52,266 research outputs found

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    Local Government Policy and Planning for Unmanned Aerial Systems

    Get PDF
    This research identifies key state and local government stakeholders in California for drone policy creation and implementation, and describes their perceptions and understanding of drone policy. The investigation assessed stakeholders’ positions, interests, and influence on issues, with the goal of providing potential policy input to achieve successful drone integration in urban environments and within the national airspace of the United States. The research examined regulatory priorities through the use of a two-tiered Stakeholder Analysis Process. The first tier consisted of a detailed survey sent out to over 450 local agencies and jurisdictions in California. The second tier consisted of an in-person focus group to discuss survey results as well as to gain deeper insights into local policymakers’ current concerns. Results from the two tiers of analysis, as well as recommendations, are provided here

    SANTO: Social Aerial NavigaTion in Outdoors

    Get PDF
    In recent years, the advances in remote connectivity, miniaturization of electronic components and computing power has led to the integration of these technologies in daily devices like cars or aerial vehicles. From these, a consumer-grade option that has gained popularity are the drones or unmanned aerial vehicles, namely quadrotors. Although until recently they have not been used for commercial applications, their inherent potential for a number of tasks where small and intelligent devices are needed is huge. However, although the integrated hardware has advanced exponentially, the refinement of software used for these applications has not beet yet exploited enough. Recently, this shift is visible in the improvement of common tasks in the field of robotics, such as object tracking or autonomous navigation. Moreover, these challenges can become bigger when taking into account the dynamic nature of the real world, where the insight about the current environment is constantly changing. These settings are considered in the improvement of robot-human interaction, where the potential use of these devices is clear, and algorithms are being developed to improve this situation. By the use of the latest advances in artificial intelligence, the human brain behavior is simulated by the so-called neural networks, in such a way that computing system performs as similar as possible as the human behavior. To this end, the system does learn by error which, in an akin way to the human learning, requires a set of previous experiences quite considerable, in order for the algorithm to retain the manners. Applying these technologies to robot-human interaction do narrow the gap. Even so, from a bird's eye, a noticeable time slot used for the application of these technologies is required for the curation of a high-quality dataset, in order to ensure that the learning process is optimal and no wrong actions are retained. Therefore, it is essential to have a development platform in place to ensure these principles are enforced throughout the whole process of creation and optimization of the algorithm. In this work, multiple already-existing handicaps found in pipelines of this computational gauge are exposed, approaching each of them in a independent and simple manner, in such a way that the solutions proposed can be leveraged by the maximum number of workflows. On one side, this project concentrates on reducing the number of bugs introduced by flawed data, as to help the researchers to focus on developing more sophisticated models. On the other side, the shortage of integrated development systems for this kind of pipelines is envisaged, and with special care those using simulated or controlled environments, with the goal of easing the continuous iteration of these pipelines.Thanks to the increasing popularity of drones, the research and development of autonomous capibilities has become easier. However, due to the challenge of integrating multiple technologies, the available software stack to engage this task is restricted. In this thesis, we accent the divergencies among unmanned-aerial-vehicle simulators and propose a platform to allow faster and in-depth prototyping of machine learning algorithms for this drones

    Good practice in mathematics at key stage 4

    Get PDF

    User-Behavior Based Detection of Infection Onset

    Get PDF
    A major vector of computer infection is through exploiting software or design flaws in networked applications such as the browser. Malicious code can be fetched and executed on a victim’s machine without the user’s permission, as in drive-by download (DBD) attacks. In this paper, we describe a new tool called DeWare for detecting the onset of infection delivered through vulnerable applications. DeWare explores and enforces causal relationships between computer-related human behaviors and system properties, such as file-system access and process execution. Our tool can be used to provide real time protection of a personal computer, as well as for diagnosing and evaluating untrusted websites for forensic purposes. Besides the concrete DBD detection solution, we also formally define causal relationships between user actions and system events on a host. Identifying and enforcing correct causal relationships have important applications in realizing advanced and secure operating systems. We perform extensive experimental evaluation, including a user study with 21 participants, thousands of legitimate websites (for testing false alarms), as well as 84 malicious websites in the wild. Our results show that DeWare is able to correctly distinguish legitimate download events from unauthorized system events with a low false positive rate (< 1%)

    Report of IRPA task group on the impact of the eye lens dose limits

    Get PDF
    In 2012 IRPA established a task group (TG) to identify key issues in the implementation of the revised eye lens dose limit. The TG reported its conclusions in 2013. In January 2015, IRPA asked the TG to review progress with the implementation of the recommendations from the early report and to collate current practitioner experience. This report presents the results of a survey on the view of the IRPA professionals on the new limit to the lens of the eye and on the wider issue of tissue reactions. Recommendations derived from the survey are presented. This report was approved by IRPA Executive Council on 31 January 2017
    • …
    corecore