1,376 research outputs found

    Stratégie de commande distribuée pour les manipulateurs rigides et flexibles assurant la stabilité des erreurs de suivi de trajectoires

    Get PDF
    Cette thèse de doctorat propose et valide expérimentalement une nouvelle stratégie de commande distribuée pour les manipulateurs rigides et flexibles assurant le suivi de trajectoires dans l’espace articulaire et cartésien. Cette stratégie est développée, dans un premier temps, pour les manipulateurs rigides. Ensuite, elle est modifiée pour prendre en compte la flexibilité des bras au niveau des manipulateurs flexibles. Dans le cas des manipulateurs rigides, cette stratégie est utilisée pour assurer un bon suivi de trajectoires dans l’espace de travail. Dans le cas où les paramètres du système sont parfaitement connus, une stratégie de commande distribuée est utilisée. Cette stratégie de commande décompose, dans un premier temps, la dynamique du manipulateur en plusieurs sous-systèmes non linéaires interconnectés. Chaque sous-système représente une articulation. Ensuite, la commande distribuée consiste à contrôler le manipulateur en commençant par la dernière articulation (sous-système) toute en supposant que le reste des articulations est stable. La même procédure est utilisée au rebours jusqu’à la première articulation. Dans le cas où les paramètres du système ne sont pas connus, une commande adaptative est développée. Dans ce contexte, la commande distribuée et adaptative peut être interprétée comme étant une commande hiérarchique. En effet, les paramètres inconnus, existant dans l’équation de mouvement du dernier sous-système, sont tout d’abord estimés et la loi de commande est ainsi déduite en fonction de ces paramètres. Puis, passant à l’avant-dernier sous-système, la loi de commande est développée en fonction de leurs propres paramètres estimés, existant dans l’équation de mouvement de l’avant-dernière articulation, et les paramètres estimés du sous-système de niveau supérieur. La même stratégie est utilisée à contresens jusqu’au premier sous-système. L’approche de Lyapunov est utilisée pour prouver la stabilité globale des erreurs de suivi. Les deux lois de commande sont validées expérimentalement sur un manipulateur rigide à 7 ddl et elles montrent un bon suivi dans l’espace articulaire et cartésien. Dans le cas des manipulateurs flexibles, cette stratégie est modifiée et étendue pour assurer un bon suivi de trajectoires dans l’espace articulaire et, en même temps, minimiser les vibrations au niveau des bras flexibles. Donc, en plus de l’objectif de suivi de trajectoire utilisée dans le cas des manipulateurs flexibles, la stratégie de commande doit assurer la déformation bornée et minimiser les vibrations des bras flexibles. Au contraire des manipulateurs rigide, les manipulateurs flexibles sont des systèmes sous-actionnés, c’est-à-dire ils possèdent plus de degrés de liberté que d’entrées de commande. Dans ce cas, chaque sous-système est composé d’une articulation et le bras flexible associé. Dans le cas où les paramètres du manipulateur sont parfaitement connus, une commande distribuée est développée pour assurer la stabilité des erreurs de suivi dans l’espace articulaire et réduire les vibrations des bras flexibles. Cette stratégie consiste à commander et stabiliser la dernière articulation ainsi que le dernier bras flexible en supposant que le reste des sous-systèmes sont stables. Puis, passons aux contrôle et stabilité de l’avant-dernier sous–système de la même façon. Cette démarche est suivie, au rebours, jusqu'au premier sous-système. Sa version adaptative, dite « hiérarchique », est également développée. La stabilité globale est prouvée en utilisant l’approche de Lyapunov. La validation expérimentale des deux lois de commande sur un manipulateur flexible à 2 ddl montre un bon suivi de trajectoires dans l’espace articulaire et des vibrations minimales au niveau des bras flexibles. Dans le cas de suivi de trajectoires dans l’espace de travail des manipulateurs flexibles, la cinématique inverse, utilisée pour les manipulateurs rigides, n’est plus suffisante pour transformer les trajectoires désirées de l’espace de travail vers l’espace articulaire. En plus d’une relation cinématique, il existe une relation dynamique entre l’espace de travail et articulaire. Pour résoudre ce problème, un espace intermédiaire, nommé « virtuel » et la méthode quasi-statique sont utilisés. En effet, la cinématique inverse est utilisée pour transformer la trajectoire désirée de l’espace de travail vers l’espace virtuel tandis que l'approche quasi-statique est utilisée pour le passage de l'espace virtuel à l'espace articulaire. Lors du contrôle direct de l’extrémité, les manipulateurs flexibles deviennent des systèmes à non minimum de phase et la dynamique interne n'est plus bornée. Pour surmonter ce problème, la technique de la redéfinition de sortie est utilisée pour sélectionner une sortie la plus proche possible de l'extrémité assurant une dynamique interne bornée. Cette sortie est composée de la position angulaire plus une valeur pondérée de la déformation de l’extrémité du bras flexible. Une étude de stabilité de la dynamique interne (ou dynamique des zéros) en utilisant la passivité est utilisée pour déterminer la valeur critique du paramètre caractérisant cette sortie paramétrisée. Deux lois de commande sont développées pour un robot à deux bras flexibles. La première loi de commande basée sur l’approche de linéarisation par retour d’état assure juste la stabilité locale des erreurs de suivi. La deuxième loi de commande constitue une généralisation pour assurer la stabilité globale de la dynamique des erreurs de suivi. Ces deux algorithmes sont testés sur un robot à deux bras flexibles et montrent un bon suivi de trajectoires dans l’espace de travail

    Decentralized Robust Control of Robot Manipulators with Harmonic Drive Transmission and Application to Modular and Reconfigurable Serial Arms

    Get PDF
    In this paper, we propose a decentralized robust control algorithm for modular and reconfigurable robots (MRRs) based on Lyapunov’s stability analysis and backstepping techniques. In using decentralized control schemes with robot manipulators, each joint is considered as an independent subsystem, and the dynamical effects from the other links and joints are treated as disturbance. However, there exist many uncertainties due to unmodeled dynamics, varying payloads, harmonic drive (HD) compliance, HD complex gear meshing mechanisms, etc. Also, while the reconfigurability of MRRs is advantageous, modifying the configuration will result in changes to the robot dynamics parameters, thereby making it challenging to tune the control system. All the above mentioned disturbances in addition to reconfigurability present a challenge in controlling MRRs. The proposed controller is well-suited for MRR applications because of its simple structure that does not require the exact knowledge of the dynamic parameters of the configurations. Desired tracking performance can be achieved via tuning a limited set of parameters of the robust controller. If the numbers of degrees of freedom are held constant, these parameters are shown to be relatively independent of the configuration, and can be held constant between changes in configuration. This strategy is novel compared to existing MRR control methods. In order to validate the controller performance, experimental setup and results are also presented

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator

    Get PDF
    This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small and constrained environment. The design intent is to facilitate the movement of the proposed robotic manipulator in constrained environments, such as rubble piles. The proposed robotic manipulator with multi Degree of Freedom (m-DOF) links is capable of elongating by 25% of its nominal length. In this context, a design optimization problem with multiple objectives is also considered. In order to identify the benefits of the proposed design strategy, the reachable workspace of the proposed manipulator is compared with that of the Jet Propulsion Laboratory (JPL) serpentine robot. The simulation results show that the proposed manipulator has a relatively efficient reachable workspace, needed in constrained environments. The singularity and manipulability of the designed manipulator are investigated. In this study, we investigate the number of links that produces the optimal design architecture of the proposed robotic manipulator. The total number of links decided by a design optimization can be useful distinction in practice. Also, we have considered a novel robust bio-inspired Sliding Mode Control (SMC) to achieve favorable tracking performance for a class of robotic manipulators with uncertainties. To eliminate the chattering problem of the conventional sliding mode control, we apply the Brain Emotional Learning Based Intelligent Control (BELBIC) to adaptively adjust the control input law in sliding mode control. The on-line computed parameters achieve favorable system robustness in process of parameter uncertainties and external disturbances. The simulation results demonstrate that our control strategy is effective in tracking high speed trajectories with less chattering, as compared to the conventional sliding mode control. The learning process of BLS is shown to enhance the performance of a new robust controller. Lastly, we consider the potential field methodology to generate a desired trajectory in small and constrained environments. Also, Obstacle Collision Avoidance (OCA) is applied to obtain an inverse kinematic solution of a redundant robotic manipulator

    Autonomous Visual Servo Robotic Capture of Non-cooperative Target

    Get PDF
    This doctoral research develops and validates experimentally a vision-based control scheme for the autonomous capture of a non-cooperative target by robotic manipulators for active space debris removal and on-orbit servicing. It is focused on the final capture stage by robotic manipulators after the orbital rendezvous and proximity maneuver being completed. Two challenges have been identified and investigated in this stage: the dynamic estimation of the non-cooperative target and the autonomous visual servo robotic control. First, an integrated algorithm of photogrammetry and extended Kalman filter is proposed for the dynamic estimation of the non-cooperative target because it is unknown in advance. To improve the stability and precision of the algorithm, the extended Kalman filter is enhanced by dynamically correcting the distribution of the process noise of the filter. Second, the concept of incremental kinematic control is proposed to avoid the multiple solutions in solving the inverse kinematics of robotic manipulators. The proposed target motion estimation and visual servo control algorithms are validated experimentally by a custom built visual servo manipulator-target system. Electronic hardware for the robotic manipulator and computer software for the visual servo are custom designed and developed. The experimental results demonstrate the effectiveness and advantages of the proposed vision-based robotic control for the autonomous capture of a non-cooperative target. Furthermore, a preliminary study is conducted for future extension of the robotic control with consideration of flexible joints

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein
    • …
    corecore