680 research outputs found

    Algorithms for Contractibility of Compressed Curves on 3-Manifold Boundaries

    Get PDF
    In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on the boundary of a 3-manifold is in NP. We emphasize that the manifold and the curve are both inputs to the problem. Moreover, our algorithm also works if the curve is given as a compressed word. Previously, such an algorithm was known for simple (non-compressed) curves, and, in very limited cases, for curves with self-intersections. Furthermore, our algorithm is fixed-parameter tractable in the complexity of the input 3-manifold. As part of our proof, we obtain new polynomial-time algorithms for compressed curves on surfaces, which we believe are of independent interest. We provide a polynomial-time algorithm which, given an orientable surface and a compressed loop on the surface, computes a canonical form for the loop as a compressed word. In particular, contractibility of compressed curves on surfaces can be decided in polynomial time; prior published work considered only constant genus surfaces. More generally, we solve the following normal subgroup membership problem in polynomial time: given an arbitrary orientable surface, a compressed closed curve ?, and a collection of disjoint normal curves ?, there is a polynomial-time algorithm to decide if ? lies in the normal subgroup generated by components of ? in the fundamental group of the surface after attaching the curves to a basepoint

    Virtual Temari: Artistically Inspired Mathematics

    Get PDF
    Technology can be a significant aide in understanding and appreciating geometry, beyond theoretical considerations. Both fiber art and technology have been employed as a significant aide and an inspiring vessel in education to explore geometry. The Japanese craft known as temari, or hand-balls , combines important artistic, spiritual, and familial values, and provides one such approach to exploring geometry. Mathematically, the artwork of temari may be classified based on whether they are inspired by polyhedra and discrete patterns or by periodic functional curves. The resulting designs of these categories provide an ancient vantage for displaying spherical patterns. We illustrate a technique that combines the fiber art of temari with interactive computer visualizations. In addition, we provide guided activities to help promote a deeper understanding of how functions and patterns arise on a spherical surface

    A hybrid representation for modeling, interactive editing, and real-time visualization of terrains with volumetric features

    Get PDF
    Cataloged from PDF version of article.Terrain rendering is a crucial part of many real-time applications. The easiest way to process and visualize terrain data in real time is to constrain the terrain model in several ways. This decreases the amount of data to be processed and the amount of processing power needed, but at the cost of expressivity and the ability to create complex terrains. The most popular terrain representation is a regular 2D grid, where the vertices are displaced in a third dimension by a displacement map, called a heightmap. This is the simplest way to represent terrain, and although it allows fast processing, it cannot model terrains with volumetric features. Volumetric approaches sample the 3D space by subdividing it into a 3D grid and represent the terrain as occupied voxels. They can represent volumetric features but they require computationally intensive algorithms for rendering, and their memory requirements are high. We propose a novel representation that combines the voxel and heightmap approaches, and is expressive enough to allow creating terrains with caves, overhangs, cliffs, and arches, and efficient enough to allow terrain editing, deformations, and rendering in real time

    Shortest Paths in Portalgons

    Get PDF
    Any surface that is intrinsically polyhedral can be represented by a collection of simple polygons (fragments), glued along pairs of equally long oriented edges, where each fragment is endowed with the geodesic metric arising from its Euclidean metric. We refer to such a representation as a portalgon, and we call two portalgons equivalent if the surfaces they represent are isometric. We analyze the complexity of shortest paths. We call a fragment happy if any shortest path on the portalgon visits it at most a constant number of times. A portalgon is happy if all of its fragments are happy. We present an efficient algorithm to compute shortest paths on happy portalgons. The number of times that a shortest path visits a fragment is unbounded in general. We contrast this by showing that the intrinsic Delaunay triangulation of any polyhedral surface corresponds to a happy portalgon. Since computing the intrinsic Delaunay triangulation may be inefficient, we provide an efficient algorithm to compute happy portalgons for a restricted class of portalgons
    corecore