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—— Abstract

Any surface that is intrinsically polyhedral can be represented by a collection of simple polygons
(fragments), glued along pairs of equally long oriented edges, where each fragment is endowed
with the geodesic metric arising from its Euclidean metric. We refer to such a representation as a
portalgon, and we call two portalgons equivalent if the surfaces they represent are isometric.

We analyze the complexity of shortest paths. We call a fragment happy if any shortest path on
the portalgon visits it at most a constant number of times. A portalgon is happy if all of its fragments
are happy. We present an efficient algorithm to compute shortest paths on happy portalgons.

The number of times that a shortest path visits a fragment is unbounded in general. We contrast
this by showing that the intrinsic Delaunay triangulation of any polyhedral surface corresponds to
a happy portalgon. Since computing the intrinsic Delaunay triangulation may be inefficient, we
provide an efficient algorithm to compute happy portalgons for a restricted class of portalgons.
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1 Introduction

We define a portalgon P to be a collection of simple polygons (fragments) with some pairs
of edges identified, see Figure 1. When we stitch together all fragments of a portalgon we
obtain a two-dimensional surface X, whose intrinsic metric is polyhedral [7, 19]. Note that
¥ is not necessarily embeddable in R? with flat faces or without self-intersections, and not
necessarily orientable. We say that P is a representation of ¥; crucially, the same surface may
in principle have many different representations. Portalgons can be seen as a generalization
of simple polygons, polygons with holes, polyhedral surfaces, and even developable surfaces.

We are interested in the computational complexity of computing shortest paths on portal-
gons. In particular, we analyze the shortest path map SPM(s); a representation of all shortest
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Figure 1 Examples of portalgons. Arrows of the same color represent portals that are identified
with each other. (a) A portalgon that represents a polygon with a hole. (b) A portalgon that
represents the surface of a bottomless pyramid. (c) A portalgon that represents the surface of a
cylinder. (d) A portalgon that represents a Mobius strip, a non-orientable surface.

paths from a source point s to all other points in the portalgon. Our main insights are:
The complexity of a shortest path on a surface ¥, represented by a given portalgon P,
may be unbounded in terms of the combinatorial properties of ¥ and P.
The complexity of a shortest path depends on a parameter of the particular portalgon P
representing the surface that we refer to as its happiness h. In particular, we show that
the maximum complexity of a shortest path is ©(n + hm), where n is the total number
of vertices in the portalgon, m < n is the number of portals.
Given a source point in P, the complexity of its shortest path map is O(n?h). Moreover,
if P is triangulated, it can be computed in O(\4(k)log® k) time, where k is the output
complexity, and A4(k) the length of an order-4 Davenport-Schinzel sequence on k symbols.
Every surface with a polyhedral intrinsic metric admits a representation as a portalgon
where the happiness h is constant. Specifically, one such representation is given by its
intrinsic Delaunay triangulation. In such portalgons shortest paths have complexity O(n).
Since the intrinsic Delaunay triangulation is not easy to compute, we investigate the
problem of transforming a given portalgon of happiness h into one with constant happiness.
We present an algorithm to do so in O(n + log h) time, for a restricted class of portalgons.
The question of how to compute such a good representation, in general, remains open.

1.1 Comparison to related work

Shortest paths have been studied in many different geometric settings, such as simple polygons,
polygonal domains, terrains, surfaces, and polyhedra (see e.g. [5, 11, 13, 24]; refer to [21]
for a comprehensive survey). The efficient computation of shortest paths is a fundamental

(a) (b)
7

3
*
|
[
|
[
|
[
\
1

Figure 2 (a) A portalgon where a shortest path between s and ¢t (dashed) has unbounded
complexity. (b) A different representation of the same surface where the path has constant complexity.
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problem in computational geometry [20, 23, 12, 5, 27, 26]. When the environment is a simple
polygon the situation is well understood [12, 11]. For polygons with holes, efficient solutions
have also been known for quite a while [13], recently culminating in an optimal O(n + k log k)
time algorithm, where n is the total number of vertices of the polygon, and k the number of
holes [26]. For more complex environments, like the surface of a convex polyhedron, several
algorithms have been developed [5, 22, 28], and even implemented [14, 15]. However, for
more general surfaces the situation is less well understood.

Portalgons generalize many of the geometric settings studied before. Hence, our goal is
to unify existing shortest paths results. To the best of our knowledge, this has not been
attempted before, even though several questions closely related to the ones addressed in
this work were posed as open problems in a blog post almost two decades ago [9]. Instead,
portalgons are a rather unexplored concept which, though it has been long adopted into
popular culture [6, 8, 25], have only been studied from a computational point of view in the
context of annular ray shooting by Erickson and Nayyeri [10].

When measuring the complexity of a shortest path, we can distinguish between its intrinsic
complexity, and complexity caused by the representation of the underlying surface. For
example, a shortest path 7 on a convex polyhedron ¥ in R? with n vertices, may cross (and
thus bend) at O(n) edges. Hence, a description of 7 on ¥ has complexity O(n). However, it
is known that any convex polyhedron in R? can be unfolded into a simple planar polygon

Ps, and in such a way that a shortest path 7 corresponds to a line segment in Py [1, 2, 5].

Hence, 7 actually has a constant complexity description in Ps. It is easy to see that some

portalgons may have shortest paths of unbounded complexity; as illustrated in Figure 2(a).

This unbounded complexity, however, is completely caused by the representation, and indeed
there is another equivalent portalgon without this behavior (Figure 2(b)). We introduce a
parameter that explicitly measures the potential for shortest paths to have high complexity,
which we call happiness — refer to Section 2 for a formal definition.

In Section 3, we analyze the complexity of shortest paths in terms of the happiness. Our
first main result is that, if we have a portalgon with n vertices and happiness h, then the
complexity of its shortest path map from a given source point is O(n?h). Moreover, we show
that, for triangulated portalgons, it can be computed in an output-sensitive fashion: if k is
the complexity of the shortest path map, then it can be computed in O(\4(k)log? k) time.

It is worth noting that our analysis of the shortest path map has similarities with

techniques used to compute shortest paths on polyhedral surfaces, most notably [5, 22].

However, the fact that portalgons are more general implies important differences with
previous methods. We need to handle surfaces of non-zero genus (e.g., see Figure 3), while

Figure 3 (a) A portalgon representing a flat torus. (b) Interestingly, a flat torus can be embedded
isometrically in R3; however, the resulting embedding has very high complexity [4, 16] (image from
https://www.imaginary.org/es/node/2375).
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Chen and Han [5] require genus zero to compute the map in the interior of triangles (see the
proof of their Theorem 4). Moreover, 3 may be non-embeddable in Euclidean space with
flat triangles. Another difference is that shortest paths in portalgons can cross the same
portal edge multiple times, something that is often (explicitly or implicitly) assumed to be
impossible in algorithms for polyhedral surfaces (e.g., in [22]).

The fact that the complexity of the shortest path map can be upper bounded by a
function of the happiness, leads to the following natural question: for a given surface ¥, can
it always be represented by a portalgon P with bounded happiness? In Section 4, we prove
that the answer to this question is “yes”. In particular, our second main result is that for
any portalgon, its intrinsic Delaunay triangulation [3] has constant happiness.

In turn, this then leads to another natural question: given a surface X, can we actually
efficiently compute a portalgon representing it that has bounded, preferably constant, happi-
ness? Clearly, the answer to this question depends on how ¥ is represented. When 3 is given
as a portalgon P, possibly with unbounded happiness, this question then corresponds to the
problem of transforming P into an equivalent portalgon with constant happiness. This is
the problem we study in Section 5. Given the above result, the natural approach is to try
to construct the intrinstic Delaunay triangulation of P. Unfortunately, it is unknown if it
is possible to do that efficiently (that is, with guarantees in terms of n and h). Our third
main result shows that for a restricted class of portalgons we can give such guarantees. In
particular, if the input portalgon has only one portal, n vertices, and happiness h, we can
construct an equivalent portalgon that has constant happiness in O(n + log h) time.

2 Definitions and observations

Portalgons. We define a portalgon P to be a pair (F, P), where F is a collection of simple
polygons, called fragments, and P is a collection of portals. A portal is an unordered pair
e = (e™,e™) of directed, distinct, equal length, edges from some fragment(s) of F. We refer
to e~ and e™ as portal edges, see Figure 1(c), and require that each portal edge appears in
one portal. If p~ is a point on e~, then p™ will denote the corresponding point on e™.

Let n be the total number of vertices in the fragments of P, and let m be the number of
portal edges; the number of portals is m/2. Note that m < n. We denote the number of
vertices and the number of portal edges in a fragment F' € F by nr and mp, respectively.

If we “glue” the edges of the fragments along their common portal edges, then the portalgon
P describes a surface (2-manifold with boundary) ¥ = X(P), see Figure 1. Specifically, ¥ is
the space obtained from P by taking the collection F and identifying corresponding pairs of
points on portal edges. We can write ¥ as a quotient space (Jgpcr F)/ ~, where ~ is an
equivalence relation that glues corresponding portal edges e~ and e™.

Fragment Graph. A portalgon P = (F, P) induces a (multi)graph that we refer to as the
fragment graph G of P (see Figure 4). Each fragment F' € F is a node in G, and there is a
link between Fy and F, in G if and only if there is a portal e with e~ in Fy and e™ in Fy, or
vice versa. Note there may be multiple portals connecting F; and F5.

Paths and shortest paths. A path 7 from s € ¥ to ¢t € ¥ is a continuous function mapping
the interval [0, 1] to X, where s = 7(0) and ¢ = 7(1). For two points p = 7(a) and ¢ = w(b),
we use 7[p, q] to denote the restriction of 7 to the interval [a,b]. The fragments of P split
7 into a set IT of maximal, non-empty, subpaths 71, .., 7., where (the image of) each ; is
contained in a single fragment. To be precise, for each fragment F', the intersection of (the
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Figure 4 The fragment graph of a portalgon with four fragments and five portals.

image of) m with F is a set of maximal subpaths, and II is the union of those sets over all
fragments F'*. We define the length of 7 as the sum of the lengths of its subpaths, and the
distance d(s,t) between s € ¥ and ¢ € ¥ as the infimum of length over all paths between s
and ¢t. We inherit the property that d(s,¢) = 0 if and only if s = ¢ from the metric in each
fragment. It then follows that d is also a metric. Moreover, (X, d) is a geodesic space.
Observe that if 7 is a shortest path between s and ¢, each subpath 7; is a polygonal

path whose vertices are either endpoints of m; or vertices of the fragment containing ;.

Furthermore, when 7 crosses a portal the path does not bend (otherwise we can again
locally shortcut it). It then follows that a shortest path 7 is also polygonal and can be
uniquely described by an alternating sequence s = vy, Eq,va, .., Bk, vg41 = t of vertices (s, t,
or portalgon vertices) and sequences of portal edges crossed by the path. We refer to such a
description as the combinatorial representation of the path, and to the total length of these
sequences as the complexity of . In the remainder of the paper, we will use 7 (s,t) to denote
an arbitrary minimum complexity shortest path between s and ¢. As we observed before (see
Figure 2(b)), a shortest path may still intersect a single portal edge many times, and hence
the complexity of a shortest path may be unbounded in terms of n and m.

Isometry. A map f: X — Y between metric spaces X and Y is an isometry if dx(z,2') =
dy (f(z), f(z")) for all z,2" € X. We say that f is a local isometry at a point x if there exists
an open neighborhood U, of = such that the restriction of f to U, is an isometry.

Equivalent portalgons. Given a portalgon P, there are many other portalgons that describe
the same surface . For instance, we can always cut a fragment into two smaller fragments
by transforming a chord of the fragment into a portal, or, assuming this does not cause
any overlap, we can glue two fragments along a portal, see Figure 5. More formally, two
portalgons P and Q are equivalent, denoted P = Q, if there is a bijective isometry between
them (i.e., if for any pair of points s,¢ € P, their distance in P and Q is the same).

! Note that if 7 passes through a vertex of P that appears in multiple portals, IT contains subpaths for
which the image consists of only a single point; the vertex itself. We later restrict our attention to
minimum complexity paths, which allows us to get rid of such singleton paths.

W O DY)

Figure 5 Five equivalent portalgons, with the shortest path between (the same) two points.
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Figure 6 A simple h-happy portalgon in which a shortest path has complexity (hm) as it crosses
Q(m) portal edges (the blue portal edges) Q(h) times each.

Happiness. Our ultimate goal will be to find, for a given input portalgon, an equivalent
portalgon such that all its shortest paths have bounded complexity. To this end, we introduce
the notion of a happy portalgon, and more specifically, a happy fragment of a portalgon.
Let P = (F, P) be a portalgon, let F' € F be a fragment in F, and let II(p, q) denote
the set of all shortest paths between p,q € . We define ¢(X) as the number of connected
components in X. The happiness H(F) = max, jex MaX eri(p,q) ¢(F N ) of fragment F is
defined as the maximum number of times a shortest path 7 between any pair of points p,q € %
can go through the fragment. The happiness of P is then defined as H(P) = maxper H(F)
the maximum happiness over all fragments. We call a portalgon h-happy when H(P) < h.
Further, we sometimes refer to an O(1)-happy portalgon as happy (without an h value).

» Lemma 1. Let P = (F, P) be an h-happy portalgon, and let P’ = (F', P') be a triangulation
of P. The happiness of P’ is at most h; that is, P’ is an h-happy portalgon.

Note that if P has n vertices and m portals, any triangulation P’ of P consists of n
vertices and O(m +n) portals. The fact that in an h-happy portalgon a shortest path crosses
every portal at most h — 1 times implies the following.

» Lemma 2. Let P be an h-happy portalgonand let s and t be two points in P. A shortest
path w(s,t) between s and t has complexity O(n + hm). This bound is tight in the worst case.

Proof. The vertices of (s, t) are either: (i) s or ¢ itself, (ii) vertices of P, or (iii) points
in which 7(s,t) crosses a portal edge. There are only two vertices of type (i) on 7(s,t). A
shortest path can visit any vertex of P at most once; hence, there are at most n vertices of
type (ii). Finally, since P is h-happy, 7(s,t) crosses every fragment F' € F at most h times.
A shortest path of complexity £2(n) is easy to attain in a fragment without portals and a
chain with Q(n) reflex vertices. We get the Q(hm) term using a portalgon like in Figure 6.
For any h, we can choose the length of the red portal so that the portalgon is h-happy. =

Shortest path map. Given a portalgon P, a source point s € ¥, and a region X C X the
shortest path map SPMy(s) of s is a subdivision of X’ into maximally connected regions,
such that for all points ¢ in the interior of a region R € SPMx(s) the shortest path from s
to ¢ is unique, and has the same combinatorial structure, i.e., visits the same sequence
of vertices and portal edges of P. Note that the complexity of SPMx(s) depends on the
representation of the surface ¥ = 3(P), that is, the portalgon P. So changes to P may affect
the complexity of SPMy (s). For example, splitting faces of P increases the complexity of
SPMx(s). Hence, when ¥ is fixed, an important problem is to find a good portalgon (i.e.
one for which SPM(s) = SPMy(s) has low complexity) representing it.

Intrinsic Delaunay triangulation. A triangulation of a portalgon is an equivalent portalgon
whose vertex set is the same, and all of whose fragments are triangles. In particular, among
all such triangulations, the intrinsic Delaunay triangulation is such that for any interior edge
of the triangulation, for the two triangles ¢ and ¢’ incident to that edge, the corners of ¢ and
' not incident to that edge sum up to at most 180 degrees [3].
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Figure 7 The length of the path 7 from s to point p in triangle T is d(s,v) + ||p — v||. The
signature of m defines intervals I, (), and I;(r),r on edges e and e’ of T, as well as a distance
function d, () illustrated by the path to point ¢ in T'.

3 Shortest paths in portalgons

In this section we sketch how to compute the shortest path map SPMp := SPMp(s) of a

vertex s of a triangulated h-happy portalgon P (a full description is in the full version [18]).

For a path 7 starting from the source s, define its signature, denoted o (), to be the
sequence of vertices and portals it passes through. Note that paths may simultaneously pass
through a vertex and a portal (or multiple portals incident to that vertex). In this case, we
break ties in the sequence by placing vertices before portals, and portals in the order that
the path would pass through them if it were perturbed away from vertices (in a consistent
way), where we always perturb the start of the path into a fixed triangle T incident to s.

If 7 is a shortest path from the source s to a point p in a triangle T, and v is the last
vertex on o(m), then the length of 7 is d(s,v) 4+ d(v,p), where d(v,p) can be expressed as
the length of a line segment. We think of T' as being embedded locally isometrically in
the Euclidean plane, and by unfolding the fragments that 7 passes through after v, we can
compute a copy of v in the plane, as well as copies of the portals and triangles that 7w passes
through after v; see Figure 7. The locations of these copies in the plane depend only on o ()
(but not on p or 7 itself). Then, d(v,p) is the Euclidean distance between the copies of v
and p in the plane. Let e be an edge of T', and define I, () . to be the interval of points p on

e for which the segment Tp passes through all the unfolded copies of portals of () after v.

For a point ¢ in T, define

fo’(ﬂ') (Q) =

d(s,v) + |[og|| if the segment T passes through I, ().,
otherwise

Define d,()(g) to be the infimum length over paths from s to ¢ with signature o (). This
infimum is not necessarily realized by a path with the same signature, but is realized by a
path that potentially bends around additional vertices, which are therefore inserted in its
signature. We say that such a signature reduces to o(m). Note that if f,(r)(¢) is finite, then
Jom)(@) = do(xy(q). If w is a shortest path from s to p, then 7 has length f,(r)(p). For a
portal e of T, let f,(x)je: € = RU {oo} be the restriction of f,(r) to points on e.

3.1 A data structure for maintaining a lower envelope

Let F' be a set of m partial functions, each pair of which can intersect at most twice. We

describe a data structure storing the lower envelope envp of F', that supports the operations:

NextLocalMinimum(§): report the smallest local minimum of envy that is larger than 4.
NextVertex(f, q): given a function f € F that realizes envg at point ¢, find (if it exists) the
lowest endpoint (v, d’) of the segment of envp containing (g, f(q)) for which §' > f(q).

48:7

SoCG 2023



48:8

Shortest Paths in Portalgons

env 4 envp

ST OSPYY A

N
N N s

env

Figure 8 The information that we maintain while computing the SPM of the edges.

Insert(f): insert a new function into F.

» Lemma 3. We can maintain envg of a set F of partial functions, each pair of which
intersects at most twice, in a data structure so that any sequence of m Insert operations and
k NextLocalMinimum and NextVertex queries take O(klog? m + Ay(m)logm) time.

3.2 Computing a shortest path map

We first compute the shortest path map of s, restricted to the edges of the portalgon. As in
earlier work [22, 23] we propagate a wavefront of points at distance ¢ from s from 0 to occ.
However, it will be more convenient to view this as a collection of simultaneous sweepline
algorithms. For each portal edge e, we sweep a horizontal line at height 6 upward through
the “position along e x distance from s” space (see Figure 8), while we construct the part
of SPM, below the sweep line. The main challenge is computing the next event —the first
vertex in the lower envelope of the distance functions above the sweep line— in time.
For each portal e connecting two fragments T4 and Tz, we maintain the following:

1. Let Sa(e,d) (resp. Sp(e,d)) be the set of signatures of shortest paths from s to points
on the boundary of T4 (resp. Tg), where the last element of the signature is not e, and
the length of the path is at most §. We represent each signature o € Sa(e,d) U Sg(e, 9)
implicitly by storing the interval I, ., the position of (the unfolded copy of) the last
vertex v on o, and d(s, v), so that we can compute fa|e in constant time.

2. We store the lower envelope env (e, d) (resp. envp(e,d)) of the functions f,|., where o
ranges over the signatures Sa(e,d) (resp. Sgp(e,d)), in the data structure of Lemma 3.

3. Let env(e, §) be the lower envelope of the functions env 4 (e, §) and envp (e, d). We maintain
only the part of env(e, §) that lies below the sweep line, denoted env=?(e, ).

4. We maintain a binary search tree env="(e, §) storing the intersection points of env4 (e, d)
and envp(e, d) with the sweep line, in order along the sweep line. For each intersection
point we store the function(s) from env 4(e,d) or envg(e,d) realizing this intersection.

5. Finally, we maintain a set of events pertaining to the edge e. We aggregate the events of
all edges in a global priority queue, and use it to advance the sweep line algorithm to the
next relevant value. The events that we store for an edge e are the values ¢’ > 0 such that
a. ¢’ corresponds to a minimum of a function f,|. with o € Sa(e,0) U Sp(e,d),

b. ¢’ corresponds to a vertex of env 4(e,d) or envg(e,d), or

c. ¢’ corresponds to an intersection between functions f,. on env4(e,d) and fy/|. on
envp(e,d), where f,. and f,|. are neighbors in env=(e, §).

For each event, we also keep track of the type and corresponding functions.

> Lemma 4. env=%(e, ) encodes the shortest paths of length < & to points on the edge e.
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Figure 9 (a) The different event types: a. local minima in env4 or envg, b. breakpoints of env 4
or envp, and two events of type c. first intersections of envg and envp. (b) We will detect the
intersection between env4 and envp once fs. and f,/|. become neighbors in env=" at time §%.

Event handling. At an event (of any type), the order in which the functions of env 4 (e, §)
and envg(e, §) intersect the sweep line changes. We therefore update env=?(e, §) by removing
and inserting the appropriate functions associated with this event, and additionally make
sure that we discover any additional events. To this end, we can use the NextVertex and
NextLocalMinimum queries on the data structures storing env 4(e,d) and envp(e,d).

As a result of the event, a new function, say f,/|. € envp(e,d), may have appeared on
env=?(e,§). We insert it into env=?(e, §), and propagate ¢’, extended by edge e, into the sets
Sp(e',d) of the other two edges €’ incident to T4. We therefore call Insert to insert a new

function into env4(e’,d), and NextLocalMinimum(d) to update the next local minimum. 2

Analysis. Let k = | SPMyp | denote the complexity of the shortest path restricted to the

edges. Let k4 and kp be the number of signatures in S(e, 00) and Sg(e, ), respectively.

We argue that the total number of events on e is O(Ag(ka)+As(kp))+|SPM, |) (essentially by
charging them to env (e, 00) and envp(e,00)). A signature o appears in Sg(e, d) only when
there is a shortest path to another edge ¢’ of Tz. Since every such edge e’ propagates to the
edges of the two triangles incident to €’ it then follows that ) _.,5(|Sa(e, )|+ [Sp(e,d)|) =
O(] SPMyp |). Thus, the total number of events, over all edges e, is O(A\4(k)). Since we can

handle every event in O(log? k) time, we can then compute SPMyp in O(A4(k)log? k) time.

» Lemma 5. For an h-happy portalgon, the complexity of SPMap is O(n2h).

Extension into the Interior. For each triangle T, we can now compute SPMy from SPMyp
reusing the algorithm from Mitchell et al. [22]. We therefore obtain the following result.

» Theorem 6. Let P be a triangulated h-happy portalgon with n vertices and m portals, and
let s be a given source point. The shortest path map SPMp(s) of s has complezity k = O(n2h)
and can be computed in O(My(k)log? k) time.

4 Existence of happy portalgons

In this section, we show that for every portalgon there exists an equivalent O(1)-happy
portalgon; specifically, the intrinsic Delaunay triangulation [3] T of ¥ induces a happy

2 Mitchell, Mount, and Papadimitriou [22] use a similar overall algorithm. They define a notion of T4 -free
paths that arrive at edge e from T. They prove that these paths act sufficiently like “real” shortest
paths so that they can explicitly maintain the set of shortest T'4-free and T'g-free paths. Unfortunately,
some of the arguments used hold only when a shortest path may cross a portal edge at most once (i.e.,
when P is 1-happy). In case of the weighted region problem, Mitchel and Papadimitriou show how to
deal with this by extending this notion of T'a-free paths to locally T'a-free paths [23]. However, it is
unclear how to bound the number of such paths when the genus may be non-zero.
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portalgon, whose fragments correspond to the triangles of 7. The resulting portalgon may
have more fragments than the original, but its total complexity is still linear.

4.1 Intrinsic Delaunay triangulation

Let T be a triangulated portalgon, and let ¥ be its surface; let V' be the set of vertices of
Y. Intuitively, the intrinsic Delaunay triangulation of ¥ has a (straight) edge between two
vertices u,v € V when there exists a circle with v and v on its boundary that contains no
other vertices of V' when we “unfold” 3, for example by identifying edges of T as in Section 3.

To simplify geometric arguments, we derive a simply-connected space S from . We
can think of 3 as the universal cover of ¥ \ V, with vertices reinserted at the corresponding
locations. More formally, we can define by by considering the directed fragment graph G
of T. For any portal e of T, we denote by T,-,T.+ € F the triangles (nodes of G) that
contain the respective portal edge; G has a link é from T,- to T.+ and a link ¢! from T+
to T.—. We say that é and é~! are inverses of each other. A walk in G from a triangle T’
to a triangle T” is a (possibly empty, if T = T") sequence of links of G, such that T is the
source of the first link, and the source of the (i + 1)-st is the target of the i-th link, and the
target of the last link is 7". For a walk w from T to T’, we write w: T —¢ T’ and say that
a walk is backtracking if it contains two consecutive links that are inverses of each other. Fix
an arbitrary root triangle Ty, and for a walk w: Ty —¢ T, let T,, be a copy of the target
triangle T placed in the Euclidean plane by unfolding Ty, T4, ..., T, along their common
portals. Let F = | |{Ty | T € F,w: Ty — T, w is not backtracking} be the disjoint union
of Euclidean triangles of target triangles of walks starting at Ty. We can now define S as
F /&, where for any two walks w and w’, where w’ is obtained from w by removing its final
link, & glues Ty, to Ty, along the sides corresponding to the last link of w. Let g: $ = ¥ be
the map that sends points of 3 to their corresponding point in ¥. A map §: X — Sisa lift
of g: X - X if g = go§. Any path 7: [0,1] — X has a lift # in 3.

There is a map f: $ — R? whose restriction to any triangle of S is an isometry, and
whose restriction to any pair of adjacent triangles is injective. We can think of f as unfolding
3 so that it lies flat in the plane and is locally isometric everywhere except at the vertices
(vertices are the only source of curvature), see Figure 10.

» Observation 7. Let B.(z,y) = {p € R? | |[p— (z,y)|| < 7} be the open disk in the plane of

Figure 10 ¥ (left) and a local region of 3 (right). The dual graph of 3 is an infinite tree (red).
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Figure 11 Although f is not injective in general, for a triangle T of a Delaunay triangulation,
the restriction of f to C(T) is injective and contains no vertices of the triangulation in the interior.

radius v centered at (z,y). If a component U of f~*(B,(z,y)) contains no vertices, then the
restriction of f to the closure of U is an isometry.

For a triangle T of 3, let D(T) be the open disk bounded by the circumcircle of f(T),
and let C(T) be the closure of the component of f~1(D(T)) that contains the interior of 7T'.
A triangle T of 3 is Delaunay if C (T') does not contain any vertices of triangles adjacent to
T in its interior. 7T is an intrinsic Delaunay triangulation of ¥ if and only if all triangles of F
are Delaunay. Lemma 8 generalizes a well-known property of Delaunay triangulations in R2.

» Lemma 8. [Bobenko et al. [3]] If T is an intrinsic Delaunay triangulation of S, then for
any T € T, C(T) contains no vertices in its interior.

Together with Observation 7 this implies the following corollaries, see also Figure 11.

» Corollary 9. For any triangle T' of an intrinsic Delaunay triangulation of S, the restriction
of f to C(T) is injective, and shortest paths intersect C(T') in straight segments.

» Corollary 10. For any triangle T of an intrinsic Delaunay triangulation of 3, df(C(T))
is a union of chords and circular arcs of 0D(T'), where each chord is a boundary edge.

4.2 Intrinsic Delaunay triangulations are happy

We are now ready to prove the main result of this section: the intrinsic Delaunay triangulation
of any portalgon has happiness less than 7.

Let the portalgon T be an intrinsic Delaunay triangulation of . We want to bound
the number of intersections between a shortest path 7 on ¥ and portals (edges of the
triangulation). For this, let 7 be a shortest path between two given points on ¥, and among
all such paths, assume that 7 has a minimum number of crossings with portals of 7.

Now consider an arbitrary edge e between two vertices v and v in V and let m be its
midpoint. We will show that 7 intersects e only constantly often. For a contradiction,
suppose that 7 intersects e at least 7 times. To bound the total number of intersections with
e we analyze the geometry of 7 in a local neighborhood of a lift é of e; in particular, we will
argue that there cannot be many other copies of e in the neighbourhood of é that are all
crossed by 7. Since clearly there can also not be any copies of e far away that are crossed
by 7 (since then it would be better to walk along e), the result will follow. Here, we give a
sketch of the arguments, the full proof can be found in the full version [18].

Arbitrarily fix one of the triangles T incident to e and consider the neighborhood C(T")
of é for the corresponding lift T incident to é. By Corollary 9, the restriction of f to C(T) is
an isometry, and 7 is locally a straight line segment. Let p; be the i-th point of intersection
of m with e, and define \; such that w(\;) = p;. Let &; be a lift of e containing 7 ();), and let
pi, T5, @, ™y, 9; be the respective lifts of p;, T, u, m, v incident to é;, see Figure 12 (left).
Let D; := D(T}), and let f; be the restriction of f to C; := C(T}). Let ¢; be the center of
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Figure 12 The crossing p; of m with e is inward.

D;, i.e., the circumcenter of f(Tl) Define H! and HE to be the two half-planes bounded by
the line through f(é;), such that H} contains ¢; (if ¢; = f(1;), label the half-planes by H}
and HZ.O arbitrarily). We respectively call H] and HZ.O the inner and outer half-plane of é;,
and define C/ := f;"'(H]) to be the inner component of ¢;, and CO := f; *(HP) to be the
outer component of é;.  We call the crossing p; inward if p; is a non-transversal crossing or
# crosses p; from CF to CI, see Figure 12 (right).

Let s be the segment of e from u to m. Assume without loss of generality that at least
four of the (at least seven) crossings of m with e lie on s (otherwise relabel u and v).

» Lemma 11. For any inward crossing p; of m with s, none of the crossings p; with j >4
lie on the segment of s between u and p;.

If p; of m is not inward, then it is inward on the reverse of m. Corollary 12 follows.

» Corollary 12. If some crossing p; of ™ with s is not inward, then none of the crossings py,
with h < i lie on the segment of s between u and p;.

Lemma 11 implies that for the sequence of intersections p; of m with s, the distance
function from u to p; along s has only one local minimum. So there exists a subsequence of
at least three crossings pp, p; and p; (h < i < j) of m with s such that p; lies between pj,
and p;. Assume without loss of generality that the distances (along s) from u to p, p;, and
p; are increasing (the other case follows by considering the reverse of 7). We now observe:

» Observation 13. f(1;) # ¢;

By Corollary 12, p; is an inward crossing. We show how the possible locations of the
subsequent crossings inside C; are constrained. Define D} to be the disk concentric with D,
whose boundary passes through f(7;). Any chord of D, that passes through D} is at least
as long as e. Let &, := f(é,) N D;. We observe:

» Lemma 14. ¢, cannot intersect the closure of D..
We will arrive at a contradiction to our initial assumption by showing that:

» Lemma 15. If 7 crosses e at least 7 times then €, must intersect the closure of Dj.
We conclude that 7 intersects e at most 6 times.We thus obtain:

» Theorem 16. Let P be a portalgon with n vertices. There exists a portalgon P’ = P with
O(n) wvertices that is O(1)-happy.
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5 Making portalgons happy

While the approach in Section 4 is, in principle, constructive, its running time depends on
the number of edge flips required to reconfigure an initial triangulation of P into the intrinsic
Delaunay triangulation. This number does not (only) depend on the input complexity, except
for the case where there is a bound on the minimum angle on the input triangles [17].

In this section, we analyze what can be done when there is no such bound. We study
conditions for a portalgon P to be happy, and present a method to rearrange an unhappy
portalgon into an equivalent one that is happy. In the full version [18], we show we can
reduce any portalgon whose fragment graph has at most one cycle to a portalgon with just
one fragment and one portal. Thus, here we only consider one portal, and give an efficient
method to compute an equivalent happy portalgon. For brevity, we present the case where
the portal edges are parallel. We also note that if the angle between the two edges is at least a
constant, the fragment is already happy. Hence, the interesting case is that of nearly-parallel
edges.

Single parallel portal analysis. The happiness of a fragment with a single portal depends
on the shift of the two (parallel) portal edges. The shift of two portal edges e, e™ is the
distance between the two perpendiculars to the portal edges that go through the start vertices
of e~ and et respectively. In the following, we assume without loss of generality that the
portals are horizontal, thus the shift A is simply the difference in z-coordinate between the
start vertices of the portal edges. Let v denote the vertical distance between e~ and e™.

» Lemma 17. Let F be a fragment with ezactly two portal edges e™, e, which are parallel
and belong to the same portal. If the shift A of e, et is 0, then the fragment is 2-happy.

If A #£ 0, a fragment might be happy or not. Next we present a method to transform a
fragment that is not happy into an equivalent portalgon that is happy. The idea is to create
a new portal by cutting F' through a line in the direction orthogonal to the line through
the two start vertices of the portals. First we present the idea for the case where F is a
parallelogram with two parallel portal edges e~ and et. Assume without loss of generality
that e~ is above et, and that e~ starts to the left of e™. In this case, the slope of the line in
the direction orthogonal to the portal start points is z = —A/v. We begin at the leftmost

vertex of e™, and shoot a ray with slope z in the interior of F' until we hit the boundary.
Every time the ray crosses the portal, we “cut” along this ray, creating a new portal along it.

This creates several smaller fragments, which we glue together along the pieces of the original
portals, into one fragment. The resulting fragment is a rectangle F’. See Figure 13 for an
illustration. Note that, by definition of z, this new fragment F’ now has shift zero. Hence:

» Lemma 18. For any parallelogram with two parallel portal edges, there is an equivalent
parallelogram that has A = 0 and therefore is 2-happy.

For a fragment with two parallel portals and non-zero shift, there is a unique equivalent

fragment with zero shift, which is the one obtained by cutting along the perpendicular ray.

However, if F' is not a parallelogram, it may occur that when gluing together the new smaller
fragments we obtain a non-simple polygon. Therefore, we may not be able to transform F
into a single equivalent happy fragment, as shown in Figure 14. In that case, cutting along
the perpendicular ray produces a non-simple fragment.

Fortunately, we can transform any fragment with two parallel portal edges into a small
constant number of happy fragments.
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ee+>\
~ T

Figure 13 Left: a fragment with two parallel edges and non-zero shift. Center: result of cutting
the fragment along a ray orthogonal to the line through the two start vertices of the portals, resulting
in a new fragment with several portals. The latter is equivalent to a fragment with one portal and
zero shift (right).

Figure 14 Example of a fragment (left) where the technique of cutting along the perpendicular
ray produces a non-simple polygon (center). This can be fixed by using one more fragment (right).

» Lemma 19. Let P be a portalgon with one fragment F' with n vertices, and one portal
whose edges are parallel. There exists a 5-happy portalgon P’ equivalent to P consisting of at
most three fragments and total complexity O(n).

Proof sketch. Assume w.l.o.g. that e~ and e™ are horizontal and oriented left-to-right. We
argue that when no three vertices of F' are colinear, and F' is not already 5-happy, we can
split F' into at most seven 4-happy fragments of complexity O(n). See Figure 15.

Let m be the line through the start points of e~ and e™. If there is no translate of m
whose intersection with F' contains a segment connecting e~ to e™, F is already 5-happy.
Let my be the leftmost such translate of m and m, the rightmost such translate; m, contains
a vertex £ of F' and m, contains a vertex r of F' (possibly, £ or m is an endpoint of e~ or e™).
Let a= and a™ be the intersection points of m, with e~ and e', and let b~ and b' be the
intersection points of m, with e~ and e™. We cut the parallelogram Z = a~b~a™b* from F,
which splits F' into at most seven fragments.

We now transform Z into a 2-happy fragment using Lemma 18. Let T and B be the
fragments containing the starting points of e~ and e™, respectively. We argue that T is
4-happy (other arguments are symmetric): consider the maximal connected components of a

(a) (b) ()

Figure 15 (a) Fragment with two parallel portals e~ and et. (b) Lines m, and m, define a
parallelogram Z, which splits F' in at most seven fragments. (c) The resulting 5-happy fragments.
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shortest path m = 7(s,t) with F. Such a component either: (i) contains s, (ii) contains ¢, or
(iii) connects a point p; on e~ to a point ¢; on e*. Each such component can intersect a—a*
at most once, so each such component can intersect 7" at most once.

We can further classify the type (iii) components into three types, depending on whether
p; lies on the part of e~ in T and whether ¢; lies on the part of e™ in B. A case-by-case
analysis shows that there are up to four components of = N F that intersect T', and each of
them intersects T' in one consecutive subpath. Hence, T' is 4-happy. |

» Lemma 20. Let F be a parallelogram with two parallel portal edges. We can compute an
equivalent 2-happy parallelogram F' in O(1) time.

Proof sketch. To compute the new, equivalent fragment F’, we could explicitly generate
the ray with slope z, and compute its intersection points with the portal edges, tracing the
ray until it hits a non-portal edge of the fragment. However, this would result in a running
time linear in the number of such intersections. Instead, we show in the full version that
after cutting along the ray and gluing the pieces together, the result is always a rectangle (as
in Figure 13, right) that can be computed directly in O(1) time. <

Single non-parallel portal analysis. In the full version [18], we address the case where the
fragment is not a parallelogram, and, more interestingly, where the two portal edges are
not parallel. The proof of the equivalent of Lemma 19 proceeds analogously, but is more
technical. Lemma 20, however, does not have a direct analogue. In particular, the time
required to compute an equivalent happy portalgon depends also on the bit complexity of
the input coordinates. However, we show that we can achieve O(logh) time for h the initial
happiness of the portalgon. We do this by encoding a single pass through the portal in a
transformation matrix M, and computing M" by performing an exponential search in h.
This result is summarized as follows.

» Theorem 21. Let P be an h-happy portalgon with n vertices and fragment graph G,
such that G has at most one simple cycle. We can transform P into an equivalent 5-happy
portalgon P’ of total complexity O(n) in O(n + logh) time.
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