3 research outputs found

    Tracking control of a marine surface vessel with full-state constraints

    Get PDF

    Mixed control for trajectory tracking in marine vessels

    Get PDF
    Este trabajo muestra la estrategia de control de un controlador basado en álgebra lineal para la cinemática y una técnica de control adaptable para la parte dinámica del buque. Que en el primer caso (LABC) es aplicado sobre la cinemática que recibe las referencias de posición deseadas y esto genera otro par de velocidad de referencia para el controlador adaptable (dinámico). El objetivo principal de esta técnica de control combinada (LABC-adaptable) se presenta en el caso de que la masa del buque (u otro parámetro) varíe con su trayectoria (por ejemplo, buque pesquero, buque de reabastecimiento de combustible, etc.) donde el controlador combinado con características adaptables ajusta sus parámetros mediante una ley de sintonía, que a su vez genera una acción de control que compensa las variaciones dinámicas del buque. Además, este trabajo presenta el análisis de estabilidad y la ley de ajuste LABC-adaptable basada en el criterio de estabilidad de Lyapunov. Los resultados obtenidos por simulación demuestran que el sistema marino puede seguir las señales de referencia con pequeños errores aún en presencia de incertidumbres.This work proposes the design of an adaptive controller for a marine vessel; the proposed control strategy applies a controller designed on linear algebra for the kinematics and an adaptive control technique for the dynamic part of the vessel. The linear algebra based controller (LABC) for kinematics receives the desired position references and this generates another reference velocity pair for the adaptive (dynamic) controller. The main goal of the application of the adaptive control technique in this kind of enforcement is presented in the case that the mass of the vessel varies with its trajectory (e.g. fishing vessel, refueling vessel, etc.) where the adaptive controller adjusts its parameters through of adaptation law, which in turn generates a control action that compensates dynamic variations of the ship. Besides, this work presents the stability analysis and adaptive adjustment law based on the Lyapunov theory. And the simulation results that are presented prove that the control can deal with nonlinearities and time-variant dynamics.Fil: Vacca Sisterna, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Serrano, Mario Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin

    Mixed control for trajectory tracking in marine vessels

    Full text link
    [EN] This work proposes the design of an adaptive controller for a marine vessel; the proposed control strategy applies a controller designed on linear algebra for the kinematics and an adaptive control technique for the dynamic part of the vessel. The linear algebra based controller (LABC) for kinematics receives the desired position references and this generates another reference velocity pair for the adaptive (dynamic) controller. The main goal of the application of the adaptive control technique in this kind of enforcement is presented in the case that the mass of the vessel varies with its trajectory (e.g. fishing vessel, refueling vessel, etc.) where the adaptive controller adjusts its parameters through of adaptation law, which in turn generates a control action that compensates dynamic variations of the ship. Besides, this work presents the stability analysis and adaptive adjustment law based on the Lyapunov theory. And the simulation results that are presented prove that the control can deal with non-linearities and time-variant dynamics.[ES] Este trabajo muestra el diseño de un controlador adaptable para un buque marino; la estrategia de control que se propone es la aplicación de un controlador basado en álgebra lineal para la cinemática y una técnica de control adaptable para la parte dinámica del buque. El controlador basado en álgebra lineal (LABC) para cinemática recibe las referencias de posición deseadas y esto genera otro par de velocidad de referencia para el controlador adaptable (dinámico). El objetivo principal de la aplicación de la técnica de control adaptable se presenta en el caso de que la masa del buque varíe con su trayectoria (por ejemplo, buque pesquero, buque de reabastecimiento de combustible, etc.) donde el controlador adaptable ajusta sus parámetros mediante la ley de adaptación, que a su vez genera una acción de control que compensa las variaciones dinámicas del buque. Además, este trabajo presenta el análisis de estabilidad y la ley de ajuste adaptable basada en la teoría de Lyapunov. Los resultados de simulación muestran que el sistema puede seguir las señales de referencia con un error muy bajo aún en presencia de incertidumbre.Vacca Sisterna, C.; Serrano, E.; Scaglia, G.; Rossomando, F. (2021). Control mixto para el seguimiento de trayectoria en buques marinos. Revista Iberoamericana de Automática e Informática industrial. 19(1):27-36. https://doi.org/10.4995/riai.2021.15027OJS2736191Cui R, Chen L, Yang C, Chen M. "Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities". IEEE Transactions on Industrial Electronics 2017; 64(8): 6785-6795. https://doi.org/10.1109/TIE.2017.2694410Dai SL, He S, Lin H. "Transverse function control with prescribed performance guarantees for underactuated marine surface vehicles". International Journal of Robust and Nonlinear Control 2019; 29(5): 1577-1596. https://doi.org/10.1002/rnc.4453Do K, Jiang ZP, Pan J. "Universal controllers for stabilization and tracking of underactuated ships". Systems & Control Letters 2002; 47(4): 299-317. https://doi.org/10.1016/S0167-6911(02)00214-1Fossen T. "Marine control systems. Marine cybernetics". Trondhiem, Norway 2002.Fu M,Wang T,Wang C. "Adaptive Neural-Based Finite-Time Trajectory Tracking Control for Underactuated Marine Surface Vessels With Position Error Constraint".IEEE Access 2019; 7: 16309-16322. https://doi.org/10.1109/ACCESS.2019.2895053Ghommam J, Mnif F, Derbel N. "Global stabilization and tracking control of underactuated surface vessels". IET control theory & applications 2010; 4(1): 71-88. https://doi.org/10.1049/iet-cta.2008.0131Ghommam J, Mnif F, Benali A, Derbel N. "Asymptotic backstepping stabilization of an underactuated surface vessel". IEEE Transactions on Control Systems Technology 2006; 14(6): 1150-1157. https://doi.org/10.1109/TCST.2006.880220He W, Yin Z, Sun C. "Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function".IEEE transactions on cybernetics 2016; 47(7): 1641-1651. https://doi.org/10.1109/TCYB.2016.2554621Hu X, Du J, Zhu G, Sun Y. "Robust adaptive NN control of dynamically positioned vessels under input constraints". Neurocomputing 2018; 318: 201-212. https://doi.org/10.1016/j.neucom.2018.08.056Liao Yl, Wan L, Zhuang Jy. "Backstepping dynamical sliding mode control method for the path following of the underactuated surface vessel". Procedia Engineering 2011; 15: 256-263. https://doi.org/10.1016/j.proeng.2011.08.051Martins, F. N., Celeste, W. C., Carelli, R., Sarcinelli-Filho, M., & BastosFilho, T. F. (2008). An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Engineering Practice, 16(11), 1354-1363. https://doi.org/10.1016/j.conengprac.2008.03.004Nie J, Lin X. "Robust Nonlinear Path Following Control of UnderactuatedMSV With Time-Varying Sideslip Compensation in the Presence of Actuator Saturation and Error Constraint". IEEE Access 2018; 6: 71906-71917. https://doi.org/10.1109/ACCESS.2018.2881513Scaglia, Gustavo; Serrano, Emanuel; Albertos, Pedro (2020). Control de Trayectorias Basado en Algebra Lineal. Revista Iberoamericana de Automática e Informática industrial, [S.l.], ago. 2020. ISSN 1697-7920. Disponible en: https://polipapers.upv.es/index.php/RIAI/article/view/13584. https://doi.org/10.4995/riai.2020.13584Scaglia Gustavo, Serrano Mario Emanuel, Albertos Pedro (2020). "Linear Algebra Based Controller - Design and Applications". Publisher: Springer International Publishing. eBook ISBN 978-3-030-42818-1. Hardcover ISBN 978-3-030-42817-4. DOI 10.1007/978-3-030-42818-1.Scaglia, G., Mut, V., Rosales, A., Quintero, O., "Tracking Control of a Mobile Robot using Linear Interpolation", Proceeding of the 3rd International Conference on Integrated Modeling and Analysis in Applied Control and Automation, IMAACA 2007. vol. 1, pp. 11-15, ISBN: 978-2-9520712-7-7 February 8-10, 2007Serrano M.E., Scaglia G.J.E., Auat Cheein F., Mut V. and Ortiz O.A. (2015).Trajectory-tracking controller design with constraints in the control signals: a case study in mobile robots. Robotica, 33, pp 2186-2203, diciembre 2015. https://doi.org/10.1017/S0263574714001325Serrano ME, Godoy SA, Gandolfo D, Mut V, Scaglia G. "Nonlinear Trajectory Tracking Control for Marine Vessels with Additive Uncertainties". Information Technology And Control 2018; 47(1): 118-130. https://doi.org/10.5755/j01.itc.47.1.17782Tee KP, Ge SS. "Control of fully actuated ocean surface vessels using a class of feedforward approximators". IEEE Transactions on Control Systems Technology 2006; 14(4): 750-756. https://doi.org/10.1109/TCST.2006.872507Van M. "Adaptive neural integral sliding-mode control for tracking control of fully actuated uncertain surface vessels". International Journal of Robust and Nonlinear Control 2019; 29(5): 1537-1557. https://doi.org/10.1002/rnc.4455Wang N, Su S F,Yin J, Zheng Z, Er MJ. "Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: An adaptive universe-based fuzzy control approach". Transactions on Fuzzy Systems 2017; 26(3):1613-1625. https://doi.org/10.1109/TFUZZ.2017.2737405Wang, D., Mu, C., & Liu, D. (2017, May). Neural network adaptive critic control with disturbance rejection. In 2017 29th Chinese Control And Decision Conference (CCDC) (pp. 202-207). IEEE. https://doi.org/10.1109/CCDC.2017.7978092Wondergem M, Lefeber E, Pettersen KY, Nijmeijer H. "Output feedback tracking of ships". IEEE Transactions on Control Systems Technology 2010; 19(2): 442-448. https://doi.org/10.1109/TCST.2010.2045654Xu Z, Ge SS, Hu C, Hu J. "Adaptive Learning Based Tracking Control of Marine Vessels with Prescribed Performance". Mathematical Problems in Engineering 2018; 2018. https://doi.org/10.1155/2018/2595721Yang Y, Zhou C, Ren J. "Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems". Applied Soft Computing 2003; 3(4): 305-316. https://doi.org/10.1016/j.asoc.2003.05.001Yin Z, He W, Yang C. "Tracking control of a marine surface vessel with fullstate constraints". International Journal of Systems Science 2017; 48(3): 535-546. https://doi.org/10.1080/00207721.2016.1193255Yu Y, Guo C, Yu H. "Finite-time predictor line-of-sight-based adaptive neural network path following for unmanned surface vessels with unknown dynamics and input saturation". International Journal of Advanced Robotic Systems 2018; 15(6): 1729881418814699. https://doi.org/10.1177/172988141881469
    corecore