaluated according to the aforementioned
quality criteria (Section 3.1), represented as

{
Cj
∣∣ j = 1, 2, 3, · · · , 7

}
. These quality criteria

can be regarded as a benefit or a cost in order to make decisions. A benefit criterion should
be maximized, which means that the higher scores of an alternative (tie point) in terms of
this criterion are better; on the other hand, lower values are preferred for cost criteria [31].

Additionally, each criterion is weighted, indicating its relative importance. These
weights can be denoted as W =

{
wj
∣∣ j = 1, 2, 3, · · · , 7

}
and they are usually normalized,

so that their sum is equal to one: ∑7
j=1 wj = 1 [32]. Thus, according to the Figure 2, the

problem of selecting tie points using the MCDM technique can be concisely expressed as a
matrix, where rows denoting the alternatives (initial tie points) and columns denote the
selection criteria. Each element xij of the decision matrix (Dm×7) represents the score of
each alternative (tie point or Ai) with respect to the criterion Cj.
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points and six quality criteria.

The objective of the proposed tie point filtering method is to rank the tie point alterna-
tives according to their overall performance value which will be obtained by combining
their quality scores and weights [33]. In our tie point filtering method, any MCDM method
could be considered and applied to the decision problem to select an adequate subset of tie
points. However, to precisely explain our method, a well-known and widely used MCDM
algorithm, so-called TOPSIS (Technique for Order of Preference by Similarity to an Ideal
Solution) [34] is selected and described.

MCDM Tie Point Ranking

The ranking process involves generating two matrices: the decision matrix (Dm×7) and
the weighting matrix (W7×7). Using these, the TOPSIS method is used to rank the tie points.
TOPSIS creates two sets of ideal and anti-ideal choices and prioritizes the possibilities
based on the least distance from the ideal alternatives and the maximum distance from
the anti-ideal alternatives. The ideal alternative maximizes profitability measures while
minimizing cost criteria, whereas the anti-ideal option increases cost criteria minimizing
profitability measures. TOPSIS method consists of the following steps:

A. Decision matrix Dm×7 is normalized using the following equation:

rij =
xij√

∑m
i=1 x2

ij

(6)

B. The weighted normalized decision-making matrix is calculated:

Vm×7 = Dm×7 ·W7×7 =

v12 · · · v17
...

. . .
...

vm1 · · · vm7

 (7)

C. The positive ideal solution (V+
j ) and negative ideal solutions (V−j ) are determined

using the following equations:

A+ =
{(

max vij
∣∣j ∈ J

)
,
(
min vij

∣∣j ∈ J′
)
∀i = 1, 2, . . . , m

}
=
{

v+1 , v+2 , . . . , v+7
}

(8)

A− =
{(

min vij
∣∣j ∈ J

)
,
(
max vij

∣∣j ∈ J′
)
∀i = 1, 2, . . . , m

}
=
{

v−1 , v−2 , . . . , v−7
}

(9)

In which J are positive criteria and J′ are negative ones.
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D. The separation measures from the positive ideal solution and the negative ideal
solution are computed as follows:

s+i =

√√√√ 7

∑
j=1

(
vij − v+j

)2
(10)

s−i =

√√√√ 7

∑
j=1

(
vij − v−j

)2
(11)

E. The closeness of relative Euclidean distance to the ideal solution is calculated by
Equation (12) as follows:

Cl∗i =
S−i

S−i + S+
i

0 < Cl∗i < 1 (12)

Finally, the Cl∗i is considered as the competency score of each tie point. Therefore, tie
points with higher values of Cl∗i , will have a higher rank.

3.3. Filtering Threshold Identification

Having computed the competency score for each 3D tie point, establishing appropriate
thresholds for retaining only high-quality 3D points is challenging. The primary reason
is the complexity of identifying an optimal threshold which is applicable to all types of
datasets and image blocks. In our solution, we used the statistical distribution of each
quality parameter to automatically determine a general threshold for the filtering process.

The concept underlying statistical distribution analysis of quality parameters is its
resistance to outliers and improperly computed tie points. In our method, the median of
each quality parameter is set as a new alternative and ranked using the MCDM algorithm.
This technique proposes a robust method for threshold extraction because the median
value of quality parameters is unaffected by outliers. In addition, in our filtering threshold
identification method, the number of filtered tie points primarily depends on the initial
number of tie points, the numerical range changes in each quality metric and the type of
MCDM method used and it adaptively works in different blocks with different properties.
The following steps are carried out:

A. The median values of each quality parameter for all tie points are computed using the
following equation:

Mi ; ∀ i = 1 to 7 → Mi = Median(x1i, x2i, x3i, · · · xmi) (13)

B. The computed median values are inserted into the Decision Matrix as a new alterna-
tive, as shown in Figure 3.
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C. The MCDM algorithm is applied to compute a competency score for all tie points, and
also the new alternative (CM).



Drones 2022, 6, 413 10 of 29

D. Finally, the computed competency score of the new alternative (CM) is considered
as the filtering threshold. So, the tie points with competency scores lower than CM
should be omitted.

4. Results

In this section, performance of the proposed methodology is evaluated. Concerning the
first step of data quality evaluation, the results of the proposed filtering method using the
TOPSIS algorithm are analysed and compared to the original (no filtering) results and the
recent Farella algorithm, as presented in Section 4.4. Moreover, since our proposed filtering
algorithm is supported by MCDM methods, a thorough evaluation of how different MCDM
methods may affect the selected tie points is provided. These results could provide specific
guidance for selecting the most appropriate approach to be used when dealing with tie point
filtering problem. Therefore, an evaluation test (Section 4.5) is conducted with other MCDM
methods to investigate their effectiveness on the final results. In the following section, first,
the mathematical details of other MCDM methods such as VlseKriterijumska Optimizacija I
Kompromisno Resenje (VIKOR), Simple Additive Weighting (SAW) and COPRAS algorithms
(Section 4.1) will be discussed. Then the quality measures used to evaluate the results and the
applied datasets are explained in Sections 4.2 and 4.3, respectively.

4.1. Other MDCM Techniques Used in Our Evaluations

This section explains the details of VIKOR, SAW and COPRAS methods used for
comparison. These algorithms are among the most well-known/widely used methods
applied in different fields in the literature.

4.1.1. SAW Method

Simple Additive Weighting (SAW) [35] is one of the most widely used methods
to solve multi-attribute decision problems. The usefulness of the SAW method’s basic
concept is finding the number of weighted performance ratings for each alternative on all
attributes [36]. The highest score will be the best alternative. SAW requires a process of
normalizing the decision matrix (Dm×7) according to the following formula. Equation (14)
is used if j is an attribute of benefit, and Equation (15) is used if attribute j is cost.

rij =
xij

maxxij
i = 1, 2, 3, . . . , m j = 1, 2, . . . , 7 (14)

rij =
minxij

xij
i = 1, 2, 3, . . . , m j = 1, 2, . . . , 7 (15)

The preference value for each alternative (Vi) is given as:

Vi =
7

∑
j=1

wjrij i = 1, 2, 3, . . . , m (16)

4.1.2. VIKOR Method

The VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) method [37],
similar to the TOPSIS, is based on distance measurements. In this approach, each alternative
is evaluated according to all considered criteria and the compromise ranking is performed
by comparing the measure of closeness to the ideal alternative. However, VIKOR differs in
operational approach and the considered method for the concept of proximity to the ideal
solutions. The steps of VIKOR algorithm are as follows:

A. The normalized decision-making matrix (Dm×7) is calculated similarly to the TOPSIS method.
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B. The best f ∗j and the worth f−j values for all criteria functions j = 1, 2, . . . , 7 are
determined. Equation (17) is used for benefit criteria, and Equation (18) is used for
cost ones as follows:

f ∗j = maxxij . f−j = minxij j = 1, 2, . . . , 7 (17)

f ∗j = minxij . f−j = maxxij j = 1, 2, . . . , 7 (18)

C. The Si and Ri values are calculated by following Equations.

Si =
7

∑
j=1

wj

(
f ∗j − xij

)
/
(

f ∗j − f−j
)

(19)

Ri = max
[
wj

(
f ∗j − xij

)
/
(

f ∗j − f−j
)]

(20)

where wj are the weights of criteria, expressing their relative importance.
D. The values Qi; i = 1, 2, 3, . . . , m are computed by the following equation.

Qi = ϑ(Si − S∗)/
(
S− − S∗

)
+ (1− ϑ)(Ri − R∗)/

(
R− − R∗

)
(21)

where S∗ = minSi. S− = maxSi and R∗ = minRi. R− = maxRi. ϑ is introduced as
weight of the strategy of “the majority of criteria”, in our implementation, we consider
ϑ = 0.5.

E. Alternatives (tie points) are ranked by sorting by the values of Q in ascending order.

4.1.3. COPRAS Method

COPRAS (Complex Proportional Assessment), introduced by Zavadskas et al. [38]
assumes a direct and proportional relationship of the ideal solution to the ratio of the anti-
ideal solution. This method ranks alternatives based on their relative importance (weight),
and the final ranking is created using the positive and negative ideal solutions. Assuming
the decision matrix (Dm×7), the COPRAS method is defined in the following steps:

A. Decision matrix (Dm×7) is formed and normalized. The weighted normalized decision-
making matrix is calculated using Equation (7).

B. Sums of weighted normalized values are determined using Equation (22) for profit
criteria and Equation (23) for cost criteria:

S+i =
k

∑
j=1

vij (22)

S−i =
7

∑
j=k+1

vij (23)

where k is the number of profit/benefit criteria. The rest of criteria from k+1 to 7 are the
number of cost criteria. The S+i and S−i values show the level of the goal achievement for
alternatives. A higher value for S+i and also lower value for S−i points to better alternatives.

C. Calculate the relative significance of alternatives using the following Equation:

Qi = S+i +
S−min ∑m

i=1 S−i

S−i ∑m
i=1

(
S−min

S−i

) (24)

S−min = min S−i i = 1, 2, . . . , m (25)

D. Final ranking is performed according to the Ui values computed as follows:
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Ui =
Qi

Qmax
i
·100% (26)

where Qmax
i is the maximum value of the relative significance of alternatives. Alternatives

(tie points) with higher values of Ui will have a higher rank.

4.2. The Quality Criteria Used for Comparisons

To evaluate the quality of the selected tie points, internal statistics can be used. To this
end, median, mean and standard deviation values for the quality parameters are computed
for each tie point in the first evaluation phase. To evaluate the distribution quality, the global
coverage index α (Figure 4), which is based on Delaunay triangulations is computed by:

α =
∑n

i=1 Ai

ATotal
(27)

where Ai is the area of the ith triangle, n is the number of triangles and ATotal is the area
of the whole image. In the index (α), all points in the image are triangulated through the
Delaunay triangulations. The numerator of α is equal to the area of the triangles covering
all the computed tie points of the image. While its denominator shows the total area of the
image. The larger the α value, the better the spatial distribution of the tie points. Since the
(α) value is computed for each single image in the block, the computed values are different
for each image, therefore, the median, mean and STD values are reported to measure its
changes and difference in each image of the block.
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used for spatial distribution computation.

Furthermore, external quality checks using 3D ground truth (GCPs) data are used to
evaluate the image orientation results and possible block deformations. The planimetric
(Epl) and altimetric (EAl) Euclidean distance and Root Mean Square Error (RMSE) of the
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checkpoints (xch, ych, zch) measured points (xm, ym, zm) are computed in order to assess the
errors as follows: (N indicates the number of GCPs)

Epl =
∑N

i=1

√
(xm − xch)

2 + (ym − ych)
2

N
(28)

EAl =
∑N

i=1(abs(zm − zch))

N
(29)

RMSEx =

√√√√ 1
N

N

∑
i=1

(xm − xch)
2 (30)

RMSEy =

√√√√ 1
N

N

∑
i=1

(ym − ych)
2 (31)

RMSEz =

√√√√ 1
N

N

∑
i=1

(zm − zch)
2 (32)

As another external quality check, geometric accuracy and surface deviation of the
newly generated dense point cloud are also evaluated. The geometric accuracy of our
generated dense cloud is evaluated through cloud-to-cloud (C2C) comparisons. To this
end, the dense cloud obtained from the original processing and the one produced after the
filtering step were compared with the reference laser scanning data.

The surface deviation analysis process is performed based on defining a fitted plane
on some selected areas using Least Squares Fitting (LSF) algorithm [39]. Similar to the [40]
analysis, the C2C distance and spatial distribution of the points around the best-fitted plane
are measured using well-known error metrics such as Standard Deviation (STD), Mean
Absolute Error (MAE) and RMSE according to the following Equations:

STD =

√√√√ 1
M− 1

M

∑
i=1

(
Di − D

)2 (33)

RMSE =

√√√√ 1
M

M

∑
i=1

(Di)
2 (34)

MAE =

√√√√ 1
M

M

∑
i=1
|Di| (35)

which M defines as the number of observed data points of the sample, Di is the distance
value of each point to the corresponding reference point or surface, D is the average value
of the distance.

4.3. Description of Datasets

Performance evaluation of our algorithm was carried out on different image networks
with different properties to check the effectiveness of our method in different blocks. The
applied datasets are characterized by different image resolutions, number of images, image
overlap, illumination changes and surfaces with different textures and sizes. Furthermore,
we aimed to consider different types of UAV image networks, including normal UAV
networks, hybrid networks with horizontal and vertical images, joint networks containing
both terrestrial and UAV images and close-range networks with convergent UAV images.
Thereafter, four datasets were used to cover all network geometries and analyse the results
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of our algorithm in different situations. The specifications of each dataset are explained
as follows:

• Normal UAV image network: The Dezful dataset is surveyed using 100 UAV images
captured using a conventional image network with an average image overlap of 60%
and GSD of 2.86 cm/pix. The survey was conducted at the region without great
topographic relief by a low-cost aircraft equipped with a DJI FC6520 camera with the
focal length of 12 mm and pixel size of 3.2 µm. The images cover a soil-type area with
mostly texture-less surfaces, potentially causing feature matches to accumulate in a
small region of the image. Therefore, this experiment determines whether our proposed
algorithm is capable of selecting a subset of high-quality tie points or not. Figure 5a
shows sample images of the dataset, and Figure 5b shows the network geometry.
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Figure 5. The Dezful dataset: (a) sample UAV images; (b) the image network geometry.

• Hybrid horizontal and vertical image network: The Halavan dataset contains
238 UAV images with an average GSD of 2.81 cm/pix. These images were cap-
tured from the village of Halavan in a mountainous region using a DJI Inspire2 UAV
camera (12 mm focal length) with an imaging network containing both horizontal and
semi-vertical images. The village has a stepped form architecture, with tall trees and
semi-glossy roofs of buildings. These objects cover a large area of images and present
a complicated situation where few keypoints are extracted, and the accuracy of aerial
triangulation is degraded. Therefore, the presence of this experiment demonstrates
whether the proposed algorithm is capable of detecting and filtering these keypoint
or not. Figure 6a shows some sample images of the dataset, and Figure 6b shows the
imaging network geometry.

• Hybrid terrestrial and UAV image network: In ISPRS Dortmund Benchmark [41], the
area of Zeche Zollern was surveyed using UAV, terrestrial images as well as Terrestrial
Laser Scanner (TLS). Our experiments selected a joint UAV and terrestrial image
network of Pferdestall building. The dataset contains 126 terrestrial images (average
GSD of 3 mm) and 97 UAV images (average GSD of 2 cm) captured by a NEX-7 camera
with a 16 mm lens and 4µm pixel size. The building is also surveyed with high-quality
scans of the objects with a Z+F 5010C laser scanner. Sample images of UAV-based and
terrestrial images are shown in Figures 6a and 7b, and the imaging network geometry
is shown in Figure 7c.

• UAV Convergent image network: A small part of the Dortmund benchmark with a
low altitude convergent image network was considered in this dataset. It contains
97 UAV images, with average overlapping of 88% and an average GSD of 2 cm,
captured by a NEX-7 camera. Figure 8a shows some sample images of the dataset, and
Figure 8b shows the geometry of the imaging network.
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4.4. Experimental Results of the MCDM Filtering Method

In the following sections, the results using the TOPSIS algorithm of different UAV
block case studies are provided to show the effectiveness and capabilities of the proposed
methodology. To produce these results, initial tie points were extracted from Agisoft
software. The filtering pipeline, including the quality measure computations and MCDM
methods, were implemented in MATLAB (R2018b), and the open-source DBAT toolbox [42]
was used to run the photogrammetric bundle adjustment. In all our experiments, the
weighting matrix is considered as an identity matrix to avoid unknown and unstudied
complexity to our method, since the relative importance of the criteria is not clear. To
implement the Farella method, the provided python source code [43] is used, which is
automatically performed on initial tie points. In this tool, the user is not required to set any
parameters. In the following, the results of each test on different UAV photogrammetry
blocks are shown and discussed.

4.4.1. Results of Dezful Dataset

From the orientation results of Dezful images in Agisoft software, about 353,715 tie
points were derived in the sparse point cloud. After applying the Farella filtering algorithm,
a new set of 3D tie points of about 213,505 were returned, which indicates about 40%
of the original sparse cloud is removed. Once a suitable threshold was identified in our
filtering method, 211,254 tie points were selected, indicating an almost similar reduction.
The quality features median, mean and standard deviation values computed on the original
sparse point cloud, the Farella filtering and our proposed algorithm are presented in
Table 1. The results show that in our proposed method, all quality metrics have been
improved compared to the original and the Farella filtering method. With respect to the
original results, our method’s median and mean improvements are about 28%, 15%, 47%
and 18% for re-projection error, multiplicity, maximum intersection angle and posterior
standard deviation quality measures, respectively. These values are about 66%, 11%,
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49% and 47% compared to the Farella filtering method. The spatial distribution metric
confirms the capability of our method to select well-distributed tie points. Despite of tie
point elimination, the distribution of the selected tie points in our filtering strategy is not
degraded compared to the original one.
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Table 1. Calculated median, mean and STD values for the quality features of the Dezful dataset.

No Filtering Farella Method Proposed Method

Median Mean STD Median Mean STD Median Mean STD

Re-projection error (pix) 0.573 0.567 0.142 1.273 1.480 0.873 0.409 0.417 0.099

Multiplicity 2.365 2.000 0.821 2.431 2.000 0.838 2.718 2.000 0.983

Spatial Distribution (α)
(%) 98.524 98.762 1.171 78.120 78.683 2.420 96.420 96.698 1.535

Maximum intersection
angle (deg) 23.474 28.616 10.878 23.150 28.233 10.729 34.652 33.596 12.001

Pos. standard deviation
(mm) 29.63 32.87 35.34 45.94 53.20 42.71 24.03 26.17 11.09

Number of returned
tie-points 353,715 213,505 211,254

To further evaluate the improvements in external quality, the Euclidean distance and
RMSEs on 7 checkpoints were measured. The average multiplicity of check points was
4.14 in this dataset. Table 2 compares the average improvement by our procedure against
those of the original one and also Farella method. As it shows, the RMSE of checkpoints
for Farella algorithm was improved 19% in image space and about 37%, 30% and 56% in
the X, Y and Z dimensions, respectively. These amounts were calculated as 32% in image
space and 75%, 76% and 57.5% for our algorithm. For the planimetric and altimetric errors,
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the results indicated an average 21% and 41% improvement in Farella results, while our
method has superior results with 70% and 56% of accuracy increase.

Table 2. Checkpoint RMSEs in the Dezful dataset.

RMSE
(pix)

RMSE(x)
(cm)

RMSE(y)
(cm)

RMSE(Al)
(cm)

E(Pl)
(cm)

E(Al)
(cm)

No filtering 0.7110 15.0270 32.2000 43.8300 33.4200 33.2700

Farella Method 0.5759 9.3313 22.4959 24.0668 26.1200 19.4038

Proposed Method 0.4823 3.8700 7.6500 18.6000 10.0571 14.5429

4.4.2. Results of Halavan Dataset

About 230,656 tie points were extracted from the image orientation results in Agisoft
software. The Farella filtering algorithm returned a new set of 79,137 tie points which
shows a reduction of about 65%. However, our filtering method reduced nearly 30% of the
initial tie points and returned a new set of 162,343 tie points.

Calculated median, mean and standard deviation values for the quality measures are
summarized in Table 3 for unfiltered sparse point cloud, the Farella algorithm and our
method. As Table 3 shows, compared to the original results, an average median, mean
and STD value improvement of (16%, 13%, 62%) for re-projection error, (50%, 14%, 13%)
for multiplicity, (17%, 12%, 5%) for maximum intersection angle and (80%, 72%, 65%) for
posterior standard deviation are achieved. Similarly, in comparison to the Farella algorithm,
median and mean values in our method are significantly increased. These amounts are
(36%, 31%) for re-projection error, (50%, 14%) for multiplicity, (17%, 12%) for maximum
intersection angle and (71%, 51%) for posterior standard deviation. Additionally, the spatial
distribution of our method is notably better than Farella method and is similar to the
original one. These results indicate a higher performance of our algorithm in terms of inner
quality metrics.

Table 3. Calculated median, mean and STD values for the quality features of the Halavan dataset.

No Filtering Farella Method Proposed Method

Median Mean STD Median Mean STD Median Mean STD

Re-projection error (pix) 1.496 1.526 1.609 1.974 1.928 1.897 1.249 1.325 0.607

Multiplicity 2.000 3.070 2.284 2.000 3.066 2.257 3.000 3.514 2.595

Spatial Distribution (α)
(%) 98.527 98.747 2.039 71.867 71.618 3.328 98.473 98.728 2.232

Maximum intersection
angle (deg) 16.900 20.587 12.260 16.840 20.513 12.208 19.822 23.043 12.825

Pos. standard deviation
(mm) 74.791 86.48 45.59 50.8725 48.421 59.356 14.320 23.574 15.510

Number of returned
tie-points 230,656 79,137 162,343

The RMSEs on 28 checkpoints (Table 4) with average multiplicity of 31.3, were calcu-
lated to assess the external quality of our proposed filtering in comparison to the original
and Farella methods. The results demonstrate that the RMSE of checkpoints has greatly
decreased after the application of our filtering algorithm. This improvement is about 32%
in image space and about 76%, 85% and 90% in the X, Y and Z dimensions, respectively.
From the planimetric and altimetric points of view, our results indicate an average 71% and
92% improvement.
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Table 4. Checkpoint RMSEs in Halavan dataset.

RMSE
(pix)

RMSE(x)
(cm)

RMSE(y)
(cm)

RMSE(Al)
(cm)

E(Pl)
(cm)

E(Al)
(cm)

No filtering 2.813 30.192 57.666 59.077 34.425 52.886

Farella Method 2.698 26.388 32.274 25.587 30.388 24.567

Proposed Method 1.888 7.161 8.243 5.440 9.914 4.171

The Farella algorithm, on the other hand, does not perform as well as ours, with a 4%
improvement of RMSE in image space and about 12.5%, 44% and 56% in the X, Y and Z
directions, respectively. Furthermore, their method achieves an average planimetric and
altimetric improvement of 12% and 53%.

4.4.3. Results of ISPRS Dortmund Dataset

The processing of both UAV and terrestrial images in Agisoft software produced a
sparse point cloud with 416,047 tie points. Adopting the Farella filtering algorithm, a new
set of about 213,505 tie points was returned, which implies a 48.5% reduction in the original
sparse cloud. In our filtering method, 211,254 tie points were selected, representing a nearly
49% elimination in the number of tie points. The results of the quality parameters extracted
from the original and filtering methods are presented in Table 5. As it shows, compared
to the original results, our filtering method enhances the median and means of quality
metrics by an average of 30% and 35% for re-projection error, 50% and 26% for multiplicity,
58% and 41% for maximum intersection angle and 26% and 23% for posterior standard
deviation. Our method’s spatial distribution is superior to that of Farella method and is
close to the original result.

Table 5. Calculated median, mean and STD values for the quality features of the ISPRS Dortmund dataset.

No Filtering Farella Method Proposed Method

Median Mean STD Median Mean STD Median Mean STD

Re-projection error (pix) 1.919 1.950 1.885 1.548 1.123 1.649 1.335 1.250 1.885

Multiplicity 2.000 3.405 3.268 2.000 3.403 3.248 3.000 4.308 3.933

Spatial Distribution (α)
(%) 94.087 91.992 5.435 89.510 85.015 8.817 92.988 90.378 6.223

Maximum intersection
angle (deg) 4.578 8.028 9.981 4.560 7.995 9.948 7.376 11.332 11.534

Pos. standard deviation
(mm) 16.42 24.41 29.10 16.47 19.75 21.11 12.03 18.63 16.61

Number of returned
tie-points 416,047 117,989 253,191

Two tests were performed as an external check in this dataset, including the evaluation
of RMSEs on checkpoints and the comparison of the produced dense cloud to the reference
TLS point cloud data. Table 6 shows the RMSEs on 20 checkpoints measured with the
GNSS instrument. The average multiplicity of check points was 39.8 in this dataset. As it
shows, the average improvement of RMSEs applying the Farella algorithm is 9% in image
space and about 4%, 2% and 24%, in the X, Y and Z dimensions, respectively. In contrast,
our method performs better with an average accuracy increase of 21% in image space and
15%, 15.5% and 63% for each direction.

As the second test, the quality of the generated point clouds from the original method
and those produced after the filtering step was compared using common quality evaluation
methods, including surface deviation analysis and geometrical accuracy evaluations. To
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this end, at first, six sub-areas (Figure 9a) on the generated point clouds were selected, and
the results of the cloud-to-cloud distance in these areas are compared to the reference TLS
point cloud (Table 7). Then, using five selected areas on dense cloud (Figure 9b), the plane
fitting evaluations were conducted to measure the level of noise obtained for each method
(Table 8).

Table 6. Checkpoint RMSEs in ISPRS Dortmund dataset.

RMSE
(pix)

RMSE (x)
(cm)

RMSE (y)
(cm)

RMSE (Al)
(cm)

E (Pl)
(cm)

E (Al)
(cm)

No filtering 2.833 19.679 20.485 17.645 21.960 16.825

Farella Method 2.570 18.722 19.906 13.268 19.610 12.032

Proposed Method 2.216 16.632 17.313 6.461 15.936 5.250
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Table 7. Results of the cloud-to-cloud distance analyses on the original and filtered dense clouds in
ISPRS Dortmund dataset.

Area
Original Dense Cloud Farella Filtered Dense Cloud Proposed Filtered Dense Cloud

RMSE (mm) Std. Dev. (mm) RMSE (mm) Std. Dev. (mm) RMSE (mm) Std. Dev. (mm)

AREA1 46.808 40.815 23.093 23.203 4.634 4.790
AREA2 32.398 25.777 23.633 23.782 10.490 18.314
AREA3 126.19 145.146 45.292 28.181 17.254 9.884
AREA4 15.303 21.721 12.023 9.072 12.335 7.831
AREA5 43.776 44.556 61.890 57.375 18.460 28.548
AREA6 38.807 28.548 28.771 24.220 6.662 5.353

Average 50.547 51.094 32.450 27.639 11.639 12.453

Table 8. Surface deviation analysis using the plane fitting in ISPRS Dortmund dataset, Unit: (mm).

Plane

Original Dense Cloud Farella Filtered Dense Cloud Proposed Filtered Dense Cloud

MAE STD RMSE Max
Dist. MAE STD RMSE Max

Dist. MAE STD RMSE Max
Dist.

Plane1 29.207 20.873 35.899 99.468 18.014 17.639 25.212 394.25 5.390 4.416 6.968 30.424
Plane2 25.402 15.157 29.580 63.127 17.676 11.199 20.925 154.24 1.571 1.152 1.948 27.223
Plane3 16.820 12.353 20.868 69.457 17.130 15.939 23.398 97.840 1.359 8.385 15.974 41.370
Plane4 31.933 31.977 45.191 186.21 24.042 16.768 29.312 170.83 16.512 11.617 20.19 92.181
Plane5 36.244 25.248 44.171 121.77 24.902 19.166 31.424 113.78 1.815 1.688 2.479 15.535

Average 27.921 21.122 35.14 108.00 20.353 16.142 26.054 186.18 5.329 5.452 9.512 41.347

As shown in Table 7, the average standard deviation (STD) and the Root Mean Square
Error (RMSE) for the original point cloud data were 50.54 mm and 51.09 mm, respectively.
These amounts were calculated as 32.45 mm and 27.639 mm for the Farella filtered point
cloud and also 11.63 mm and 12.45 mm for our method. These values indicated a greater
performance using our filtering algorithm in terms of generating precise 3D models.

According to Table 8, the average results of the MAE, STD and RMSE for the origi-
nal data set showed values greater than 21 mm, while these amounts were calculated as
20.35 mm, 16.142 mm and 26.054 mm for the Farella method, and 5.32, 5.45 and 9.512 mm
for our proposed filtered point cloud, respectively. However, despite of improved perfor-
mance of the Farella algorithm compared to the original results, the MAE, STD and RMSE
obtained by their method are larger than those achieved by our methods. This indicates a
higher noise level for both original and Farella algorithms, while our method’s noise level
is smaller, showing a greater performance in terms of geometric accuracy of 3D models.

4.4.4. Results of ISPRS Pferdestall Convergent Dataset

Statistics computed on the extracted quality parameters of this dataset for the original
and filtered sparse point clouds are given in Table 9. As it shows, processing the UAV
images in Agisoft software produced 181,597 tie points. Using the Farella filtering algorithm,
a new set of 62,276 tie points was returned, inferring a 60% reduction in the original sparse
cloud. Our filtering method suggests a nearly 50% reduction, in which 119,932 tie points
were selected.

An average median and mean value improvement of about (14%, 29%) for re-projection
error, (50%, 26%) for multiplicity, (63%, 36%) for maximum intersection angle and (54%,
56%) for posterior standard deviation are achieved using our filtering algorithm. Further-
more, our method is superior to Farella method, with an average median improvement
of 11% in re-projection error, 50% in multiplicity, 60% in maximum intersection angle and
34% in posterior standard deviation. Since higher overlapping images are captured in this
dataset, the spatial distribution quality of filtering methods and the original one are almost
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similar. However, despite the elimination of tie points, the distribution of selected tie points
in our filtering strategy is not weaker than the original.

Table 9. Computed median, mean and standard deviation values for the quality features of ISPRS
Pferdestall Convergent dataset.

No Filtering Farella Method Proposed Method

Median Mean STD Median Mean STD Median Mean STD

Re-projection error (pix) 1.560 1.826 1.311 1.517 1.665 1.379 1.335 1.286 0.211

Multiplicity 2.000 3.507 2.859 2.000 3.604 2.947 3.000 4.432 3.354

Spatial Distribution (α)
(%) 98.331 98.603 0.769 97.02 97.35 0.897 97.913 98.418 2.051

Maximum intersection
angle (deg) 5.463 9.309 10.533 5.539 9.430 10.721 8.919 12.725 11.802

Pos. standard deviation
(mm) 29.36 28.10 24.63 20.25 24.42 20.57 13.25 12.35 18.75

Number of returned
tie-points 181,597 62,276 119,932

Similar to the previous section, the RMSEs on check points and comparison to the
reference TLS point cloud data are considered for the external check. Table 10 shows the
RMSEs computed on 19 checkpoints measured with the GNSS instrument. The average
multiplicity of check points was 21 in this dataset. According to the results, the Farella
algorithm improves RMSEs on image space by 85% and 51%, 55% and 60% in X, Y and Z
directions in-ground space. Our method outperforms, with accuracy increases of 95% in
image space and 74%, 81% and 82% in each direction. For the planimetric and altimetric
errors, Farella results indicated an average of 52% and 75% improvement, whereas our
method has superior results with an 87% and 94% increase in accuracy.

Table 10. Checkpoint RMSEs in ISPRS Pferdestall Convergent dataset.

RMSE
(pix)

RMSE (x)
(cm)

RMSE (y)
(cm)

RMSE (Al)
(cm)

E (Pl)
(cm)

E (Al)
(cm)

No filtering 30.4302 10.6850 12.3916 24.4115 13.4211 27.4042

Farella Method 4.3457 5.1442 5.4742 9.5787 6.3747 6.6006

Proposed Method 1.3321 2.7532 2.3473 3.2726 1.6737 1.6474

In addition, four sub-areas (Figure 10a) on the generated point clouds were selected,
and the results of the cloud-to-cloud distance in these areas are computed. The average
STD and RMSE of the original point cloud data, as shown in Table 11, were 56.37 mm and
47.66 mm, respectively. These values were calculated to be 33.67 mm and 37.62 mm for the
filtered point cloud of Farella method and 13.702 mm and 11.055 mm for our method. These
values indicated that our filtering algorithm performs effectively in generating accurate
3D models.

Furthermore, as shown in Table 12, the plane fitting analysis using six selected areas
on dense cloud (Figure 10b), indicated an average MAE of 26.584 mm, STD of 20.491 mm
and RMSE of 33.653 mm for the original point cloud data. Moreover, for the Farella filtering
algorithm, the amount of MAE, STD and RMSE were calculated as 11.364 mm, 9.577 mm
and 14.879 mm, respectively. However, our algorithm revealed a lower level of noise for
the acquired dense point cloud with MAE, STD and RMSE of 7.037 mm, 5.192 mm and
8.573 mm, respectively.
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Table 11. Results of the cloud-to-cloud distance analyses on the original and filtered dense clouds in
the ISPRS Pferdestall Convergent dataset.

Area
Original Dense Cloud Farella Filtered Dense Cloud Proposed Filtered Dense Cloud
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AREA1 57.13 44.502 47.401 65.259 8.3238 12.111
AREA2 26.644 20.767 35.671 33.222 12.047 6.605
AREA3 111.174 85.767 28.569 27.178 15.340 8.304
AREA4 30.566 39.617 23.039 24.819 19.096 17.200

Average 56.379 47.663 33.670 37.620 13.702 11.055
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Table 12. Surface deviation analysis using the plane fitting in ISPRS Pferdestall Convergent, Unit: (mm).

Plane

Original Dense Cloud Farella Filtered Dense Cloud Proposed Filtered Dense Cloud

MAE STD RMSE Max
Dist. MAE STD RMSE Max

Dist. MAE STD RMSE Max
Dist.

Plane1 8.667 6.848 11.046 73.609 41.900 24.292 48.433 151.17 6.037 4.108 7.303 31.481
Plane2 44.968 33.612 56.142 804.47 16.241 14.352 21.674 91.726 7.427 4.978 8.941 26.745
Plane3 10.848 11.691 15.948 102.87 14.547 11.630 18.607 79.517 7.918 6.889 10.496 69.096
Plane4 7.369 7.748 10.692 103.44 4.908 4.530 6.679 76.662 5.873 4.744 7.479 60.081
Plane5 43.15 28.914 51.830 159.11 9.760 7.797 12.555 54.406 6.93 4.156 7.375 29.778
Plane6 40.341 35.558 53.775 447.62 41.333 24.347 47.971 459.77 3.655 2.992 4.723 49.837

Average 26.584 20.491 33.65 292.47 11.364 9.577 14.879 75.578 7.037 5.192 8.573 46.425

4.5. Evaluating the Proposed Technique Using other MCDM Algorithms

In this section, some test has been performed to evaluate the influence of the MCDM
method on the final filtering results. As experiments in previous sections have shown,
our proposed method outperforms the original and the recent filtering method. However,
since different MCDM methods can make different ranking results, it may result in either
orientation failure due to inadequate tie points or incorrect orientation results. Therefore,
the experiments in this section evaluate the impact of the MCDM methods, as discussed in
Section 4.1 on the results of the filtering algorithm as follows.

4.5.1. Average Re-Projection Error of the Bundle Adjustment

The re-projection error obtained using each MCDM method is shown in Figure 11a
for all datasets. As shown, the TOPSIS algorithm performs better than the SAW, Complex
Proportional Assessment (COPRAS) and VIKOR methods for all datasets. The re-projection
error using the TOPSIS algorithm is averagely 25% to 66% lower compared to other MCDM
methods. The SAW and COPRAS methods perform relatively weaker in terms of the
re-projection error.

4.5.2. Average Angles of Intersection

To provide more accurate triangulation for 3D point calculation, a higher angle of
intersection of similar rays is required. As shown in Figure 11b, the intersection angles in the
TOPSIS algorithm are significantly higher. The intersection angles in the TOPSIS method
are averagely 26% better than other methods. However, the average intersection angles are
relatively smaller for Dortmund and Pferdestral datasets with higher overlapping images.
SAW and VIKOR algorithms slightly perform weaker in terms of selecting tie points with
larger intersection angles.

4.5.3. Average Multiplicity

As the number of images and their overlap increases in a dataset, larger multiplicities
and thus more accurate 3D object coordinates are expected. As shown in Figure 11c, a
higher average multiplicity for the selected tie points is achieved by the TOPSIS algorithm
with an average of 2.56 rays. Nevertheless, for the Dezful dataset, the average multiplicity
of the COPRAS algorithm is relatively higher, with 3.33 rays on averagely.

4.5.4. Average Spatial Distribution of Tie Points

The well-distributed tie points are crucial for accurate image orientation and 3D
reconstruction. According to Figure 11d, the spatial distribution of selected tie points does
not change significantly using MCDM methods. The average difference between different
MCDM methods is around 1%, indicating that all applied MCDM methods can select well-
distributed tie points. The main reason for having the spatial distribution of about 100% in
almost all MCDM methods is that the resulting tie points are well distributed on the images.
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This shows that using the proposed method, we will have subsets of well-distributed tie
points on the images.
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4.5.5. Average Posteriori Standard Deviation of Object Coordinates

As Figure 11e shows, the average posteriori standard deviation of the 3D points for
the TOPSIS algorithm with an average of 20.18 mm is the lowest in all datasets. For Dezful
and Halavan datasets, COPRAS has the weakest performance with an average deviation of
45.17 mm; for the Dortmund and Pferdestall datasets, VIKOR has the lowest performance
with a standard deviation of 24.70 mm.

4.5.6. The Percent of Removed Tie Points

Figure 11f shows the percent of eliminated tie points during the filtering process using
different MCDM methods. As it shows, the number of removed tie points is different in
MCDM methods. The TOPSIS and SAW algorithms averagely remove 35% and 11% of
the initial tie points. In comparison, COPRAS and VIKOR remove mostly remove a larger
number of points of about 70% and 56% of tie points in Dezful and Pferdestall datasets. This
is mainly because these methods naturally try to select the most discriminant alternatives
and thus remove larger amounts of tie points.

5. Discussion

The achieved results on the first test in all four case studies showed that applying the
MCDM method for tie point selection could provide better results in terms of inner quality
metrics. The average improvement of the quality metrics adopting the proposed filtering
are 27% for the Dezful dataset, 41% for the Halavan dataset, 41% for the ISPRS Dortmund
dataset and 45% for ISPRS Pferdestall Convergent dataset. Additionally, comparing our
method to Farella algorithm suggested that our technique has better results in all four
experiments. In Dezful and Halavan where tie points are generated from high scale
keypoints with less location accuracy, the Farella method degrades the results. Whereas in
ISPRS Dortmund and ISPRS Pferdestall Convergent datasets with more high-resolution tie
points, it has improved the results. The proposed method, on average, outperforms Farella’s
method by 40% in terms of inner quality metrics. Moreover, adopting the presented method,
the average improvements of 60% in the RMSE of checkpoints and 70% in planimetric and
altimetric errors are achieved. Comparing to the Farella filtering algorithm, our method’s
average improvements are 26% and 34% in RMSE of checkpoints and planimetric/altimetric
errors. Furthermore, the result of the surface deviation evaluations showed less than 7 mm
of noise using our filtering algorithm, leading to a reliable surface representation and 3D
model reconstruction. Moreover, the results of the C2C evaluation indicated an average
measurement error of about 12 mm.

Regarding the number of removed points in filtering process, MCDM methods do not
have a similar performance. This is mainly because, in our method, the filtering threshold is
computed by involving the median value of each quality parameter as a new alternative to
be ranked through the MCDM process. Consequently, different MCDM methods provide a
different filtering threshold, and thus, the number of removed tie points are not the same.
Additionally, the spatial distribution results show that despite the elimination of tie points
in our method, the selected tie points are well-distributed in our filtering strategy. The
results also confirm a higher performance of our algorithm compared to the recent method
proposed by Farella.

The findings of the second test successfully showed the applicability and effective-
ness of different MCDM methods in the tie point filtering problem. The results indi-
cate a reasonable agreement among MCDM methods, whereas the TOPSIS method, with
an average of 30% outperforms other MCDM methods in the tie point selection task.
This is mainly because the TOPSIS method considers the distance of alternatives to the
ideal/anti-ideal solution. Similarly, COPRAS ranks tie points based on positive and nega-
tive ideal solutions and works better than two other MCDM methods. VIKOR and SAW
are ranked as the least effective MCDM method for tie point selection tasks since their per-
formance, despite being superior to the original results in some quality parameters, is not
significantly improved.



Drones 2022, 6, 413 27 of 29

Overall, the results of case studies’ proved the proposed methodology’s capabilities
to select reliable and high-quality tie points for accurate 3D reconstruction. Compared
to the original method and the Farella technique, our method performs significantly bet-
ter considering both internal and external quality checks. This is mainly because our
method utilizes MCDM techniques to consider all affecting factors for tie point selection
simultaneously and has the potential to enhance the robustness of decision-making in the
cases of conflicting objectives. However, concerns remain regarding the consistency of
results considering the contradictions that might occur in rankings obtained by different
MCDM methods.

6. Conclusions and Future Works

In this paper, we proposed a new MCDM approach for selecting high-quality tie
points. In the proposed algorithm, effective quality factors of tie points are computed
for each point. Then, they are aggregated using MCDM methods to select the subset of
well-distributed and high-quality tie points.

For evaluations, different UAV block datasets with different number of images, sensors
and camera network configurations. The outcomes were also compared to the original
results (no filtering) and the recent Farella algorithm. It was observed that the proposed
filtering method outperforms the original results and the Farella method by an average
of 40%. Moreover, although the Farella approach was observed to be successful for ac-
curate image orientation, our MCDM-based approach produced more accurate results in
different datasets.

For future studies, we will investigate the sensitivity and robustness of our method
with other types of images, such as multi-temporal images, where scene changes usu-
ally lead to noisy 3D reconstruction results, or remote sensing images, in which images
are captured using a different sensor type. In addition, our filtering procedure will be
extended to consider appropriate weighting for each quality metric and an overall aggre-
gation of rankings obtained form of different MCDM methods. Furthermore, analysing
the density of the selected tie points and implementation of our filtering algorithm with
other MCDM methods such as ANP, BWM and MACBETH, which measure the attractive-
ness of alternatives by a categorical-based evaluation technique, is suggested as another
future work.
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