8 research outputs found

    A video-based framework for automatic 3d localization of multiple basketball players : a combinatorial optimization approach

    Get PDF
    Sports complexity must be investigated at competitions; therefore, non-invasive methods are essential. In this context, computer vision, image processing, and machine learning techniques can be useful in designing a non-invasive system for data acquisition that identifies players’ positions in official basketball matches. Here, we propose and evaluate a novel video-based framework to perform automatic 3D localization of multiple basketball players. The introduced framework comprises two parts. The first stage is player detection, which aims to identify players’ heads at the camera image level. This stage is based on background segmentation and on classification performed by an artificial neural network. The second stage is related to 3D reconstruction of the player positions from the images provided by the different cameras used in the acquisition. This task is tackled by formulating a constrained combinatorial optimization problem that minimizes the re-projection error while maximizing the number of detections in the formulated 3D localization problem8286CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPNão temNão temNão temWe would like to thank the CAPES, FAEPEX, FAPESP, and CNPq for funding their research. This paper has content from master degree’s dissertation previously published (Monezi, 2016) and available onlin

    Tracking of a Basketball Using Multiple Cameras

    Get PDF
    Projecte final de carrera fet en copl.laboració amb École Polytechnique Fédérale de LaussanneThis master thesis presents a method for tracking a basketball during a basketball match recorded with a multi-camera system. We first developed methods to detect a ball in images based on its appearance. Color was used through a color histogram of the ball, manually initialized with ball samples. Then the shape of the ball was used in two different ways: by analyzing the circularity of the ball contour and by using the Hough transform to find circles in the image. In a second step, we attempted to track the ball in three dimensions using the cameras calibration, as well as the image methods previously developed. Using a recursive tracking procedure, we define a 3-dimensional search volume around the previously known position of the ball and evaluate the presence of a ball in all candidate positions inside this volume. This is performed by projecting the candidate positions in all camera views and checking the ball presence using color and shape cues. Extrapolating the future position of the ball based on its movements in the past frames was also tested to make our method more robust to motion blur and occlusions. Evaluation of the proposed algorithm has been done on a set of synchronized multi-camera sequences. The results have shown that the algorithm can track the ball and find its 3D position during several consecutive frames

    Tracking of a Basketball Using Multiple Cameras

    Get PDF
    Projecte final de carrera fet en copl.laboració amb École Polytechnique Fédérale de LaussanneThis master thesis presents a method for tracking a basketball during a basketball match recorded with a multi-camera system. We first developed methods to detect a ball in images based on its appearance. Color was used through a color histogram of the ball, manually initialized with ball samples. Then the shape of the ball was used in two different ways: by analyzing the circularity of the ball contour and by using the Hough transform to find circles in the image. In a second step, we attempted to track the ball in three dimensions using the cameras calibration, as well as the image methods previously developed. Using a recursive tracking procedure, we define a 3-dimensional search volume around the previously known position of the ball and evaluate the presence of a ball in all candidate positions inside this volume. This is performed by projecting the candidate positions in all camera views and checking the ball presence using color and shape cues. Extrapolating the future position of the ball based on its movements in the past frames was also tested to make our method more robust to motion blur and occlusions. Evaluation of the proposed algorithm has been done on a set of synchronized multi-camera sequences. The results have shown that the algorithm can track the ball and find its 3D position during several consecutive frames

    Take your Eyes off the Ball: Improving Ball-Tracking by Focusing on Team Play

    Get PDF
    Accurate video-based ball tracking in team sports is important for automated game analysis, and has proven very difficult because the ball is often occluded by the players. In this paper, we propose a novel approach to addressing this issue by formulating the tracking in terms of deciding which player, if any, is in possession of the ball at any given time. This is very different from standard approaches that first attempt to track the ball and only then to assign possession. We will show that our method substantially increases performance when applied to long basketball and soccer sequences

    Monitorização da trajetória de uma bola num jogo de ténis de mesa

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Área de Especialização de Automação. Faculdade de Engenharia. Universidade do Porto. 201

    Training Algorithms for Multiple Object Tracking

    Get PDF
    Multiple object tracking is a crucial Computer Vision Task. It aims at locating objects of interest in the image sequences, maintaining their identities, and identifying their trajectories over time. A large portion of current research focuses on tracking pedestrians, and other types of objects, that often exhibit predictable behaviours, that allow us, as humans, to track those objects. Nevertheless, most existing approaches rely solely on simple affinity or appearance cues to maintain the identities of the tracked objects, ignoring their behaviour. This presents a challenge when objects of interest are invisible or indistinguishable for a long period of time. In this thesis, we focus on enhancing the quality of multiple object trackers by learning and exploiting the long ranging models of object behaviour. Such behaviours come in different forms, be it a physical model of the ball motion, model of interaction between the ball and the players in sports or motion patterns of pedestrians or cars, that is specific to a particular scene. In the first part of the thesis, we begin with the task of tracking the ball and the players in team sports. We propose a model that tracks both types of objects simultaneously, while respecting the physical laws of ball motion when in free fall, and interaction constraints that appear when players are in the possession of the ball. We show that both the presence of the behaviour models and the simultaneous solution of both tasks aids the performance of tracking, in basketball, volleyball, and soccer. In the second part of the thesis, we focus on motion models of pedestrian and car behaviour that emerge in the outdoor scenes. Such motion models are inherently global, as they determine where people starting from one location tend to end up much later in time. Imposing such global constraints while keeping the tracking problem tractable presents a challenge, which is why many approaches rely on local affinity measures. We formulate a problem of simultaneously tracking the objects and learning their behaviour patterns. We show that our approach, when applied in conjunction with a number of state-of-the-art trackers, improves their performance, by forcing their output to follow the learned motion patterns of the scene. In the last part of the thesis, we study a new emerging class of models for multiple object tracking, that appeared recently due to availability of large scale datasets - sequence models for multiple object tracking. While such models could potentially learn arbitrarily long ranging behaviours, training them presents several challenges. We propose a training scheme and a loss function that allows to significantly improve the quality of training of such models. We demonstrate that simply using our training scheme and loss allows to learn scoring function for trajectories, which enables us to outperform state-of-the-art methods on several tracking benchmarks

    Tracking Interacting Objects in Image Sequences

    Get PDF
    Object tracking in image sequences is a key challenge in computer vision. Its goal is to follow objects that move or evolve over time while preserving the identity of each object. However, most existing approaches focus on one class of objects and model only very simple interactions, such as the fact that different objects do not occupy the same spatial location at a given time instance. They ignore that objects may interact in more complex ways. For example, in a parking lot, a person may get in a car and become invisible in the scene. In this thesis, we focus on tracking interacting objects in image sequences. We show that by exploiting the relationship between different objects, we can achieve more reliable tracking results. We explore a wide range of applications, such as tracking players and the ball in team sports, tracking cars and people in a parking lot and tracking dividing cells in biomedical imagery. We start by tracking the ball in team sports, which is a very challenging task because the ball is often occluded by the players. We propose a sequential approach that tracks the players first, and then tracks the ball by deciding which player, if any, is in possession of the ball at any given time. This is very different from standard approaches that first attempt to track the ball and only then to assign possession. We show that our method substantially increases performance when applied to long basketball and soccer sequences. We then focus on simultaneously tracking interacting objects. We achieve this by formulating the tracking problem as a network-flow Mixed Integer Program, and expressing the fact that one object can appear or disappear at locations of another in terms of linear flow constraints. We demonstrate our method on scenes involving cars and passengers, bags being carried and dropped by people, and balls being passed from one player to the next in team sports. In particular, we show that by estimating jointly and globally the trajectories of different types of objects, the presence of the ones which were not initially detected based solely on image evidence can be inferred from the detections of the others. We finally extend our approach to dividing cells in biomedical imagery. In this case, cells interact by overlapping with each other and giving birth to daughter cells. We propose a novel approach to automatically detecting and tracking cell populations in time-lapse images. Unlike earlier approaches that rely on linking a predetermined and potentially incomplete set of detections, we generate an overcomplete set of competing detection hypotheses. We then perform detection and tracking simultaneously by solving an integer program to find the optimal and consistent subset. This eliminates the need for heuristics to handle missed detections due to occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging image sequences consisting of clumped cells and show that it outperforms the state-of-the-art techniques
    corecore