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ABSTRACT: 
Image orientation is a fundamental task in photogrammetric applications and it is performed by extracting keypoints with hand-crafted 
or learning-based methods, generating tie points among the images and running a bundle adjustment procedure. Nowadays, due to 
large number of extracted keypoints, tie point filtering approaches attempt to eliminate redundant tie points in order to increase accuracy 
and reduce processing time. This paper presents the results of an investigation concerning tie points impact on bundle adjustment 
results. Simulations and real data are processed in Australis and DBAT to evaluate different affecting factors, including tie point 
numbers, location accuracy, distribution and multiplicity. Achieved results show that increasing the amount of tie points improve the 
quality of bundle adjustment results, provided that the tie points are well-distributed on the image. Furthermore, bundle adjustment 
quality is improved as the multiplicity of tie points increases and their location uncertainty decrease. Based on simulation results, some 
suggestions for accurate tie points filtering in typical UAV photogrammetry blocks cases are derived. 
 
 

1. INTRODUCTION 

In recent years, Unmanned Aerial Vehicles (UAVs) have become 
a commonly used remote sensing platform (Colomina and 
Molina, 2014; Nex and Remondino, 2014; Hassanalian and 
Abdelkefi, 2017; Granshaw, 2018). Various outputs such as high-
density point cloud, 3D model of the scenes, mosaicked images, 
cadastral maps and high resolution orthophotos can be obtained 
using on UAV-based images. Within the UAV photogrammetry 
pipeline, image orientation parameters and sparse point clouds 
are simultaneously computed using a bundle adjustment 
procedure. This is performed using image keypoints which are 
automatically extracted from the set of acquired images using 
hand-crafted or learning-based methods (Schönberger et al., 
2017; Remondino et al., 2021). Most steps of the UAV 
photogrammetry pipeline can be carried out in a fully automated 
way using Structure from Motion (SfM) and Multi-View Stereo 
(MVS) technique. Since some years, the use of hand-crafted 
feature-based matching algorithms like SIFT (Lowe, 2004) or 
SURF (Bay et al., 2008), which are able to detect numerous 
keypoints and find corresponding points between set of 
convergent images, has removed the efforts for the manual 
selection of tie points. Therefore, manual work is limited only for 
measuring ground control points (GCPs). 
Current feature-based matching algorithms extract a large 
number of keypoints, the number of which directly depends on 
the information content of the image. In addition, in large-scale 
UAV blocks with a large number of images, the huge number of 
matched keypoints lead to high number of tie points. This causes 
the bundle adjustment to be time-consuming and prone to errors.  
Many attempts have been made to improve bundle adjustment 
precision and accelerate its efficiency within the image 
orientation / Structure from Motion (SfM) step. Some studies 
used clustering or graph-based techniques to reduce the number 
of images in SfM. Snavely et al. (2008) proposed a skeleton 
representation of the dominant images to speed up the subsequent 
incremental camera additions and scene reconstruction. Li et al. 
(2008) clustered a set of images to find the ‘iconic images’ first, 
then computed 3D scene incrementally based on spanning trees. 
The studies of Cui et al. (2020) and Chen et al. (2020) can be 

pointed out in this field, too. The reduction of images makes 
large-scale adjustment more tractable, though the completeness 
of scene structure cannot be guaranteed. Other works provide a 
tie point selection\filtering schema for improving bundle 
adjustment performances (Nocerino et al., 2013). The tie point 
selection/filtering problem could be defined as finding a more 
robust subset of tie points to increase both accuracy and 
efficiency of camera calibration and image orientation.  
Tie point filtering in UAV photogrammetry blocks is necessary 
for two reasons. Firstly, in large-scale UAV blocks, tie points 
usually contain many wrong matches. Secondly, the number of 
constraints generated by all tie points is much greater than the 
number of constraints needed for the computation of the 
unknowns. Therefore, selecting a subset of tie points could 
increase the efficiency of calculations and extend the scalability 
of orientation process. Some works proposed to select tie points 
from high-scale feature matches based on the features scale 
ordering. For instance, Wu (2013) proposed a match selection 
method, so called pre-emptive matching algorithm, to quickly 
judge whether or not two images could be matched. Shah et al. 
(2014) proposed a similar method which begins with building a 
coarse 3D reconstruction using a fraction of high-scale features 
of given images. A related approach has been described in Mayer 
(2003), Lerma et al. (2013) and Liu et al. (2014). Based on the 
analysis of error upper bound, Liu et al. (2014) and similarly Cui 
et al. (2015) selected a subset of matches that has a good quality 
vs. quantity trade-off to enhance the accuracy of two-view SfM. 
In Cui et al. (2017) a fast tracks selection method to improve both 
efficiency and robustness of the bundle adjustment is proposed. 
In their method, three selection criteria of Compactness, 
Accurateness and Connectedness are introduced: the first two are 
used to calculate a selection priority for each track and the third 
is to guarantee the completeness of scene structure. Then, to 
satisfy these criteria, a more informative subset of tie points is 
selected by covering multiple spanning trees of epipolar 
geometry graph. Since tie point selection acts only an 
intermediate step in the whole SfM pipeline, it can be in principle 
embedded into any global SfM pipelines.  
The quality of the image orientation does not depend only on the 
number of the tie points, which have a limited effect on the 
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network precision, but it is mostly affected by their correctness 
and distribution (Barazzetti, 2017). Poor precision and spatial 
distribution of the tie points prevents both accurate measurement 
of camera orientation and proper modelling of the systematic 
errors caused by camera optics. Kerner et al. (2016) studied the 
role of spatial distribution of tie points on aerial images and 
concluded that in challenging scenarios promoting spatial 
distribution patterns at the matching stage can be helpful in 
preventing degenerate configurations. Furthermore, other 
influential factors on the bundle adjustment results such as tie 
point multiplicity and location accuracy must also be considered. 
In an efficient tie point filtering algorithm, all aforementioned 
factors should be considered simultaneously.  
Few studies in the literature have fully investigated the impact of 
tie point observations and camera configuration in bundle 
adjustment (Voltolini et al., 2006; Nocerino et al., 2014) and the 
research is still lacking in clarifying the role of tie points’ 
properties in image orientation and 3D reconstruction results, in 
particular for UAV datasets. Based on this, the paper aims to:  
(i) perform experiments with simulated and real data; 
(ii) analyse the impact of influential factors, such as number of 
tie points, multiplicity, distribution and location accuracy for 
filtering purposes; 
(iii) analyse the precision achievable with different image 
networks using simulations and real datasets.  
To this end, the proposed research involves comparison results of 
influential factors on the 3D reconstruction accuracy in different 
UAV blocks and clarifies their impact on the obtained results. 
The rest of the paper is organized as follows: an explanation of 
the evaluation methodology is presented in Section2, the 
obtained results are thoroughly discussed in Section3 whereas 
conclusions and future studies are drawn in the final Section. 
 
 

2. EVALUATION METHODOLOGY 

Influential factors related to tie points are analysed using both 
simulations and real datasets and statistical outcomes of a bundle 
adjustment results. Bundle adjustment (Triggs et al., 2000) is an 
indirect method able to simultaneously solve position and 
orientations of image blocks and ground coordinates of unknown 
points through collinearity equations. The task is solved using 
non-linear least squares methods, such as Gauss-Markov, Gauss-
Newton or Levenberg-Marquardt. In evaluation phase using 
simulated image networks, the bundle adjustment formulation 
based on parametric model of collinearity equations can be 
written as follows (Mikhail, 1976; Kraus, 2011; Luhmann et al., 
2013): 

 

(1) 

(2) 

(3) 

(4) 

where v is the residuals vector, x is the unknown vector (camera 
parameters, 3D coordinates), l is the observations vector (image 
coordinates of tie points, etc.) and A is the design matrix. 
𝛴!	and		𝛴𝑥 are the covariance matrix of observations and 
unknowns respectively, p the weight matrix and 𝜎"# is the 
variance factor. Given the precision of image coordinates, 
interior and exterior camera parameters, the 𝛴"	matrix in Eq.3 
could be estimated easily. As this equation shows, 𝛴"	is affected 
by both A and P matrixes, indicating the fact that both the 
network shape i.e. tie point distributions and precision of the 
observations impact the network accuracy. Therefore, the 

𝛴"	matrix can be considered as the best quantity measure to 
express accuracy of networks. 
Firstly, some simulations are performed aiming to estimate the 
𝛴"	matrix and analyse the results based on its values. The 
simulation process can be summarized as follows (Figure 1): 
1. A set of 3D points, e.g. acquired with laser scanning, are used 

to create an approximate 3D model of the scene to be 
surveyed. 

2. A set of simulated camera stations are defined using arbitrary 
positions and rotation values (exterior orientation parameters) 
and predefined image properties (sensor size, pixel 
dimension, focal length). 

3. 3D points are re-projected on the image planes (Figure 2), 
given the camera exterior and interior parameters, in order to 
create image observations (tie points). 

4. A bundle adjustment is run in free network (inner constraint) 
to solve the datum defect problem. No known coordinates in 
the design matrix are used, thus the solution does not have 
connection with the utilized coordinate system or datum and 
the rank deficiency is dissolved.  

5. The quality of the adjustment results is measured computing 
the covariance matrix 𝛴" (Eq. 3) and its traces to determine 
the precision of the estimated object point coordinates, with 

𝑅𝑀𝑆 = #
$
∑ ()(δ"% + δ&% + δ'%	))$
()# . N refers to the number of 

object (tie) points used in the bundle adjustment.  

 
Figure 1. The simulation pipeline. 

 
Figure 2. The point project process used in the simulation 
experiments. 

 
In the second phase of the experiments, the performance 
evaluation was checked using real image blocks. Tie points are 
extracted from the image sets and then the influence of tie point 
distribution and numbers are analysed considering the outcomes 
of the bundle adjustment. As no ground control / truth is 
available, following Remondino et al., 2017 and Mousavi et al. 
(2021), three criteria at the end of the bundle adjustment are 
considered: 
1. the re-projection error of all computed 3D points (the smaller, 

the better). 
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2. Average number of rays per 3D point, i.e., the redundancy of 
computed 3D object coordinates (the higher, the better). 

3. Average intersection angles per 3D points, i.e., the angle of 
intersection to reconstruct 3D points by triangulation (the 
higher, the better). 

 
 

3. EXPERIMENTS AND DISCUSSION 

Simulations results are firstly presented (Section 3.1), then real 
datasets are analysed (Section 3.2). Tie points numbers, 
distribution quality, accuracy of image observations, tie point 
multiplicity and, for the simulations, estimated quality of 3D 
object coordinates (RMSE) are considered as influential factors. 
 
3.1 Simulation analyses and results 
 
To figure out the effect of tie point number, distribution and 
multiplicity on the photogrammetric procedure, two simulated 
image network configurations are considered: a straight sequence 
of nadir UAV images (Figure 2) and a 360° closed sequence with 
convergent images around an object (Figure 3).  
For the straight UAV sequence, three simulations containing 24, 
46 and 68 images were conducted, shortening the image baseline 
with the increase of the image number. In all datasets we 
supposed a DJI FC6520 camera (5280×3956 px, 0.0043mm pixel 
size) with a 12mm focal length. A laser scanner 3D point cloud 
is used to create the necessary object points for the simulation.  
For the closed sequence of images, we considered datasets with 
13, 20 and 26 images acquired with a Canon EOS 7D camera 
(5184×3456 px, 0.005mm pixel size) mounting a 15mm focal 
length. A laser scanner point cloud of a statue is subsampled and 
used for creating the simulation input data. 
 

 
Figure 3. An example of simulated nadir and straight UAV 
images. 

 
Figure 4. An example of closed image block simulation. 

 
In all simulations, Australis 6 is used, allowing a maximum 
viewing angle of 60º for each point. The precision of image 
keypoints observations is considered identical; thus p is the 
identity matrix. In all simulation experiments, distortion-free 
images with principal point locating in the centre of the image 

are used, in order to avoid possible block deformations. The focal 
length and sensor size are considered based on the camera type 
assumed in each test. 
 
3.1.1 Influence of tie points number 
The estimated precision of 3D points (RMSE on check points) in 
the simulated UAV strip is reported in Figure 4a. Increasing the 
number of images from 24 to 68 images leads to a better precision 
of the 3D points. The precision is significantly improved by 
increasing the number of points from 100 to about 5000, whereas 
a larger number of tie points (more than 10,000) does not provide 
significant improvement in terms of RMSE. Similarly, for a 
closed block (Figure 4b), increasing the number of tie points from 
20 to 5000 provide more precise 3D points while a large number 
of tie points do not significantly improve the accuracy results. 
 

(a)  

(b)  
Figure 4. Precision of computed 3D points within a straight 
(a) and closed (b) image block. 

 

(a)  

(b)  
Figure 5. Processing time for straight (a) and closed (b) 
block. 

 
The required processing time for bundle adjustment for both 
straight and closed block is shown in Figure 5. As it shows, in 
both blocks, the processing time quadratically increase when 
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larger number of tie points are applied. The processing time is 
also increased as the number of applied images rises. 
Comparing the required processing time as a function of the 
number of tie points (Figure5), we can clearly notice that large 
number of tie points make processing time exponential while the 

precision of 3D points does not improve significantly. This means 
that while all image observations are accurate with same 
precision, a huge number of 3D points is not really necessary for 
bundle adjustment, whereas more attention should be paid to 
point position to guarantee a uniform distribution in the images. 

 

  
(a) (b) 

Figure 6. Achieved RMSE of 3D points when location uncertainty is changing. UAV straight block with 24 images (large baselines 
- a) and 48 images (short baselines - b). 

  
(a) (b) 

Figure 7. Achieved RMSE of 3D points when location uncertainity is changing. Closed block with 13 images (large baseline - a) 
and 26 images (short baseline - b). 

  
(a) (b) 

Figure 8.  RMSE of 3D points in the distribution analysis. Closed block with 24 (a) and 48 (b) images. 

  
(a) (b) 

Figure 9. RMSE of 3D points based on thetie points multiplicity analysis: straight (a) and closed (b) image block.  
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3.1.2 Influence of tie points location accuracy 
We run further tests changing the accuracy of tie-points’ location 
(from 0.2 pixel to 2 pixels) and check the influence on the RMSE 
of the available check points. As shown in Figure 6a, the 
precision of the 3D points is negatively affected by increasing the 
location uncertainty of tie points. But increasing the number of 
tie points helps in improving RMSE values. The same behaviour 
is found when using 48 images (with short baselines), as shown 
in Figure 6b. Similarly, for a closed block with 13 or 26 images, 
illustrated in Figure 7a-b, as the location accuracy of tie points 
increases, the precision of 3D points also increases and adding 
more images help to reduce errors in the 3D space. 
So, increasing the number of images and observations provides 
for better precisions in the 3D space. It could be concluded that 
the accuracy of tie point observations is no more an issue because 
lower accuracy of the observations can be compensated by 
increasing the amount of observations. However, it is important 
to know the accuracy of the measurements in order to give them 
correct weights in the block adjustment.  
The evaluation results of location accuracy impact on the result 
of bundle adjustment could be useful when automatic keypoint 
extraction techniques are used. Automatic keypoint extraction 
algorithms typically construct a Gaussian image pyramid, by 
convolving the original image with a sequence of Gaussian 
kernels with different width. Neighbouring images in the 
pyramid are then subtracted from each other to obtain the multi-
scale DoG pyramid. Strong local extrema in that scale-space are 
selected as keypoints and are applied in matching process. Low-
resolution tie points are based on low frequency gradients and 
thus will in most cases have a higher location uncertainty than 
high-resolution ones. 
 
3.1.3 Tie points distribution 
As described in the previous sections, the number of tie points is 
not a problem but the distribution of tie points in the overlapping 
areas of the adjacent images is more important. In challenging 
photogrammetric blocks, where there are few small matchable 
objects in image, spatial distribution of tie points becomes 
important. This may result to have the majority of the tie points 
located either in a small part of the image or in a linear alignment. 
To evaluate the distribution influence, the approximate 3D model 
was defined in such a way that re-projected points provide 
different distributions on the images. The distribution of re-
projected points on the image can be evaluated using the global 
coverage index (α). The global coverage index is computed based 
on Voronoi diagrams as the follows: 

 

(5) 

In Equation (5), Ai is the area of the ith Voronoi cell, n is the 
number of Voronoi cells and ATotal is the area of the whole image. 
The larger the α value, the better the spatial distribution of the 
matched pairs.  
As shown in Figure 8, using a fixed number of tie points, as the 
tie points’ distribution increase, better results in term of RMSE 
of 3D points can be achieved.  With an average of 400 tie points 
(Figure 8a), the increasing in the distribution from 50% to 80% 
in each image, significantly improves of the RMSE of 3D points 
from 1.05mm to 0.40mm. Increasing the number of tie points to 
800, provides a much better situation and improves the RMSE of 
from 1.66mm to 0.27mm. Similar results can be obtained using 
larger number of tie points (Figure 8b): with 5000 tie points, the 
RMSE enhances from 0.023mm to 0.012mm when the 
distribution of tie points increases from 50% to 80%, whereas 
with 8000 tie points, the RMSE are slightly better. It can be said 

that when the distribution is uniform, a very stable block 
geometry can be achieved.  
 
3.1.4 Tie points multiplicity 
Tie point multiplicity indicates the number of images 
contributing to the calculation of a 3D point, i.e., the number of 
images where the point has been measured. Therefore, the 
multiplicity value refers to the excess of image observations with 
respect to the number of unknown 3D object coordinates, 
estimated within the adjustment step. Assuming a good 
intersection angle, the higher the redundancy (and consequently 
the multiplicity), the better is the quality of the computed 3D 
points. Figure 9 presents the RMSE of 3D points in condition of 
different tie point multiplicity for both straight (a) and closed (b) 
block. As it shows, high multiplicity values suggest greater 
precision of the computed 3D tie points, considering that multiple 
intersecting rays contribute to the point position check. For a 
straight block (Figure 9a), increasing the multiplicity of tie points 
improves RMSE of 3D points despite the point number reduction 
from 2580 to 1700. Similar results are obtained in a closed block 
image sequence (Figure 9b): increasing the multiplicity of tie 
points from 2 to 18, improves the precision of 3D points from 
0.18mm to 0.13mm. The tie point multiplicity evaluation results 
demonstrate the importance of several intersecting rays 
contributing to the 3D point measurement. Although the 
importance of a large number of multi-ray points is not as great 
as it is in analytical photogrammetry, ignoring this factor can 
result in extreme block deformations (dome effect) and 
inaccurate results.  
 
3.1 Real data 
 
We have evaluated the impact of the tie points number and 
distribution on the quality of image orientation and 3D point 
estimation also using real UAV datasets. To this end, two 
photogrammetry blocks including multiple strips (18 images) and 
a convergent block (9 images) were considered. In both cases, 
images were captured with a DJI FC6310 camera (5472×3648 
image size) coupled with a 8mm focal length. Figure10 shows 
the employed datasets with sample images and camera networks. 
We considered four different situations, manually adjusting the 
average tie point distribution in the image from 75% to 45% and 
analysing the results of the bundle adjustment. As metrics, 
number of tie points per image, average re-projection error in the 
bundle adjustment, average number of rays per 3D point and 
average intersection angles per 3D points were used for 
comparisons and analyses. The open source toolbox DBAT 
(Murtiyoso et al., 2018) was used to run the photogrammetric 
image orientation process in MATLAB using the Levenberg-
Marquardt algorithm (Moré, 1978). Results are shown in Figures 
11,12,13 and details are discussed in the following sections. 
 
3.2.1 Average re-projection error 
The bundle adjustment results for both scenarios, including 
average re-projection error of computed 3D points and number 
of tie points are shown in Figure 11 and Figure 12. As shown in 
Figure 11a and Figure 12a, the average re-projection error values 
for each image decreased as the number of tie points and their 
distribution increases. The best results is achieved with an 
average distribution of 75% and the weakest results are obtained 
when tie points are not well-distributed (45%). When tie points 
are accumulated in a small region of the image, increasing the 
number of tie points does not improve good bundle adjustment 
results. From these results it can be concluded that particular 
consideration should be taken to ensure a uniform tie point 
distribution in the images rather than using large number of tie 
points. 
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Figure 10. The real datasets used in the evaluation: multiple overlapping strips with 18 images (top) and 9 convergent images 
(bottom). 

 
Figure 11. Results for the multi-strip block image orientation: average re-projection error of the bundle adjustment for each image 
(a) and number of tie point (b). 

 
Figure 12.  Results for the convergent block image orientation: average re-projection error of the bundle adjustment for each image 
(a) and number of tie points (b). 
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Figure 13. Average intersecting rays per computed 3D points (a) and average intersection angles (b). 

 
 
3.2.2 Average number of rays per 3D point 
As the overlap between images in a dataset increases, more 
redundancy is expected for 3D object coordinates. As shown in 
Figure 13a, higher average multiplicity for the tie points is 
achieved in convergent image sequence with higher overlapping 
images. As the distribution of tie points in image increases, the 
higher average multiplicity is achieved. This is mainly because 
3D object points are visible in more images and are calculated 
more accurately.  
 
3.2.3 Average intersection angle per 3D point 
Since 3D points are calculated by triangulation, a higher angle of 
intersection of similar rays provides more accurate 3D details. As 
shown in Figure 13b, higher intersection angles are achieved in 
convergent image sequence consisting of higher overlapping 
images. As the distribution of tie points in image increases, the 
higher average intersection angle is also achieved. 
 
 

4. CONCLUSIONS 

Image orientation is nowadays a fully automated procedures even 
without coded targets. Current hand-crafted feature extraction 
and matching algorithms extract a large number of keypoints 
depending on the image's information content. Furthermore, in 
large-scale UAV blocks with a large number of images, a high 
number of tie points is produced by the large number of matched 
keypoints. In this regard, tie point filtering/selection approaches 
are commonly used to improve bundle adjustment precision and 
accelerate its efficiency in SfM technique. There exist different 
important and influential factors in tie point filtering/selection 
which affects the bundle adjustment results. In this paper, the 
effect of influential factors for tie point filtering were analysed 
based on simulated and real data. To this end, different image 
networks were considered, and 3D points are re-projected on the 
image planes. The bundle adjustment is run using inner 
constraints and the covariance matrix of unknowns were 
analysed. The results showed that increase in the amount of tie 
points improve the quality of bundle adjustment results, however 
using too many tie points do not improve the results significantly 
but increase the required processing time of bundle adjustment. 
Furthermore, the bundle adjustment quality is improved as the 
location uncertainty of the tie points decreases.  The evaluation 
results also showed that the distribution of tie points located in 
the overlapping areas of adjacent images is an important factor 
besides the number of tie points. The multiplicity results showed 
that high multiplicity values of tie points provide greater 
precision for the computed 3D tie points. 
An ideal tie point filtering algorithm should therefore consider all 
the influential factors for tie point selection such as tie point 
number, distribution, multiplicity and location accuracy 

simultaneously. Each of the aforementioned factors are important 
to select a subset of high quality tie points. To this end developing 
an approach that uses all important factors at the same time is 
suggested as future work. 
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