1,099 research outputs found

    Non Stationary Signal Analysis, Energy Demodulation and the Multicomponent AM--FM Signal Model

    Get PDF

    Radon spectrogram-based approach for automatic IFs separation

    Get PDF
    The separation of overlapping components is a well-known and difficult problem in multicomponent signals analysis and it is shared by applications dealing with radar, biosonar, seismic, and audio signals. In order to estimate the instantaneous frequencies of a multicomponent signal, it is necessary to disentangle signal modes in a proper domain. Unfortunately, if signal modes supports overlap both in time and frequency, separation is only possible through a parametric approach whenever the signal class is a priori fixed. In this work, time-frequency analysis and Radon transform are jointly used for the unsupervised separation of modes of a generic frequency modulated signal in noisy environment. The proposed method takes advantage of the ability of the Radon transform of a proper time-frequency distribution in separating overlapping modes. It consists of a blind segmentation of signal components in Radon domain by means of a near-to-optimal threshold operation. The inversion of the Radon transform on each detected region allows us to isolate the instantaneous frequency curves of each single mode in the time-frequency domain. Experimental results performed on constant amplitudes chirp signals confirm the effectiveness of the proposed method, opening the way for its extension to more complex frequency modulated signals

    HEAR: Approach for Heartbeat Monitoring with Body Movement Compensation by IR-UWB Radar

    Get PDF
    Further applications of impulse radio ultra-wideband radar in mobile health are hindered by the difficulty in extracting such vital signals as heartbeats from moving targets. Although the empirical mode decomposition based method is applied in recovering waveforms of heartbeats and estimating heart rates, the instantaneous heart rate is not achievable. This paper proposes a Heartbeat Estimation And Recovery (HEAR) approach to expand the application to mobile scenarios and extract instantaneous heartbeats. Firstly, the HEAR approach acquires vital signals by mapping maximum echo amplitudes to the fast time delay and compensating large body movements. Secondly, HEAR adopts the variational nonlinear chirp mode decomposition in extracting instantaneous frequencies of heartbeats. Thirdly, HEAR extends the clutter removal method based on the wavelet decomposition with a two-parameter exponential threshold. Compared to heart rates simultaneously collected by electrocardiograms (ECG), HEAR achieves a minimum error rate 4.6% in moving state and 2.25% in resting state. The Bland–Altman analysis verifies the consistency of beat-to-beat intervals in ECG and extracted heartbeat signals with the mean deviation smaller than 0.1 s. It indicates that HEAR is practical in offering clinical diagnoses such as the heart rate variability analysis in mobile monitoring

    Nearly orthogonal, doppler tolerant waveforms and signal processing for multi-mode radar applications

    Get PDF
    In this research, we investigate the design and analysis of nearly orthogonal, Doppler tolerant waveforms for diversity waveform radar applications. We then present a signal processing framework for joint synthetic aperture radar (SAR) and ground moving target indication (GMTI) processing that is built upon our proposed waveforms. ^ To design nearly orthogonal and Doppler tolerant waveforms, we applied direct sequence spread spectrum (DSSS) coding techniques to linear frequency modulated (LFM) signals. The resulting transmitted waveforms are rendered orthogonal using a unique spread spectrum code. At the receiver, the echo signal can be decoded using its spreading code. In this manner, transmit orthogonal waveforms can be matched filtered only with the intended receive signals. ^ Our proposed waveforms enable efficient SAR and GMTI processing concurrently without reconfiguring a radar system. Usually, SAR processing requires transmit waveforms with a low pulse repetition frequency (PRF) rate to reduce range ambigu- ity; on the other hand, GMTI processing requires a high PRF rate to avoid Doppler aliasing and ambiguity. These competing requirements can be tackled by employing some waveforms (with low PRF) for the SAR mission and other waveforms (with high PRF) for the GMTI mission. Since the proposed waveforms allow separation of individual waveforms at the receiver, we can accomplish both SAR and GMTI processing jointl

    Through-The-Wall Detection Using Ultra Wide Band Frequency Modulated Interrupted Continuous Wave Signals

    Get PDF
    Through-The-Wall-Detection (TTWD) techniques can improve the situational awareness of police and soldiers, and support first responders in search and rescue operations. A variety of systems for TTWD based on different waveforms have been developed and presented in the literature, e.g. radar systems based on pulses, noise or pseudo-noise waveforms, and frequency modulated continuous wave (FMCW) or stepped frequency continuous wave (SFCW) waveforms. Ultra wide band signals are normally used as they provide suitable resolution to discriminate different targets. A common problem for active radar systems for TTWD is the strong backscattered signal from the air-wall interface. This undesired signal can overshadow the reflections from actual targets, especially those with low radar cross section like human beings, and limit the dynamic range at the receiver, which could be saturated and blocked. Although several techniques have been developed to address this problem, frequency modulated interrupted continuous wave (FMICW) waveforms represent an interesting further approach to wall removal, which can be used as an alternative technique or combined with the existing ones. FMICW waveforms have been used in the past for ionospheric and ocean sensing radar systems, but their application to the wall removal problem in TTWD scenarios is novel. The validation of the effectiveness of the proposed FMICW waveforms as wall removal technique is therefore the primary objective of this thesis, focusing on comparing simulated and experimental results using normal FMCW waveforms and using the proposed FMICW waveforms. Initially, numerical simulations of realistic scenarios for TTWD have been run and FMICW waveforms have been successfully tested for different materials and internal structure of the wall separating the radar system and the targets. Then a radar system capable of generating FMICW waveforms has been designed and built to perform a measurement campaign in environments of the School of Engineering and Computing Sciences, Durham University. These tests aimed at the localization of stationary targets and at the detection of people behind walls. FMICW waveforms prove to be effective in removing/mitigating the undesired return caused by antenna cross-talk and wall reflections, thus enhancing the detection of targets

    Vital Sign Monitoring in Dynamic Environment via mmWave Radar and Camera Fusion

    Full text link
    Contact-free vital sign monitoring, which uses wireless signals for recognizing human vital signs (i.e, breath and heartbeat), is an attractive solution to health and security. However, the subject's body movement and the change in actual environments can result in inaccurate frequency estimation of heartbeat and respiratory. In this paper, we propose a robust mmWave radar and camera fusion system for monitoring vital signs, which can perform consistently well in dynamic scenarios, e.g., when some people move around the subject to be tracked, or a subject waves his/her arms and marches on the spot. Three major processing modules are developed in the system, to enable robust sensing. Firstly, we utilize a camera to assist a mmWave radar to accurately localize the subjects of interest. Secondly, we exploit the calculated subject position to form transmitting and receiving beamformers, which can improve the reflected power from the targets and weaken the impact of dynamic interference. Thirdly, we propose a weighted multi-channel Variational Mode Decomposition (WMC-VMD) algorithm to separate the weak vital sign signals from the dynamic ones due to subject's body movement. Experimental results show that, the 90th{^{th}} percentile errors in respiration rate (RR) and heartbeat rate (HR) are less than 0.5 RPM (respirations per minute) and 6 BPM (beats per minute), respectively

    Seismic characterisation based on time-frequency spectral analysis

    Get PDF
    We present high-resolution time-frequency spectral analysis schemes to better resolve seismic images for the purpose of seismic and petroleum reservoir characterisation. Seismic characterisation is based on the physical properties of the Earth's subsurface media, and these properties are represented implicitly by seismic attributes. Because seismic traces originally presented in the time domain are non-stationary signals, for which the properties vary with time, we characterise those signals by obtaining seismic attributes which are also varying with time. Among the widely used attributes are spectral attributes calculated through time-frequency decomposition. Time-frequency spectral decomposition methods are employed to capture variations of a signal within the time-frequency domain. These decomposition methods generate a frequency vector at each time sample, referred to as the spectral component. The computed spectral component enables us to explore the additional frequency dimension which exists jointly with the original time dimension enabling localisation and characterisation of patterns within the seismic section. Conventional time-frequency decomposition methods include the continuous wavelet transform and the Wigner-Ville distribution. These methods suffer from challenges that hinder accurate interpretation when used for seismic interpretation. Continuous wavelet transform aims to decompose signals on a basis of elementary signals which have to be localised in time and frequency, but this method suffers from resolution and localisation limitations in the time-frequency spectrum. In addition to smearing, it often emerges from ill-localisation. The Wigner-Ville distribution distributes the energy of the signal over the two variables time and frequency and results in highly localised signal components. Yet, the method suffers from spurious cross-term interference due to its quadratic nature. This interference is misleading when the spectrum is used for interpretation purposes. For the specific application on seismic data the interference obscures geological features and distorts geophysical details. This thesis focuses on developing high fidelity and high-resolution time-frequency spectral decomposition methods as an extension to the existing conventional methods. These methods are then adopted as means to resolve seismic images for petroleum reservoirs. These methods are validated in terms of physics, robustness, and accurate energy localisation, using an extensive set of synthetic and real data sets including both carbonate and clastic reservoir settings. The novel contributions achieved in this thesis include developing time-frequency analysis algorithms for seismic data, allowing improved interpretation and accurate characterisation of petroleum reservoirs. The first algorithm established in this thesis is the Wigner-Ville distribution (WVD) with an additional masking filter. The standard WVD spectrum has high resolution but suffers the cross-term interference caused by multiple components in the signal. To suppress the cross-term interference, I designed a masking filter based on the spectrum of the smoothed-pseudo WVD (SP-WVD). The original SP-WVD incorporates smoothing filters in both time and frequency directions to suppress the cross-term interference, which reduces the resolution of the time-frequency spectrum. In order to overcome this side-effect, I used the SP-WVD spectrum as a reference to design a masking filter, and apply it to the standard WVD spectrum. Therefore, the mask-filtered WVD (MF-WVD) can preserve the high-resolution feature of the standard WVD while suppressing the cross-term interference as effectively as the SP-WVD. The second developed algorithm in this thesis is the synchrosqueezing wavelet transform (SWT) equipped with a directional filter. A transformation algorithm such as the continuous wavelet transform (CWT) might cause smearing in the time-frequency spectrum, i.e. the lack of localisation. The SWT attempts to improve the localisation of the time-frequency spectrum generated by the CWT. The real part of the complex SWT spectrum, after directional filtering, is capable to resolve the stratigraphic boundaries of thin layers within target reservoirs. In terms of seismic characterisation, I tested the high-resolution spectral results on a complex clastic reservoir interbedded with coal seams from the Ordos basin, northern China. I used the spectral results generated using the MF-WVD method to facilitate the interpretation of the sand distribution within the dataset. In another implementation I used the SWT spectral data results and the original seismic data together as the input to a deep convolutional neural network (dCNN), to track the horizons within a 3D volume. Using these application-based procedures, I have effectively extracted the spatial variation and the thickness of thinly layered sandstone in a coal-bearing reservoir. I also test the algorithm on a carbonate reservoir from the Tarim basin, western China. I used the spectrum generated by the synchrosqueezing wavelet transform equipped with directional filtering to characterise faults, karsts, and direct hydrocarbon indicators within the reservoir. Finally, I investigated pore-pressure prediction in carbonate layers. Pore-pressure variation generates subtle changes in the P-wave velocity of carbonate rocks. This suggests that existing empirical relations capable of predicting pore-pressure in clastic rocks are unsuitable for the prediction in carbonate rocks. I implemented the prediction based on the P-wave velocity and the wavelet transform multi-resolution analysis (WT-MRA). The WT-MRA method can unfold information within the frequency domain via decomposing the P-wave velocity. This enables us to extract and amplify hidden information embedded in the signal. Using Biot's theory, WT-MRA decomposition results can be divided into contributions from the pore-fluid and the rock framework. Therefore, I proposed a pore-pressure prediction model which is based on the pore-fluid contribution, calculated through WT-MRA, to the P-wave velocity.Open Acces

    Model-based Analysis and Processing of Speech and Audio Signals

    Get PDF

    An inclusive survey of contactless wireless sensing: a technology used for remotely monitoring vital signs has the potential to combating COVID-19

    Get PDF
    With the Coronavirus pandemic showing no signs of abating, companies and governments around the world are spending millions of dollars to develop contactless sensor technologies that minimize the need for physical interactions between the patient and healthcare providers. As a result, healthcare research studies are rapidly progressing towards discovering innovative contactless technologies, especially for infants and elderly people who are suffering from chronic diseases that require continuous, real-time control, and monitoring. The fusion between sensing technology and wireless communication has emerged as a strong research candidate choice because wearing sensor devices is not desirable by patients as they cause anxiety and discomfort. Furthermore, physical contact exacerbates the spread of contagious diseases which may lead to catastrophic consequences. For this reason, research has gone towards sensor-less or contactless technology, through sending wireless signals, then analyzing and processing the reflected signals using special techniques such as frequency modulated continuous wave (FMCW) or channel state information (CSI). Therefore, it becomes easy to monitor and measure the subject’s vital signs remotely without physical contact or asking them to wear sensor devices. In this paper, we overview and explore state-of-the-art research in the field of contactless sensor technology in medicine, where we explain, summarize, and classify a plethora of contactless sensor technologies and techniques with the highest impact on contactless healthcare. Moreover, we overview the enabling hardware technologies as well as discuss the main challenges faced by these systems.This work is funded by the scientific and technological research council of Turkey (TÜBITAK) under grand 119E39
    • …
    corecore