13 research outputs found

    Scalable bloom-filter based content dissemination in community networks using information centric principles

    Get PDF
    Information-Centric Networking (ICN) is a new communication paradigm that shifts the focus from content location to content objects themselves. Users request the content by its name or some other form of identifier. Then, the network is responsible for locating the requested content and sending it to the users. Despite a large number of works on ICN in recent years, the problem of scalability of ICN systems has not been studied and addressed adequately. This is especially true when considering real-world deployments and the so-called alternative networks such as community networks. In this work, we explore the applicability of ICN principles in the challenging and unpredictable environments of community networks. In particular, we focus on stateless content dissemination based on Bloom filters (BFs). We highlight the scalability limitations of the classical single-stage BF based approach and argue that by enabling multiple BF stages would lead to performance enhancements. That is, a multi-stage BF based content dissemination mechanism could support large network topologies with heterogeneous traffic and diverse channel conditions. In addition to scalability improvements, this approach also is more secure with regard to Denial of Service attacks

    Performance evaluation of caching techniques for video on demand workload in named data network

    Get PDF
    The rapid growing use of the Internet in the contemporary context is mainly for content distribution. This is derived primarily due to the emergence of Information-Centric Networking (ICN) in the wider domains of academia and industry. Named Data Network (NDN) is one of ICN architectures. In addition, the NDN has been emphasized as the video traffic architecture that ensures smooth communication between the request and receiver of online video. The concise research problem of the current study is the issue of congestion in Video on Demand (VoD) workload caused by frequent storing of signed content object in the local repositories, which leads to buffering problems and data packet loss. The study will assess the NDN cache techniques to select the preferable cache replacement technique suitable for dealing with the congestion issues, and evaluate its performance. To do that, the current study adopts a research process based on the Design Research Methodology (DRM) and VoD approach in order to explain the main activities that produced an increase in the expected findings at the end of the activities or research. Datasets, as well as Internet2 network topology and the statistics of video views were gathered from the PPTV platform. Actually, a total of 221 servers is connected to the network from the same access points as in the real deployment of PPTV. In addition, an NS3 analysis the performance metrics of caching replacement technique (LRU, LFU, and FIFO) for VoD in Named Data Network (NDN) in terms of cache hit ratio, throughput, and server load results in reasonable outcomes that appears to serve as a potential replacement with the current implementation of the Internet2 topology, where nodes are distributed randomly. Based on the results, LFU technique gives the preferable result for congestion from among the presented techniques. Finally, the research finds that the performance metrics of cache hit ratio, throughput, and server load for the LFU that produces the lowest congestion rate which is sufficient. Therefore, the researcher concluded that the efficiency of the different replacement techniques needs to be well investigated in order to provide the insights necessary to implement these techniques in certain context. However, this result enriches the current understanding of replacement techniques in handling different cache sizes. After having addressed the different replacement techniques and examined their performances, the performance characteristics along with their expected performance were also found to stimulate a cache model for providing a relatively fast running time of across a broad range of embedded applications

    Performance evaluation of caching placement algorithms in named data network for video on demand service

    Get PDF
    The purpose of this study is to evaluate the performance of caching placement algorithms (LCD, LCE, Prob, Pprob, Cross, Centrality, and Rand) in Named Data Network (NDN) for Video on Demand (VoD). This study aims to increment the service quality and to decrement the time of download. There are two stages of activities resulted in the outcome of the study: The first is to determine the causes of delay performance in NDN cache algorithms used in VoD workload. The second activity is the evaluation of the seven cache placement algorithms on the cloud of video content in terms of the key performance metrics: delay time, average cache hit ratio, total reduction in the network footprint, and reduction in load. The NS3 simulations and the Internet2 topology were used to evaluate and analyze the findings of each algorithm, and to compare the results based on cache sizes: 1GB, 10GB, 100GB, and 1TB. This study proves that the different user requests of online videos would lead to delay in network performance. In addition to that the delay also caused by the high increment of video requests. Also, the outcomes led to conclude that the increase in cache capacity leads to make the placement algorithms have a significant increase in the average cache hit ratio, a reduction in server load, and the total reduction in network footprint, which resulted in obtaining a minimized delay time. In addition to that, a conclusion was made that Centrality is the worst cache placement algorithm based on the results obtained

    Extensible Signaling Framework for Decentralized Network Management Applications

    Get PDF
    The management of network infrastructures has become increasingly complex over time, which is mainly attributed to the introduction of new functionality to support emerging services and applications. To address this important issue, research efforts in the last few years focused on developing Software-Defined Networking solutions. While initial work proposed centralized architectures, their scalability limitations have led researchers to investigate a distributed control plane, with controller placement algorithms and mechanisms for building a logically centralized network view, being examples of challenges addressed. A critical issue that has not been adequately addressed concerns the communication between distributed decision-making entities to ensure configuration consistency. To this end, this paper proposes a signaling framework that can allow the exchange of information in distributed management and control scenarios. The benefits of the proposed framework are illustrated through a realistic network resource management use case. Based on simulation, we demonstrate the flexibility and extensibility of our solution in meeting the requirements of distributed decision-making processes

    A native content discovery mechanism for the information-centric networks

    Get PDF
    Recent research has considered various approaches for discovering content in the cache-enabled nodes of an Autonomous System (AS) to reduce the costly inter-AS traffic. Such approaches include i) searching content opportunistically (on-path) along the default intra-AS path towards the content origin for limited gain, and ii) actively coordinate nodes when caching content for significantly higher gains, but also higher overhead. In this paper, we try to combine the merits of both worlds by using traditional opportunistic caching mechanisms enhanced with a lightweight content discovery approach. Particularly, a content retrieved through an inter-AS link is cached only once along the intra-AS delivery path to maximize network storage utilization, and ephemeral forwarding state to locate temporarily stored content is established opportunistically at each node along that path during the processing of Data packets. The ephemeral forwarding state either points to the arriving or the destination face of the Data packet depending on whether the content has already been cached along the path or not. The challenge in such an approach is to appropriately use and maintain the ephemeral forwarding state to minimize inter-AS content retrieval, while keeping retrieval latency and overhead at acceptable levels. We propose several forwarding strategies to use and manage ephemeral state and evaluate our mechanism using an ISP topology for various system parameters. Our results indicate that our opportunistic content discovery mechanism can achieve near-optimal performance and significantly reduce inter-AS traffic

    Load Imbalance and Caching Performance of Sharded Systems

    Get PDF
    Sharding is a method for allocating data items to nodes of a distributed caching or storage system based on the result of a hash function computed on the item’s identifier. It is ubiquitously used in key-value stores, CDNs and many other applications. Despite considerable work that has focused on the design and implementation of such systems, there is limited understanding of their performance in realistic operational conditions from a theoretical standpoint. In this paper we fill this gap by providing a thorough modeling of sharded caching systems, focusing particularly on load balancing and caching performance aspects. Our analysis provides important insights that can be applied to optimize the design and configuration of sharded caching systems

    Efficient Hash-routing and Domain Clustering Techniques for Information-Centric Networks

    Get PDF
    Hash-routing is a well-known technique used in server-cluster environments to direct content requests to the responsible servers hosting the requested content. In this work, we look at hash-routing from a different angle and apply the technique to Information-Centric Networking (ICN) environments, where in-network content caches serve as temporary storage for content. In particular, edge-domain routers re-direct requests to in-network caches, more often than not off the shortest path, according to the hash-assignment function. Although the benefits of this off-path in-network caching scheme are significant (e.g., high cache hit rate with minimal co-ordination overhead), the basic scheme comes with disadvantages. That is, in case of very large domains the off-path detour of requests might increase latency to prohibitive levels. In order to deal with extensive detour delays, we investigate nodal/domain clustering techniques, according to which large domains are split in clusters, which in turn apply hash-routing in the subset of nodes of each cluster. We model and evaluate the behaviour of nodal clustering and report significant improvement in delivery latency, which comes at the cost of a slight decrease in cache hit rates (i.e., up to 50% improvement in delivery latency for less than 10% decrease in cache hit rate compared to the original hash-routing scheme applied in the whole domain)

    Scalable Cache Management for ISP-Operated Content Delivery Services

    Get PDF
    Content delivery networks (CDNs) have been the prevalent method for the efficient delivery of content across the Internet. Management operations performed by CDNs are usually applied only based on limited information about Internet Service Provider (ISP) networks, which can have a negative impact on the utilization of ISP resources. To overcome these issues, previous research efforts have been investigating ISP-operated content delivery services, by which an ISP can deploy its own in-network caching infrastructure and implement its own cache management strategies. In this paper, we extend our previous work on ISP-operated content distribution and develop a novel scalable and efficient distributed approach to control the placement of content in the available caching points. The proposed approach relies on parallelizing the decision-making process and the use of network partitioning to cluster the distributed decision-making points, which enables fast reconfiguration and limits the volume of information required to take reconfiguration decisions. We evaluate the performance of our approach based on a wide range of parameters. The results demonstrate that the proposed solution can outperform previous approaches in terms of management overhead and complexity while offering similar network and caching performance

    Exploiting Caching and Multicast for 5G Wireless Networks

    Full text link

    Anonymity Protection and Access Control in Mobile Network Environment

    Get PDF
    abstract: Wireless communication technologies have been playing an important role in modern society. Due to its inherent mobility property, wireless networks are more vulnerable to passive attacks than traditional wired networks. Anonymity, as an important issue in mobile network environment, serves as the first topic that leads to all the research work presented in this manuscript. Specifically, anonymity issue in Mobile Ad hoc Networks (MANETs) is discussed with details as the first section of research. To thoroughly study on this topic, the presented work approaches it from an attacker's perspective. Under a perfect scenario, all the traffic in a targeted MANET exhibits the communication relations to a passive attacker. However, localization errors pose a significant influence on the accuracy of the derived communication patterns. To handle such issue, a new scheme is proposed to generate super nodes, which represent the activities of user groups in the target MANET. This scheme also helps reduce the scale of monitoring work by grouping users based on their behaviors. The first part of work on anonymity in MANET leads to the thought on its major cause. The link-based communication pattern is a key contributor to the success of the traffic analysis attack. A natural way to circumvent such issue is to use link-less approaches. Information Centric Networking (ICN) is a typical instance of such kind. Its communication pattern is able to overcome the anonymity issue with MANET. However, it also comes with its own shortcomings. One of them is access control enforcement. To tackle this issue, a new naming scheme for contents transmitted in ICN networks is presented. This scheme is based on a new Attribute-Based Encryption (ABE) algorithm. It enforces access control in ICN with minimum requirements on additional network components. Following the research work on ABE, an important function, delegation, exhibits a potential security issue. In traditional ABE schemes, Ciphertext-Policy ABE (CP-ABE), a user is able to generate a subset of authentic attribute key components for other users using delegation function. This capability is not monitored or controlled by the trusted third party (TTP) in the cryptosystem. A direct threat caused from this issue is that any user may intentionally or unintentionally lower the standards for attribute assignments. Unauthorized users/attackers may be able to obtain their desired attributes through a delegation party instead of directly from the TTP. As the third part of work presented in this manuscript, a three-level delegation restriction architecture is proposed. Furthermore, a delegation restriction scheme following this architecture is also presented. This scheme allows the TTP to have full control on the delegation function of all its direct users.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    corecore