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ABSTRACT

Wireless communication technologies have been playing an important role in mod-

ern society. Due to its inherent mobility property, wireless networks are more vulner-

able to passive attacks than traditional wired networks. Anonymity, as an important

issue in mobile network environment, serves as the first topic that leads to all the

research work presented in this manuscript. Specifically, anonymity issue in Mobile

Ad hoc Networks (MANETs) is discussed with details as the first section of research.

To thoroughly study on this topic, the presented work approaches it from an

attacker’s perspective. Under a perfect scenario, all the traffic in a targeted MANET

exhibits the communication relations to a passive attacker. However, localization

errors pose a significant influence on the accuracy of the derived communication

patterns. To handle such issue, a new scheme is proposed to generate super nodes,

which represent the activities of user groups in the target MANET. This scheme also

helps reduce the scale of monitoring work by grouping users based on their behaviors.

The first part of work on anonymity in MANET leads to the thought on its

major cause. The link-based communication pattern is a key contributor to the

success of the traffic analysis attack. A natural way to circumvent such issue is to

use link-less approaches. Information Centric Networking (ICN) is a typical instance

of such kind. Its communication pattern is able to overcome the anonymity issue

with MANET. However, it also comes with its own shortcomings. One of them is

access control enforcement. To tackle this issue, a new naming scheme for contents

transmitted in ICN networks is presented. This scheme is based on a new Attribute-

Based Encryption (ABE) algorithm. It enforces access control in ICN with minimum

requirements on additional network components.

Following the research work on ABE, an important function, delegation, exhibits

a potential security issue. In traditional ABE schemes, Ciphertext-Policy ABE (CP-
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ABE), a user is able to generate a subset of authentic attribute key components for

other users using delegation function. This capability is not monitored or controlled

by the trusted third party (TTP) in the cryptosystem. A direct threat caused from

this issue is that any user may intentionally or unintentionally lower the standards

for attribute assignments. Unauthorized users/attackers may be able to obtain their

desired attributes through a delegation party instead of directly from the TTP. As the

third part of work presented in this manuscript, a three-level delegation restriction

architecture is proposed. Furthermore, a delegation restriction scheme following this

architecture is also presented. This scheme allows the TTP to have full control on

the delegation function of all its direct users.
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Chapter 1

INTRODUCTION

1.1 Background

With rapid development in communication technologies, various forms of networks

emerged with their specific technological advantages for different application scenar-

ios. They can provide not only high transmission rate, wide bandwidth, or low latency,

but also high reliabilities and better coverage. Mobile networking, as an important

part of daily life, is becoming inseparable to modern society. With more businesses

and activities of daily life moved to mobile devices, security, privacy and robustness

issues are getting more attentions from researchers, potential criminals, and ordinary

users. Common mobile networks are based on infrastructures, like cellular networks

and wifi. These infrastructures can sometimes be vulnerable when facing severe sit-

uations. For example, at the recent earthquake disaster in Nepal, communications

and Internet access were greatly influenced, mostly due to an outage of power and

damages to last-mile connectivity infrastructures at certain areas nep (2015a,b). In-

novative people-searching services for this earthquake provided by Google, Facebook

and other organizations would not be very helpful due to connectivity issue. Rescuers

need to rely on human messengers to pass information between areas before network

connections are recovered. Under such circumstances, infrastructure-less networks

are good options to re-establish communications at the early stage of disaster rescue.

A common form of such networks is Mobile Ad hoc Networks (MANETs).
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1.2 MANET

A MANET is a wireless network consisting of, in many cases, only mobile de-

vices, which form the network in an ad hoc approach. There is no static network

infrastructure available in such network environments. Mobile devices play the roles

of both a terminal and a forwarding party. When a client decides to send out a

message, it follows its routing protocol to pass the message to one or more of its

immediate neighbors. The neighbors will then work as a relay to forward such a

message till the message reaches its destination or the message is timed out. Several

routing protocols have been proposed Zhang et al. (2006); El Defrawy and Tsudik

(2011) for such purpose. Under such working principles, it is not guaranteed that a

reliable end-to-end connection is always available. However, its little requirement on

static infrastructures makes it lightweight and easy to deploy, which is quite suitable

for certain application scenarios. As mentioned before, in disaster rescue scenarios,

MANET is one of few options for establishing network services within the first sev-

eral hours or days. Such time frame is critical for saving lives. Another application

scenario is military usage. MANET is a good candidate for communications between

small groups of units in battlefield, where it is normally impossible to establish a

reliable communication infrastructure.

Typical attributes of a MANET include hand-held mobile devices with limited

battery life and restrained computation/storage resources. It is relatively easy to

monitor communication traffic by either eavesdropping on the wireless channels or by

capturing authentic mobile devices. Compromising an authentic device is sometimes

assumed to be relatively easy. Such potential risk may provide an attacker with all the

capabilities as an authentic user in terms of participating in normal communications.

These compromised users are usually difficult to be discovered. The open access to

2



wireless channels also poses risk to the network. Specifically, anonymity is a key issue

in such networks.

1.3 Anonymity Issue in Networks

Anonymity refers to the property that a certain party or element cannot be easily

identified from a set of similar parties or elements. In network communications, it in-

cludes multiple categories, such as sender anonymity, receiver anonymity, relationship

anonymity, etc. As their names imply, sender/receiver anonymity refers to property

that the sender/receiver of a certain message cannot be easily identified. Relationship

anonymity refers to the case that a communication relationship between two or more

parties is not easily identifiable.

Relationship Anonymity is an important issue in secure network communications.

In end-to-end communications, it means how difficult it is for an eavesdropper to infer

the identities of the two communication parties in a session. In traditional host-based

networks, the two parties can be identified by their IP addresses in IP headers. VPN

may be able to partially protect the addresses by hiding the original header and adding

an additional layer. However, VPN is not designed for such application purpose. It

cannot provide a reliable protection for anonymous communications. Relationship

anonymity is relatively more critical in wireless networks than in wired networks. This

is because it is not easy to eavesdrop on the exact route for a particular communication

pair as in wireless channels. Anyone who has an adequately-equipped antenna can

easily receive all the wireless traffic within a certain transmission range and frequency

range. It is feasible to create a network of mobile devices for such monitoring purpose,

which can cover a wide range of geographic area. Such monitoring network is normally

referred to as a traffic monitoring system, which is commonly used in wireless traffic

analysis.
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For MANETs, deploying a monitoring system is easy, effective, and worthwhile

for the cost. For example, in battlefield, deploying a set of passive signal monitors

helps the troops to easily locate enemy forces or to identify critical enemy communi-

cations. With a wide coverage of the entire area, the monitoring system can collect

a majority of the overall wireless traffic to break anonymity in enemy’s network.

It is relatively easy to monitor end-to-end communication patterns with a powerful

monitoring system.

1.4 ICN

Relationship anonymity is an inherent shortcoming for host-based network archi-

tectures. A direct host-to-host session needs to be established before data is trans-

mitted between the two communication parties through the network. Such session is

maintained during the entire process until one of the parties closes it.

Information Centric Network (ICN), as a new network paradigm, changed the

requirements for relatively static hosts in network communications. It is designed

to provide better support to large scale multicast services. Traditional host-based

architecture works well in end-to-end communications between a pair of users. How-

ever, in multicast scenarios, where one source is sending the same data to multiple

recipients, performance can be further improved. According to Cisco (2015), most of

the current network traffic is video sharing, from 64% in 2014 up to 80% by 2019.

To further improve the overall network performance, several different ICN network

architectures are proposed.

In a typical ICN network, data is represented as contents. Different contents have

different identifiers/names. They are transmitted through the network in publisher-

subscriber model. When a network party publishes a content, it registers the content

name to a naming service. Through this naming service, a subscriber who is interested

4



in such content will be notified with the name of the content. Here, names are unique

identifiers to contents in the network. Once a subscriber gets the name of the content,

it is able to retrieve a copy of the content using the name through a name-based

routing scheme. Copies of the same content may be scattered all over the network,

existing in network caches for a certain period of time, depending on what caching

algorithm they are running. Typically, if a copy of a certain content is transmitted

from one entity to another, all the network caches along the path will keep a copy

of it. In this way, next time when another entity requests for the same content, the

network is able to locate a near-by network cache, which maintains a copy of the

content, but has a shorter distance from the user.

Name based routing scheme uses content names as identifiers to route a copy of

content to its consumers. In traditional session based networking environment, each

network party is tagged with a unique identifier, for example, IP address. Network

traffic is routed based on the entity’s identifier. In ICN network, it is the content that

is tagged with a unique identifier. Routers along the network path use the content

identifiers to forward traffic. In other words, in traditional network, a routing decision

is made based on the destination address of the traffic, while in ICN network, it is

based on the content identifier to make such decisions.

1.5 Objectives

The inherent relationship anonymity issue with traditional MANET makes it inter-

esting to study how network movements and modeling affect the study of anonymity.

In one of the previous works Qin et al. (2014), the monitoring system for traffic anal-

ysis is assumed to be able to perfectly identify signals from each individual device

without any interference. However, in reality, such assumption does not hold when

two devices are closely located together. This is one of several example cases where
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the previous perfect assumptions do not apply in real world scenario. To deal with

such issue, the proposed idea is to relax assumptions on the monitoring system to

explore the influence on traffic analysis accuracy, which constitutes the first part of

the proposed work, Chapter 2 of this dissertation.

For the second part (Chapter 3), ICN as a new paradigm has a side-effect to over-

come the anonymity issues with traditional host-based network patterns. However,

it also introduces some challenging issues that need to be addressed urgently. One

of such issue is the difficulty in establishing access control on the published contents.

In traditional network patterns, a client (consumer) needs to authenticate itself to

the server (publisher) with desired privilege to be granted with access. This process

takes place before the server transmits the content to the client. However, in ICN

environment, contents are published before a consumer initiates an access request to

them. Once a content is published, its publisher/owner can hardly keep control of it.

To overcome such issue, an in-depth investigation is carried out on the possibilities of

applying Attribute Based Encryption (ABE) algorithms into content access control

in ICN scenarios.

Based on the research work in Chapter 3 on ABE schemes, one important and

interesting topic is on the delegation capability. Normally, a user in an ABE cryp-

tosystem acquires all of his attribute keys and the global parameters from a Trusted

Third Party (TTP). The TTP is in charge of generating, assigning and managing

attribute keys, which incurs a heavy workload on computation, storage, and com-

munication. Delegation function allows a user to generate keys, for any attribute he

has, for other users. In this way, a delegation-capable user, which is referred to as a

delegator or delegation agent in the rest of this dissertation, is able to off-load some

of the key generation burdens from the TTP. This mechanism has its merits as well as

harms. Existing ABE schemes did not specifically focus on how to control such del-
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egation capability from being maliciously used. However, a uncontrolled delegation

capability is able to create much more risks than the benefits it can gain. Observed

by such fact, this topic is studied in Chapter 4.

Based on the work presented in Chapter 2, 3, and 4, future research directions

are further discussed in Chapter 5. The goal of this chapter is to provide helpful

guidance to continuous work on the three topics presented above. The entire work is

summarized in Chapter 6.
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Chapter 2

ANONYMITY IN MANETS

2.1 Introduction

As discussed before, a powerful traffic monitoring system is able to capture most

of the wireless traffic of a target MANET within a small area. Certain amount of

information can be acquired from the captured traffic generated by individual mobile

nodes.

In Huang (2008), a new approach is proposed to measure the unlinkability for

MANETs based on evidence collected from traffic statistics. This is carried out

by slicing time domain into multiple intervals, so that each node can be either a

sender or a receiver during one such interval. Then a point-to-point traffic matrix

is constructed for each interval, which records the amount of traffic sent from one

node to another. After this step, a traffic-communication relation matrix is created

so that accumulative traffic amount from one node to another can be calculated for

discovering traffic patterns.

This method is effective only when individual nodes can be differentiated without

error. However, localization errors can hardly be avoided or eliminated in practice.

Therefore, how to model network communications when localization errors exist is

crucial for applying the previous work Qin et al. (2014) in practice. This is one of

the major motivations for the work presented here.

Another issue with the previous method is scalability. In large scale networks,

it requires a large amount of resources to generate and store traffic information in

matrices. Based on observations from the application scenarios mentioned above,
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nodes are likely to move in group patterns. Therefore, instead of modeling the com-

munication patterns for individual nodes, the research focus is placed on group-based

communications. In this way, the scalability issue can be reduced and controlled in

the proposed solution.

Following this idea, the proposed work aims to model anonymous communications

using super-nodes. In brief, super-nodes are used to model the formation of node

groups. The proposed approach consists of two steps: (1) In each time interval, all

the nodes are divided into multiple clusters using a novel distance metric proposed

in this work. (2) Super-nodes are generated based on cluster formations in all the

intervals.

The main expected contributions of this work include: (i) Using super-nodes to

solve the issues caused by localization errors. A new approach is presented to gener-

ate super-nodes based on traffic information collected from the target network. (ii)

Proposing a new metric for measuring the distance between nodes and clusters so that

both geographical and communicational factors are used to improve the accuracy of

clustering algorithms.

2.2 Related Work

In this section, detailed information will be provided on the network models,

the traffic monitoring system, and the previous work. The general scenario is that

a MANET consisting of a number of mobile nodes is deployed in an area. Data

transmitted in it is encrypted so that packet contents are well protected. A traffic

monitoring system exists in the area. It consists of a network of passive receivers that

capture signals transmitted in the MANET channel. These receivers are connected

through communication channels that are different from the one used by the target

MANET. Thus, there are no signal interferences between the monitoring system and
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the target MANET. More details on the network model and the monitoring system

are illustrated below.

2.2.1 Network Model

The communication model of the MANET is based on 802.11b protocol. It can be

extended to other protocols as needed. According to Huang (2008), the transmission

range d of a node has a relation with the data transmission rate r as d ∝ 1
r
. r is

included as part of the Physical Layer Convergence Procedure (PLCP) header, which

is part of 802.11b physical layer, for decoding purpose. Under such model, potential

receivers of a signal can be identified based on the location of the source and its

transmission rate.

Some features in MAC layer can leak useful information to adversarial eaves-

droppers. To mitigate such issue, some settings are changed: (1) Both source and

destination addresses in a frame are set to broadcasting value, i.e. all 1’s. Address-

ing can be handled by upper layers using mechanisms like pairwise shared keys. (2)

Virtual carrier sensing, a.k.a. Network Allocation Vector (NAV), mechanism Sharma

(2003) is disabled. Virtual carrier sensing is used to determine whether the channel

is busy or idle . When a node needs to send out a packet, a Require To Send (RTS)

message is sent out to the authentic receiver. The targeted receiver replies the RTS

message with a Clear To Send (CTS) message if the channel is idle. Both the RTS

and the CTS messages contain information that is used to determine the length of

waiting periods for other nodes to send a message in the same channel. In this way,

only the targeted receiver does not have to wait for a certain length of time to send

out messages. This mechanism is designed to solve collision problem in media access.

However, it exposes point-to-point communication relations to passive eavesdroppers.

Therefore, such option should be disabled in the communication model.
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As mentioned before, nodal movements exhibit group patterns in MANETs. There-

fore, the mobility model of the target MANET is assumed to be group based. But

neither the group size nor the group distribution is publicly known. Single nodes can

be modeled as groups with size of 1.

From above observations, the communication model in MANETs is summarized

as follows:

• Source and destination addresses in MAC frame are set to broadcast value;

• Frame contents are securely protected;

• Upper layer protocols (including network layer routing protocol) are unknown

to attackers;

• Virtual carrier sensing option is disabled;

• Device specification and transmission range of the nodes are known to attackers;

• Nodes’ transmission ranges are not necessarily equal;

• Localization errors are far smaller than transmission ranges;

• Nodes’ movement is group-based.

2.2.2 Traffic Monitoring System

The traffic monitoring system can passively collect traffic information. It is able

to locate the source of a signal with a certain localization error e. Locating a wireless

node based on the Received Signal Strength (RSS) has been proposed and studied for a

long time Faria and Cheriton (2006). It requires collaboration from multiple receivers.

To improve location detection performance, using temporal link signature for location

distinction is proposed in Patwari and Kasera (2007). It constructs temporal link
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signatures using multi-path phenomenon and differentiates node locations based on

normalized link signatures. Using this technique, a node can be located when the

traffic monitoring system receives a signal from it. The traffic monitoring system is

assumed to be able to locate each node in the network as long as it receives a signal

from the node.

Another feature of the traffic monitoring system is to distinguish different types

of hardware. This can be achieved based on research results in radio fingerprinting

Kohno et al. (2005) Rasmussen and Capkun (2007). The idea is that signals from

any two hardware devices are slightly different in terms of timing, frequency, and so

forth, due to the imperfection of manufacturing. However, linking radio fingerprints

with the source’s identity is difficult as the monitoring system is assumed to have very

limited internal knowledge about the target MANET. Thus, the assumption for the

monitoring system is that it can differentiate senders of different signals but cannot

get senders’ identities from such signals. In this way, each node can be represented

by its radio fingerprint but cannot be correlated to its real identity.

The ability of traffic monitoring system can be summarized as:

• Monitoring system can capture all the communication traffic of the MANET;

• Monitoring system does not emit signal in the communication channel of the

MANET;

• Individual nodes can be located with an error e when they send out signals;

• Signals sent from different devices can be distinguished.

2.2.3 Previous Work

The goal of the previous work in Qin et al. (2014) is to measure the anonymity

of end-to-end communication relationships under anonymous communication envi-
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ronments in MANETs. In order to achieve this goal, the time domain is sliced into

multiple intervals (∆t1, ∆t2, . . . , ∆tK). In each interval, a network node can only

be either a message sender or a message receiver. The amount of messages sent from

every node in one interval is stored in a Point-to-Point Traffic Matrix Wi. In this way,

a total number K of such matrices (W1, W2, . . ., WK) are generated. Based on this

collection of information, a series of algorithms are proposed to derive an End-to-End

Traffic Matrix R, which can be used for calculating the source/destination probability

distributions and the end-to-end link probability distribution. However, all this work

is based on the assumption that the information acquired in each Point-to-Point Traf-

fic Matrix is accurate, i.e., the localization errors can be ignored. This assumption

is too strong in practice that the original work could not be widely applied in real

world. To solve this problem, a new approach is proposed in the following section to

cope with the interference from localization errors.

2.3 Proposed Solution

Monitoring and analyzing individual nodes’ communication traffic is desirable but

costly, due to the concerns of computation overhead and control complexity when

network scale is large. In this section, a clustering algorithm is proposed based on the

system model introduced above. It aims to solve two urgent issues with traffic analysis

in MANETs: localization errors and scalability. Localization errors make it impossible

to locate the source of a signal when several nodes are too close to each other. For

example, when the distance between two nodes is less than twice of the localization

error e as shown in Figure 2.1, the monitoring system cannot find out which node

sends out a signal from the overlapping area A. When a group of nodes are moving

together, details such as individual nodes’ communications do not provide much more

useful information than the entire group communication, i.e. communications when
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treating the whole group as one single unit. Therefore, a monitoring system can only

monitor inter-group communications instead. In other words, it ignores inner-group

communications and only focuses on signals transmitted around group borders.

To analyze group communication, it is proposed to divide the nodes into small

groups and treat each individual group as an integrated node, which is called a super-

node. The monitoring system then can focus on communication relations between

super-nodes instead of individual nodes. Nodes that move around by themselves can

be treated as a super-node with size of 1.

A

e
e

Figure 2.1: Localization Error Influence on Traffic Analysis.

To generate super-nodes, the proposed solution follows the idea of slicing time

domain to form multiple time intervals in Qin et al. (2014). In each interval, closely

related nodes are grouped into clusters. The metric for this close relationship is repre-

sented as Distance. Within each interval, the formation of every cluster is considered

to be static. Cluster formation can be different in different intervals. The process

for creating an interval consists of two steps: (1) Take a snapshot of the network

whenever a data packet is captured; (2) Concatenate the snapshots to form a single

interval. The criteria for forming a single interval in step (2) are:

• A super-node can be either a sender or a receiver within one interval, but it

cannot be both;
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• The formation does not change for any cluster within one interval.

Following these criteria, interval lengths are not necessarily equal. Control and

management frames are excluded from triggering a snapshot since they are not closely

related to communication relations. Super-nodes can be generated based on the node

relationship information stored in clusters.

2.3.1 Clustering Algorithm

Before going into details of the clustering algorithm, a summary of notations is

given in Table 2.1.

Unlike traditional agglomerative hierarchical clustering algorithms such as single-

linkage clustering and complete-linkage clustering, a new distance metric is used in

the proposed algorithm. In single-linkage clustering, the distance between the closest

nodes in two clusters is used as the distance metric to determine how close two

clusters are. Clusters are merged recursively. A Proximity Matrix (PM) is used for

merging the closest clusters together. Elements in PM is proportional to the inverse

of linkage criteria metric. That is to say, when the distance between two clusters

is small, the corresponding element value is large. Thus, they are more likely to be

merged in the next round. In the target application scenario, the same metric can

be used because the shortest route between two clusters is likely to include the two

closest nodes in them. However, geographical distance is not sufficient to represent

the relationship between clusters. As stated before, clusters are used to represent the

close relationship between nodes in network. If two nodes are geographically close

while their transmission ranges are too short for them to communicate directly, then

they are not closely related in this interval. (As shown in Figure 2.2A, a third node is

needed to relay their communication.) To the contrary, if two nodes are geographically

distant from each other but the corresponding transmission ranges are long enough
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Table 2.1: Notations

Terms Meaning

Proximity Matrix a matrix for hierarchical clustering

Communication a matrix representing the number of hops

Distance Matrix between individual nodes

Accumulative a matrix representing accumulative average

Distance Matrix distances between individual nodes

Geographical a matrix representing the distances between

Distance Matrix individual nodes

Dendrogram a data structure recording cluster formations

Accumulative a matrix recording cluster formation inform-

Cluster Matrix -ation

Super-node an array recording super-node formation

Formation Array

to make direct communication possible, they are closely related (Figure 2.2B). Based

on this observation, communication distance in hops is included as a factor in the

definition of Distance. Another possible situation is that in one interval the distance

between two clusters may be short for some reason while the overall node formation

history exhibits a distant relationship between these clusters. In this situation, it

is better to assign a longer distance between them for that interval. Following this

idea, it is proposed to modify the distance metric with records from history to better

represent the connections among mobile devices.

16



To add communication distance into the metric, the number of hops needs to

be calculated between any two nodes in an interval. Since no information regarding

the routing protocols is known, any shortest path algorithm for directed graph can

be used instead. If one node a locates in another node b’s transmission range as

shown in Figure 2.3A, then there is a directed edge from b to a. The weight assigned

to this edge is one. However, since b is out of a’s transmission range, there is no

directed edge from a to b. When two nodes cannot be connected through a series

of edges, the communication distance is ∞. The communication distance in one

interval is recorded in a matrix called Communication Distance Matrix (CDM) where

CDM(i, j) represents the number of hops between node Ni and Nj.

A B

Figure 2.2: Different Transmission Distances Change Connectivities.

As stated in the network model section, the nodes are moving in group based pat-

terns. If two nodes are closely located to each other in history, they are likely to belong

to the same group. To model this property, a matrix called Accumulative Distance

Matrix (ADM) is defined. In this matrix, each element ADM(i, j) represents the

accumulative average geographical distance between node Ni and node Nj. Initially,

all the elements are set to 0. When a new interval is created, the distances between

nodes in this interval are recorded in a matrix called Geographical Distance Matrix
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a b a1 b1

a2
b2

A B

Figure 2.3: Asymmetric Communication Relations Influence Communication Dis-
tances.

(GDM). GDM represents the closeness among mobile nodes in terms of geographical

distance during the current time interval.

The Distance used in this solution is defined as: Distance(i, j) = αGDM(i, j) +

βADM(i, j) + γCDM(i, j), where α, β, and γ are chosen according to the mobility

of the MANET. Elements of PM are generated and updated following Algorithm 1.

Algorithm 1 PM Generation and Update

1: In the k-th time interval, each element PM(i, j) = 1/Distance(i, j) ;

2: Update ADM(i, j) = (ADM(i, j) × k + GDM(i, j))/(k + 1), here k starts from

2.

Based on the distance metric and the system assumption, the hierarchical clus-

tering algorithm can be modified as in Algorithm 2. The function Distance(Cs, Ct)

represents the distance under the proposed distance metric between cluster Cs and

cluster Ct, which can be expressed as: Distance(Cs, Ct) = min(Distance(i, j)), Ni ∈

Cs, Nj ∈ Ct. Note that the amount of nodes in different intervals may not be the same
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since some nodes may not emit any signal during one or several intervals. However,

the monitoring system is able to acquire the total number of distinct nodes in network

based on radio fingerprints from all the intervals.

Algorithm 2 Modified Clustering Algorithm

1: Assign: clusters Ci = Ni, i = 1, 2, ...,M ;

// M is the number of nodes in network, Ni denotes the i-th node in network

2: counter c = M ;

3: DO:

4: c = c− 1;

5: Find the nearest clusters Cs and Ct;

6: IF(Distance(Cs, Ct) < (α + β)S(Cs, Ct) + γT

&& |Between(Cs, Ct)| > R)

7: Merge Cs and Ct;

8: ELSE

9: Skip merging Cs and Ct;

10: END-IF-ELSE

11: UNTIL: c == 1.

Here, R is a predefined threshold. Between(Cs, Ct) = {Ni||GeoDistance(Ni, Cs)−

GeoDistance(Ni, Ct)| < δ, |GeoDistance(Ni, Cs)|+|GeoDistance(Ni, Ct)| < ε}, where

δ and ε are predefined thresholds. It returns a set of nodes. Every node in this set

satisfies that the distances between the node itself and the two clusters respectively

are very close. (The difference between the two distances is less than δ.) Meanwhile,

every node is very close to both clusters. (The sum of the two distances is less than

ε.) The condition |Between(Cs, Ct)| > R makes sure that there are sufficient indi-

vidual nodes scattered between the two clusters when they are merged. When two

distant clusters are connected with a line of sparse nodes, they will not be merged
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(rectangle area in Figure 2.4). S(Cs, Ct) is a conditional function: if no node in Cs

can perform as b in Figure 2.3A to set up a directional one-hop link with any node

in Ct or no node in Ct can do the similar thing, then it returns 0; otherwise, return

the smaller one of the longest directional geographical distances between Cs and Ct.

For instance, if b1 → a1 is the longest one-hop link from any node in Cs to any

node in Ct and a2 → b2 is the longest from Ct to Cs as shown in Figure 2.3B, then

S(Cs, Ct) = min(|b1 → a1|, |a2 → b2|). When the distance between two clusters is

greater than the transmission range of nodes and no intermediate nodes can forward

the traffic, they are not able to establish communications. Therefore, it is meaningless

to merge them together as one single cluster. The threshold T represents an upper

bound on the communication hops between two clusters when merging them. If they

are too far away in hops, then they are not merged as well.

Figure 2.4: Sparse Node Connections Cannot be Used for Merging Clusters.

Outputs from hierarchical clustering algorithms are normally represented in den-

drograms (Figure 2.5). The y axis represents at what distance two clusters are merged.

As in the example of Figure 2.5, y1 is the distance between cluster {A,B} and cluster

{C}. y2 is the distance between cluster {A} and {B}. It is easy to see that {A} and

{B} are closer than either {A} and {C} or {B} and {C}. Dendrograms can accurately

record the hierarchy of cluster generation as the distance grows.
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Figure 2.5: A Dendrogram to Record the Cluster Formations.

2.3.2 Super-node Generation

Clusters constructed from Algorithm 2 cannot be directly used as super-nodes.

This is because in some intervals two or more groups may merge together as one

cluster while in other intervals they are separate. Also, if a node emits a signal in

one interval and keeps silent for several intervals before sending out another signal,

even if it stays in the same group, the cluster formations are changed. Therefore, it

is necessary to extract super-nodes from clusters in multiple time intervals. A matrix

is defined and used to record the frequency that any two nodes locate in the same

cluster. This matrix is called Accumulative Cluster Matrix (ACM). The method for

generating an ACM is illustrated in Algorithm 3. It traverses through all intervals

to record in ACM(j, t) the number of intervals in which two nodes Nj and Nt are

grouped in the same cluster.

Super-node formation can be deduced from ACM. The formation is represented

in an array, which is named Super-node Formation Array (SFA). The method to

create an SFA from ACM is depicted in Algorithm 4. In these algorithms, function
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Cluster(Nj) and Super(Nj) respectively return the cluster and the super-node that

node Nj belongs to. SizeOf returns the amount of nodes in a cluster or a super-node.

Algorithm 3 ACM Generation
1: FOR i = 0; i < K; i+ +

//K is the total number of time intervals

2: FOR j = 0; j < M ; j + +

//M is the amount of nodes in network

3: FOR t = 0; t < M, t 6= j; t+ +

4: IF Cluster(Nj) == Cluster(Nt)

5: ACM(j, t) + +;

6: END-IF

7: END-FOR

8: IF SizeOf(Cluster(Nj)) == 1

9: ACM(j, j) + +;

10: END-IF

11: END-FOR

12: END-FOR

In Algorithm 4, γ and δ are predefined thresholds. γ restricts on the number of

intervals in which any two nodes need to be in the same cluster so that they can be

treated as in the same super-node. δ represents that if a node Nj locates in the same

cluster with Nl for much more time intervals than it locates with any other node in

the network, then it is treated as in the same super-node with Nl. If no such property

exists, a node will be categorized as a super-node of itself.
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2.4 Evaluation

In this section, the proposed approach is evaluated in terms of effectiveness and

complexity. To analyze its effectiveness, the solution is applied in a trace using OM-

NeT++ omn (2013). For complexity analysis, complexity estimations are provided

under the worst case scenario.

In evaluation setup, two moving groups are created with 4 nodes in each group

within an area of 3000 × 3000m2. Every node in a group is moving in the same

direction with the same velocity (10m/s). For simplicity, it’s assumed to have the

same transmission power (100mW ) on all the nodes. The estimated transmission

range is 150m. Two scenarios are chosen for evaluation. In Scenario 1, the groups are

initially located at distant locations and are moving toward each other. In Scenario

2, they initially locate together and then move in opposite directions. These two

scenarios represent typical cases concerning the relationship between two groups:

merger and separation. Other possible moving scenarios between two groups can

be represented by modifying and combining these two scenarios. To test the worst

case on the proposed algorithm, the first criterion for determining the length of an

interval, which relates to packet sending, is disabled during the entire process. Thus,

fewer intervals are created. A single interval, instead of multiple intervals, is used

to represent the fact that nodes stay in their respective groups for a long period of

time. However, the proposed approach is able to overcome this problem by setting

the value γ in Algorithm 4.

Evaluation results show that the proposed approach can successfully generate two

super-nodes corresponding to the two groups respectively. The minimum number of

time intervals needed for Scenario 1 is 1. This is because initially two groups are

separate. During the first interval, the clustering algorithm can easily generate one
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cluster for each group. As the groups are merging, cluster formations in the following

intervals do not provide more accurate information than the first interval until they

are completely separated. For Scenario 2, the minimum number of time intervals

needed is 5. At interval 5, the two groups separate from each other completely

and the condition in line 6 of algorithm 4 is satisfied. At this moment, the cluster

formation correctly represents the group formation.

Additionally, the percentage that correct clusters are generated hierarchically in

each interval using the geographical distance and the proposed distance metric are

calculated respectively for Scenario 1. A cluster is correct if all its members belong

to the same group. The results are shown in Figure 2.6. As shown in the graph, only

two intervals are generated using the proposed metric. If Algorithm 4 is not used to

integrate the cluster formation in different intervals together, it is almost impossible

to infer the group formation solely based on the cluster formation in a single interval

in Scenario 1 since the correct cluster ratio is less than 90% in 3 out of 7 intervals.
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Figure 2.6: The Correct Cluster Ratios are Different using Different Metrics.

For complexity evaluation, the worst case scenario is the geographical position and

the transmission coverage area of every node change during every interval. Therefore,
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all the data stored in the matrices need to be updated. If M is used to denote the

amount of nodes in network and K as the amount of intervals, the complexity for

calculating GDM is O(M2). The number of ADM update operations is also O(M2).

CDM can be calculated using Johnson’s algorithm Johnson (1977) in O(M2 logM).

The complexity of Between() function is less than O(M2). This is because the worst

case is that the number of nodes left between two clusters is at the same order as M

while the size of the two clusters are at the same order as well. Thus, the cost for

Algorithm 2 is O(M3 logM). The complexity of Algorithm 3 and Algorithm 4 are

O(M2K) and O(M2) respectively.

It is clear that Algorithm 2 is the most complex algorithm. Considering normal

hierarchical clustering algorithms have a complexity of O(M3), the proposed solu-

tion provides an effective modeling method without greatly increasing the overall

complexity.

2.5 Conclusion

In this chapter, it is proposed to solve the problem of localization errors and the

scalability issue with traffic analysis in MANETs by using super-nodes. Super-nodes

are used to recover the group formation of network nodes. By slicing the time domain

and grouping the nodes in each interval, information about geographical location and

communication distance is recorded in clusters. Super-nodes are generated based on

this information to represent the closeness between nodes. The proposed method

provides an accurate approach for modeling MANET communication relations with

a polynomial complexity.
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Algorithm 4 SFA Generation
1: FOR j = 0; j < M ; j + +

//M is the amount of nodes in network

2: IF Super(Nj) == NULL

3: Create a super-node for Nj;

4: END-IF

5: FOR t = 0; t < M, t 6= j; t+ +

6: IF ACM(j, t) > γK

//K is the total number of time intervals

7: Add Nt to Super(Nj);

//So that Super(Nt) == Super(Nj)

8: Set Nt.P rocessed = True;

9: END-IF

10: END-FOR

11: END-FOR

12: FOR j = 0; j < M ; j + +

13: IF Nj.P rocessed! = True

14: Set l s.t. ACM(j, l) = MAX(ACM(j, t)), 1 ≤ t ≤ N ;

15: Set h s.t. ACM(j, h) = MAX(ACM(j, t′)), 1 ≤ t′ ≤ N, t′ 6= l;

16: IF ACM(j, l)− ACM(j, h) > δ

17: Add Nj to Super(Nl);

18: ELSE

19: Create a super-node for Nj;

20: END-IF-ELSE

21: END-IF

22: END-FOR
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Chapter 3

ATTRIBUTE-BASED ACCESS CONTROL IN MOBILE ICN

3.1 Introduction

In the previous chapter, the relation anonymity issue is discussed in MANET.

In such traditional networking schemes, if a network entity wants to access some

information content, it has to locate and connect to the server that provides such

service following network routing protocols. As a result, the information is tightly

associated with the location of the server. The entire network is centered around the

connections between content consumers and content providers, making connection

status an important factor to the network.

Witnessed by the fact that most of the network traffic is video sharing Cisco

(2015), various ICN architectures Carzaniga et al. (2004); Koponen et al. (2007);

Dannewitz et al. (2010); Fotiou et al. (2012b); named data (2015) are proposed. In

ICN architecture, the core of networking is shifted from consumer-server connections

to consumer-content connections. In this way, instead of identifying content owners’

addresses, the network changes to identify authentic content copies scattered in net-

work. Consumers do not need to know where copies of a content are located, i.e.

the IP addresses of content owners. Content names are used to direct consumers to

content copies. Content owners publish contents, which can be copied and distributed

all over the network using network caches Psaras et al. (2012); Sun et al. (2014). Net-

work caches are normally servers that are specifically designed for storage purpose or

normal network entities with limited storage capabilities. This design enables con-

tents being efficiently delivered to consumers with a higher efficiency. For example,
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it is able to retrieve the nearest (according to some metrics) copy of a content to a

consumer. In contrast, in the traditional Internet networking framework, a consumer

gets a content only from its original owner.

Though the design of ICN is efficient in retrieving contents, it brings great chal-

lenges to security issues during content caching and retrieving. One of them is that

traditional access control mechanisms cannot be easily enforced in such environment.

This is because, in ICN, content owners and consumers are not directly connected.

Content owners have no control over the distributed network caches. To enforce access

control to the content, several frameworks have been proposed Fotiou et al. (2012a);

Singh (2012). Most of them require additional authorities or secure communication

channels in network to authenticate each content consumer. These schemes are sound

but have too much reliance on traditional control schemes, making them inefficient in

practice, especially in mobile ICN environment. Therefore, instead of enforcing the

data access control mechanism on each caching server, a natural approach is to secure

the content by enforcing the data access control through cryptographic approaches.

If designed properly, only legitimate users who have proper cryptographic keys are

able to access the data content. As each content is identified by the content name, it

is easy for any network entity to access the content as long as such name is consistent

among all the copies of the same content.

In this chapter, an attribute-based access control for ICN naming scheme is pro-

posed. In this scheme, attributes defined by different authorities can be synchronized

more efficiently than traditional approaches. Content consumers do not need to ne-

gotiate their attribute keys when they request contents from other authorities. To

facilitate the application in mobile environment, the proposed approach aims to re-

duce the burden of a Trusted Third Party (TTP) and distribute part of its duties to

several distributed attribute authorities.
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The core of the proposed solution is an ABE-based naming scheme. This ap-

proach is inspired by Attribute Based Encryption (ABE) schemes Bethencourt et al.

(2007); Yu et al. (2008); Lewko and Waters (2011). Instead of incorporating a set of

additional components, it only requires one additional trusted third party (TTP) in

the network. In addition, it can be seamlessly incorporated into existing flat-name

ICN architectures. In the proposed approach, each network entity is assigned with a

set of attributes with the help of a TTP according to their real identities. The access

control policy for the content is based on combinations of the attributes in terms of

AND and OR operations. This policy is enforced according to the content names

instead of the contents. Moreover, privacy-preservation is provided for the content

access policies , i.e., only legitimated content consumers are able to get part of the

encryption policies and decrypt the data content. This feature can greatly improve

the privacy protection on ICN data when they are distributed in the public domain.

Especially, in wireless network, an access policy without privacy-preservation can be

easily captured and monitored by any passive adversaries eavesdropping on the wire-

less channels. The proposed approach also provides a user with the capability to

identify its eligibility of the accessed contents through the encrypted names before

actually accessing and processing the data content. To further support the use of

ontology in attribute management, the proposed scheme enables comparison between

attributes, which gives the capability to rank attributes and associate different privi-

leges accordingly. In summary, the expected contributions of this work can be listed

as follows:

• It enables attribute rankings and access privilege management, making it flexi-

ble to construct a data access policy in real-world scenario. The content access

policy is confidentially preserved. Ineligible consumers cannot derive the data

access policies even if they collude together;
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• It proposes a naming scheme for ICN network which combines the flexible at-

tribute management solution with the privacy preserving access policy;

• It significantly reduces the computation and communication overhead for a

potential consumer to determine his eligibility to access the content.

3.2 Related Work

In this chapter, an ABE-based scheme is proposed to enforce a secure access con-

trol mechanism in ICN network. Before introducing details of the proposed approach,

related research results on ICN and ABE are presented respectively.

3.2.1 ICN Solutions

Several ICN architectures have been proposed in the past years. Although these

approaches are different from each other in several aspects, the main idea is centered

on information processing and management. Combined Broadcast and Content Based

(CBCB) Routing Carzaniga et al. (2004) is a solution that runs on the application

layer. It uses publish/subscribe scheme to publish contents. Each consumer broad-

casts its interest in the form of attribute combinations. These interests are propagated

through the network. At each router, the interests associated with an interface are

updated in the form of predicates. When content is transferred through the network,

the content is compared with the predicates on every interface to determine through

which interfaces to forward the content.

Data Oriented Network Architecture (DONA) Koponen et al. (2007) is deployed

above IP layer. The name of a content is in the form of P : L, where P represents the

hash of the owner’s public key, L is a unique label the owner assigns to the content.

The owner registers the content into the name resolution system when it is ready to
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publish. Consumers use the name resolution system to find the nearest copy of the

content. The system returns with the content copy or the IP address of the content

location. Network of Information (NetInf) Dannewitz et al. (2010) follows a similar

naming scheme as DONA. But instead of using the owner’s public key to generate

the digest, it uses a separate pair of public/private keys for the content. Multi-

level Distributed Hash Table (DHT) is used for name resolution purpose. A content

owner needs to register its content in all the three levels of the DHT and content

lookups are carried out from the lowest level upwards. If it is not successful, then

a dedicated resolution system will be used for further assistance. Publish Subscribe

Internet Technologies (PURSUIT) Fotiou et al. (2012b) is another solution that uses

a similar naming scheme as DONA. However, it has a much different structure for

retrieving content locations, which involves topology information and load balance.

Besides, it uses Bloom filter for source oriented routing to forward content copies to

the consumers.

Named Data Networking (NDN) named data (2015) doesn’t specifically define the

name structure. A name in NDN consists of multiple components, each of which can

be a human-readable string or a digest of the content. Content providers are required

to guarantee the uniqueness of name components. This solution uses names to execute

a routing process that is similar to the current IP-based routing. Name tables, which

are similar to route tables in IP network, maintain the prefix of names and the

corresponding interfaces or data. In this way, a response to a content request can be

the content itself. Also, this solution aims to provide a replacement to IP instead of

being a layer above IP, which is different from approaches mentioned before.

Several research works have been conducted on applying NDN in mobile network

environment. In Angius et al. (2012), the authors proposed a gossip algorithm to

disseminate messages with a minimum number of transmissions. It is based on a
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modification from traditional NDN solution. In Yu-Ting et al. (2014), a dedicated

network architecture for mobile ad hoc ICN network is proposed. It supports both

pull and push transport in multi-hop communications. Existing mobile ICN research

works are mainly focused on lower-level networking mechanisms. For upper-level

mechanisms, access control as an example, there is not much difference between a

traditional ICN and a mobile ICN, except for the underlying networking related fac-

tors, such as mobility and mobility-related delay.

All these ICN solutions focus on the efficiency and security aspects of the network

while access control to content and content privacy are not well addressed. In Fotiou

et al. (2012a), an independent access control system is introduced to support the

need in ICN. This system connects to the ICN structure through a component called

the Relaying Party (RP). An additional component called Access Control Provider

(ACP) is in charge of creating access policies and enforcing the policies to consumers’

credentials. This system incorporates access control into ICN systems, but requires

much more network interactions for a consumer to get the content. For content

privacy purposes, Arianfar et al. (2011) proposed a design in which each file is divided

into blocks. A block from the file is mixed with blocks from “cover” content using

randomizing transformations and the generated mixture is published to the network.

In this way, adversaries could not retrieve the original file easily. To recover the file,

an authentic consumer needs to get more information related to the file from a secure

channel. With such information, the consumer requests related chunks from the

network to generate the original file. This approach meets the security and privacy

requirement to some extent, but through a complicated process. The requirement for

a secure channel is very difficult to satisfy in many ICN application scenarios.
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3.2.2 ABE Schemes

ABE schemes originate from Identity-Based Encryption (IBE), which aims to use

the user’s id as the public key for asymmetric encryptions. After that, an ABE scheme

named Ciphertext-Policy ABE (CP-ABE) Bethencourt et al. (2007) was introduced

by J. Bethencourt et al. This scheme assigns each user with a set of attributes ac-

cording to their real-life identities and roles. There is one private key component

corresponding to each attribute for each user. A policy specifying under what con-

ditions the ciphertext can be successfully decrypted is constructed by the encryptor.

This policy is transmitted together with the ciphertext, but in plaintext form. In other

words, it is exposed to the network channel. Users who do not possess a satisfactory

combination of attributes are not able to decrypt the ciphertext. This scheme enables

providing access control to individual messages. A content owner is able to specify

the required attribute combinations without knowing the receivers’ key credentials.

In addition, this scheme is secure against collusion attackers.

The original CP-ABE scheme is a possible candidate for enforcing access control

in ICN, but it is not a good solution in such scenarios. The reason why CP-ABE is

not suitable for ICN usage is that the policy is transmitted in clear text. In traditional

network, a user is authenticated before access is granted. However, once a content is

published in ICN, the owner has no control on it. In this way, any network user who

has access to the ciphertext is able to access the policy. Attackers can deduce the

sensitivity of the message as well as inferring the identities of those who are involved

in the message transmission. For example, a message encrypted with the policy

{Chairman}AND {CEO} from a hospital is highly likely to be more important and

valuable than a message with policy {Nurse}AND {Intern}. Thus, attackers can

easily identify the high-value users and concentrate attacks of different forms on them.
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What is needed for CP-ABE is the capability to hide the policy into the ciphertext.

For such purpose, several works Yu et al. (2008); Nishide et al. (2008) are proposed.

An attacker cannot get any information about the policy even if it actually executes

the decryption process. However, these solutions sacrifice efficiency for security in

that any party that tries to decrypt the ciphertext will have to go through the entire

decryption process which involves a heavy computation overhead. For instance, in Yu

et al. (2008), the decryption process includes a bit-by-bit decryption for the decrypting

party’s ID.

To save computation resources for the unsatisfactory users, D. Huang et al. pro-

posed a scheme Huang et al. (2010) to expose the policy attributes step by step. Only

one attribute is exposed to the decrypter at one step. In this way, the decrypter is

able to stop the decryption process as soon as it fails at a specific step. However, the

price for such a feature is that one additional attribute, which is the one that fails the

decrypter, is exposed. Besides, this approach supports AND-gates only, which limits

the flexibility of the policy.

For attribute management purpose, it is desirable to enable the comparison be-

tween attributes so that nominal attributes can be mapped into ordinal values, e.g.

{Nurse} < {Physician}. In Zhu et al. (2012); Wang et al. (2015), Y. Zhu et al.

proposed an encryption scheme using interval comparisons based on bilinear map-

pings. In this chapter, the idea for interval comparisons is adopted and applied to

hidden-policy attribute based encryption algorithms.

Comparatively, the proposed scheme achieves better flexibility by allowing the use

of OR gates, and fully preserves the attribute policy in that ineligible nodes cannot

get any information on any attribute in the policy that they do not have.
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3.3 System and Models

In this section, a basic medical ICN framework, an overview of the attribute-based

naming and access control model proposed in the rest of the chapter, and the attack

model are presented. A preliminary mathematical description of CP-ABE scheme is

also provided.

3.3.1 Application Scenario

In a typical ICN system, there are three roles: content owner, content consumer

and content cache. A content owner creates the content and publishes it into the

network. A consumer is a network entity that requests for the content. It gets the

content with the help of the ICN infrastructure. A cache is an entity that keeps a

copy of the content for a period of time in its own local storage so that whenever a

request for the same content arrives, it directly responds to the request with a copy

of the content to the consumer. All these three network roles are exchangeable for

individual network entities. That is to say, a network entity can simultaneously be a

publisher, a consumer and a cache for different contents. In the following, an example

in medical care is used through out the rest of this chapter to show how the proposed

scheme works. As shown in Figure 3.1, the content owner can be a Patient, a content

consumer can be a Nurse or a Physician, and the content caches are servers storing

encrypted contents.

In an ICN network, users get content names from a Name Searching Service (NSS)

and use the names to get the content through a Name-based Routing (NR) system.

A user gets content names from the NSS and the NR is able to retrieve the content

based on the names. Details on how these two systems are implemented is out of the

focus of this work. Interested readers can refer to Koponen et al. (2007), named data
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(2015), and Carzaniga et al. (2004) for more information. Additionally, the proposed

model includes a Trusted Third Party (TTP) that sets up Attribute-Based Access

Control (ABAC) and Attribute-Based Encryption (ABE) related public parameters

for the network. It also helps assigning and managing attributes to entities.
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Figure 3.1: Basic ICN System Model.

In the proposed scheme, every network entity is associated with a unique identifier

(UID) and a set of attributes. UID itself can be treated as a special attribute. A

TTP is in charge of setting up global parameters for the entire network. An attribute

(other than UIDs) can be defined and managed by any entity in network. But the

definition and management process on an attribute should be carried out by the same

entity. This entity is denoted as the authority of that attribute. As in this example,

the attributes include: {HospitalA,Nurse, Physician, Cardiologist,MRI}. In the
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proposed network model, multiple attribute authorities can be present at the same

time. Thus, not only all the network users are organized in a distributed manner, the

attribute authorities are also distributed. This property is supported by the specially-

designed naming scheme proposed in this chapter. Each of the authorities is in charge

of an independent and non-overlapping set of attributes.

A content owner is able to set up an access policy for its content under this scheme.

The policy is represented as a combination of related attributes with AND and OR

gates. For example, if a content owner wants to create a file that should be accessible

only to people working as a Physician or as a Nurse at Hospital A, then the policy

could be {A}AND {{Physician}OR {Nurse}}. In this way, the owner does not

need to know explicitly who should access the content. He can identify the attributes

and the combination so that as long as a consumer satisfies the policy, he is able to

access the content. Any entity that does not satisfy the policy will not be able to

access the data in this content.

3.3.2 Attribute-based Naming and Access Control

Attributes in an ICN network can be categorized into subject attributes and ob-

ject attributes. As shown in Figure 3.1, attributes in green are subject attributes

while the red attributes are object attributes of the report. When they are used in

ICN, there are some relations between the subject attributes and object attributes.

For example, {Cardiology} and {Cardiologist} are a subject attribute and an ob-

ject attribute, respectively. They can be treated as equal since a cardiologist is

assumed to always work on cardiology. Another example is {MRI}. As a useful tool,

several medical subjects make use of MRI for diagnosis, such as neurology, cardiol-

ogy, and oncology. To model such relationship, {Neurology, Cardiology,Oncology}

are defined as sub-attributes of {MRI}. When a content owner publishes the con-
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tent, he decides which attributes are used for access control and which are for con-

tent search and content description. They are denoted as Access Control Attributes

(ACAs) and Descriptive Attributes (DAs), respectively. As in the example of Fig. 3.1,

{Hospital A, Physician,MRI,Cardiology} are used as ACAs. {Patient x,Report}

are used as DAs. Thus, network entities only see that this content is a report of Pa-

tient x as the DAs are publicly search-able. The decision on ACA/DA classification

is crucial to the privacy of the protected content and it’s up to the content owner to

make such decisions.

3.3.3 Comparable Attributes and Attribute Rankings

In addition to the above-mentioned attribute setups, comparison between at-

tributes is also supported. To illustrate this property, the example policy in 3.3.1,

{A}AND {{Physician}OR {Nurse}}, is used. If for some reason, a modification

to the policy is needed as: all the staff working at hospital A that rank higher than

nurse are allowed to access the file, then in the traditional approach, it is neces-

sary to enumerate all the attributes that are allowed and construct a very complex

policy as {A}AND {{Physician}OR {Nurse}OR ...}. However, if a comparison re-

lationship is set up between Physician and Nurse as Physician > Nurse, meaning

that a Physician attribute includes all the privileges of a Nurse attribute but with

more that are not possessed by Nurse, then the original policy can be simplified.

Suppose such a comparison relationship has been established with all the related oc-

cupation roles, then {A}AND {{Physician}OR {Nurse}OR ...} can be reduced to

{A}AND {Nurse}, which is easier for management purpose.
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An Illustrative Example

In the example of Fig. 3.1, there are three subjects: a Nurse, a Physician, and a

Patient. Their attributes are as shown in the figure. The patient publishes his MRI

report in the network as the content. He, as the content owner, specifies an access

policy as shown in Fig. 3.2 for the MRI report. Its object attributes are listed in

Fig. 3.1. The content name is created following the procedure in Fig. 3.3, which will

be further illustrated in Section 3.4.1. When the nurse tries to access this content,

she can successfully use her {Hospital A} attribute to decrypt the first node but

will get stuck at {Physician}, meaning this content is not prepared for her. When

the Physician accesses the content, she can successfully decrypt the entire decryption

process from the leaf to the root level-by-level to reveal the random data encrypting

key. Here, {MRI} is substituted with {Cardiology} since {Cardiology} is a sub-

attribute. This is shown with the arrow in Fig. 3.2. Also, {Cardiology} equals

to {Cardiologist} in this case. Then, the Physician uses the NR system to get the

nearest copy of the content and uses the random data encrypting key derived from

the name to decrypt the MRI report.

Random Data 

Encrypting Key

MRI

AND

AND

Cardiology

PhysicianAND

Hospital A

Subject Attributes

Object Attributes

Subject/Object Shared Attributes

A
tt

ri
b
u
te

 R
ev

ea
l 

D
ir

ec
ti

o
nDA

(Public)

ACA

(Private)

Content Name 

* Patient x

* Report

* Hospital A

* Physician

* MRI

* Cardiology

Figure 3.2: Creating a Content Name.

39



3.3.4 Attack Model

In order to guarantee the integrity of content, a digital digest signed by its owner

is included in the content meta-data. Since data integrity is not the focus of this

chapter, detailed information on this subject will not be provided. An attacker to the

proposed system is assumed to focus on the proposed ABE scheme.

In the rest of this chapter, the attackers are assumed to have two primary goals

in compromising the ICN access control scheme:

• acquiring unauthorized privilege to the data protected under the proposed ABE

scheme;

• retrieving constitutional information of access policies to gain more information

about the content, the owner, and the consumers. In other words, breaking the

protection on the policies.

Sensitive information in this context includes but is not limited to the identity

of the owner or consumers, the sensitivity of the content and the potential value of

data in the content. For the first goal, attackers have to break the confidentiality

mechanism of the protected data. Feasible methods include collusion attacks and

vulnerability exploitation. The second attack goal is less important to an attacking

party as a successful attack does not reveal information directly related to the pro-

tected secret. For the second goal, attackers need to analyze the proposed ABE-based

scheme to identify possible ways to reveal the policy.

3.3.5 Preliminaries of ABE

The foundation of ABE-type algorithms is bilinear pairing computation. In this

chapter, the design from Zhu et al. (2012) is adopted in terms of algebraic structure.
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Suppose there are two groups: an additive group G0 and a multiplicative group G1

with a same order n = sp′q′, where p′ and q′ are two large prime numbers. A bilinear

map is defined as e : G0 ×G0 → G1 . This map has three properties:

• Bilinearity: e(aP, bQ) = e(P,Q)ab, for any P,Q ∈ G0 and a, b ∈ Zp;

• Nondegeneracy: e(g, h) 6= 1, where g and h are generators of G0;

• Efficiency: Computing the pairing can be efficiently achieved.

In CP-ABE, there are three types of keys: master key, public key and private

key. A TTP is required to generate a set of public parameters and securely store

the master key. The TTP will not be involved in the network communication. It

can be offline all the time. The scheme of CP-ABE consists of four basic algorithms:

Setup, Encrypt, KeyGen and Decrypt. In Setup, the TTP chooses two random

exponents α, β ∈ Zp. A public key is formatted as < G0, g, h, f, e(g, g)α > while the

master key is (β, gα). Here h = gβ, f = g
1
β . The public key is published by the

TTP before deployment. When a party wants to encrypt a message M , it runs the

Encrypt algorithm. The inputs of this algorithm are the public key, the message M

and a policy tree T . The output is a ciphertext. The KeyGen algorithm is used

to generate private keys based on its inputs: the master key and a set of attributes.

For each network node, the TTP runs the KeyGen algorithm once to generate a

private key according to attributes assigned to that node. When a node receives the

ciphertext, it runs the Decrypt algorithm to get the encrypted data. This algorithm

takes the ciphertext and the node’s private keys as inputs.

In traditional CP-ABE schemes, the TTP is involved in both when a node joins

in the system (node management) and when an attribute is created and assigned to

a node (attribute management). When the scale of the system is large, the TTP will
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turn to a bottleneck for performance concerns. For this purpose, the proposed scheme

aims to isolate the duty of node management and attribute management. It off-loads

the attribute management functions to other entities.

3.4 ABE-based ICN Naming Scheme

In this section, the detailed design for the proposed ABE-based naming scheme

in ICN network is illustrated. This scheme is based on a previous work Huang et al.

(2010); Li et al. (2013).

3.4.1 Creating a Content

Initially, the TTP sets up global parameters for the entire network. Then, any

entity in network can create attributes and assign them to other entities. Detailed

process on how attributes are distributed is out of the scope of this work. Interested

readers can refer to attribute allocation problem solutions for large scale networks

such as Biswas et al. (2006). Once the attributes are assigned, network entities are

able to create contents, i.e. start network communications. As shown in Fig. 3.3,

when an entity publishes a file, as the content owner, it creates an access policy for

the content. The policy is represented as a combination of related attributes with

AND and OR gates. For example, if a content owner wants to create a record that

is accessible only to physicians and nurses working at hospital A, the policy can be

constructed as: {A}AND {{Physician}OR {Nurse}}. In this way, content owners

do not need to know explicitly who should access the content before constructing the

policy. Instead, all they need to do is to identify the attributes and the combinations

of attributes for a qualified content user so that as long as a consumer satisfies the

policy, it is able to access the content. Any entity who does not satisfy the policy will

automatically be deprived of the privilege to access the information in this content.
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No additional network participants are needed during this entire process to monitor

the access control enforcement.
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Figure 3.3: Creating a Content.

After creating the policy, the owner generates a random data encrypting key and

uses it to encrypt the file. This encryption process can be any type of cryptosystem,

the choice of which is not directly related to the proposed scheme. The encryption

result is set as the data part of the content item. The meta-data part includes public

parameters used for data integrity assurance and data decryption, like the type of

cryptosystem used for the random data encrypting key.

The content owner creates a name for the content. He uses the proposed scheme

to encrypt the random key under the policy he has specified. The result is used as

the content name. Here, it is necessary to emphasize that the generated name hides

the content access policies so that no one can get the entire policy from the name.

In fact, the content name is a ciphertext after a series of encryption operations. It

exhibits as a random sequence of bits to any viewer.

43



A consumer who needs this file is able to get a copy of the content by its name

through the ICN network. Before he retrieves the content, he can use his own at-

tributes to decrypt the name. If his attributes satisfy the hidden policy embedded in

the name, he can get the random data-encrypting key protected in the name. The

data of the content then can be decrypted using the random key to recover the orig-

inal file. If a consumer cannot successfully decrypt the content name, it implies the

consumer is not allowed to access the original file. Thus, even if he downloads the

content, he still does not have the random data encrypting key to decrypt it. A ben-

efit of the propose scheme is that a normal user can delay the downloading process

of the content till he successfully decrypts the content name, which helps reduce the

workload of underlying network.

3.4.2 ABE-based Naming Scheme

In this section, a composite order group G0 with an order n = p2q2 is used, where p

and q are two large prime numbers. In other words, the composite value s in Section

3.3.5 is set to pq. Two subgroups Gs and Gt of G0 are chosen such that s = pq,

t = pq, and Gs is orthogonal to Gt. Such composite-order group configuration is

deliberately configured mainly because the proposed scheme is designed to support

attribute rankings in Gs. The core idea of such configuration follows RSA conditions

to enforce one-direction deduction between attribute values. This is why the value of

s and t are set to be products of two large prime numbers. Details on such process

will be illustrated in Section 3.4.3.

Attributes of an entity can be any value in strings. In CP-ABE, these values are

converted into mathematical values by hash functions. In the proposed scheme, each

attribute string Ai corresponds to a triplet (Ii, ki, hi), where Ii, ki, hi ∈ Z∗n′ . Si and

Ti in Algorithm 7 are assigned by the TTP. Their values are determined by the
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generators under each sub-group and the value of hi. The mapping from a string to

such a three-tuple is determined by the authority of attribute Ai. An access policy can

be expressed in Disjunctive Normal Form (DNF) of attributes. In each conjunctive

clause of the DNF, the sequence of attributes is determined by the encrypting party,

i.e. the content owner. The sequence of encrypting a conjunctive clause (encryption

sequence) is opposite to the decryption sequence. To help identify the decryption

thread, a public attribute APub is defined in the scheme. Unlike other attributes,

APub is associated with a triplet (SPub, TPub, IPub), which are publicly known. For each

conjunctive clause, the encryptor adds APub at the end of the encryption sequence.

In other words, the special attribute APub is always the last attribute in encryption

and the first attribute in decryption process. Additionally, the encryptor is required

to simplify the DNF so as to reduce the size of attribute policy.

In the proposed scheme, a GlobalSetup algorithm is run by the TTP to generate

global parameters for the system. For each node joining in the network, the TTP runs

NodeJoin algorithm once to generate a unique secret for the node. The input of

NodeJoin is the node’s UID and the outputs are {DUID, XPub,UID, YPub, ZPub,UID}.

For each attribute, the authority in charge runs the AuthoritySetup algorithm to

generate secrets associated with that attribute. Besides, this naming scheme includes

three more basic algorithms: KeyGen, Encrypt, and Decrypt. Once set up, the

authority of an attribute runs KeyGen for each node carrying this attribute to

allocate the inherent attribute secrets. Encrypt and Decrypt are used by encryptors

and decrypters respectively for message processing.

The GlobalSetup algorithm generates global parameters {Gs, Gt, ϕ, ψ, ϕβ,

e(ϕ, ψ)α, Enck(·), Deck(·), (PPub, SPub, TPub), ROOT}, and global secrets {β, gα},

where α and β are random values and Enck(·), Deck(·) are a pair of symmetric

encryption/decryption functions.
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Algorithm 5 GlobalSetup

1: Choose two bilinear groups G0 and G1 with a composite order n = p2q2, where p

and q are two large prime numbers. g is the generator of G0;

2: Choose two subgroups Gs and Gt of G0 such that: the order of Gs and Gt are

both n′ = pq; Gs and Gt are orthogonal to each other;

3: Choose two generators ϕ ∈ Gs and ψ ∈ Gt;

4: Choose two random values α, β ∈ Z∗n′ ;

5: Define a constant ROOT ∈ G1 as identification of the secret message;

6: Choose a pair of symmetric encryption functions Enck(·) and Deck(·) in G1;

7: Define a public attribute, (SPub, TPub, IPub), SPub ∈ Gs, TPub ∈ Gt, IPub ∈ Z∗n′ ;

8: The global parameters are {Gs, Gt, ϕ, ψ, ϕβ, e(ϕ, ψ)α, Enck(·), Deck(·),

(SPub, TPub, IPub), ROOT}, global secrets are {β, ψα}.

The NodeJoin algorithm is defined as in Algorithm 6.

Each individual authority that manages an attribute Ai will have to run Author-

itySetup to set up attribute secrets.

The KeyGen algorithm generates private keys corresponding to each attribute

for each node holding this attribute. It is defined in Algorithm 8. When the node

receives keys from the authority, it checks if LPUIDUID = TPub is true. If it’s true, it

updates PUID with P 2
UID and accepts the keys. This update is intended to defend

against replay attack on LUID. If not true, it will discard the keys.

The Encrypt algorithm works following the encryption sequence of each clause.

In the following, each attribute is denoted from I1 to Im, m is the number of at-

tributes in the clause. In the example of Fig. 3.2, I1 = MRI, I2 = Physician,

I3 = Hospital A, I4 = APub, m = 4. Any encryptor needs to choose a random value

s ∈ Zp, set I0 = s and follow Algorithm 9.
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Algorithm 6 NodeJoin

1: For each node with UID in network, generate a random number rUID ∈ Z∗n′ ;

2: Calculate DUID = ψ(α+rUID)/β;

3: Calculate:

XPub,UID = ϕrUIDSrPubPub ,

YPub = ϕrPub ,

ZPub,UID = e(ϕ, ψ)rUIDIPub .

where rPub ∈ Z∗n′ is a random number for each node;

4: Choose a random value PUID ∈ Z∗n′ ;

5: Assign to the node {DUID, XPub,UID, YPub, ZPub,UID, PUID}.

Algorithm 7 AuthoritySetup

1: For each attribute Ai, choose random numbers Ii, ki, hi ∈ Z∗n′ ;

2: For each attribute Ai, generate Si ∈ Gs and Ti ∈ Gt, where Si = ϕhi and Ti = ψhi .

The Decrypt algorithm works following the decryption sequence. Note that the

first attribute in decryption sequence is always APub. A decryption process follows

Algorithm 10.

When Decrypt algorithm succeeds, Sk is the random data encyrpting key em-

bedded in C.

3.4.3 Attribute Rankings

The proposed ABE scheme extends capabilities of traditional ABE schemes and

is able to support comparison between values of the same attribute. In real world

scenario, this means, for instance, two attribute values Physician and Nurse of at-

tribute Occupation can be compared and have the relationship Physician > Nurse.

In other words, it means that the Physician attribute subsumes all the privileges
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Algorithm 8 KeyGen

1: The authority passes Ii, Si and Ti to TTP;

2: TTP computes and sends back to the authority:

Xi,UID = ϕrUIDSrii ,

Yi = ϕri ,

Zi,UID = e(ϕ, ψ)rUIDIi ,

LUID = T
1/PUID
Pub .

where ri ∈ Z∗n′ is a random number;

3: The authority assigns Xi,UID, Yi, Zi,UID, and LUID to the node together with Ii,

hi and ki.

the Nurse has, but the Nurse does not have any of the additional privileges the

Physician has. Such capability is applicable and desirable when the privilege of the

lower-ranking role (Nurse) is a subset of that of the higher-ranking role (Physician).

In traditional ABE solutions, each attribute value (Physician and Nurse in the above

example) corresponds to a set of cryptographic components that are designated for

that specific attribute (Occupation in the example) of a specific user. Components

for different values of the same attribute are not related. In other words, the key

components of Physician are independent to those of Nurse. To establish rank-

ing relations between attribute values, certain connections need to be established

between the corresponding key components. Specifically, a one-direction relation be-

tween values of the same attribute is supported in the proposed scheme. It allows a

higher-ranking user (Physician) to be able to legally derive the corresponding lower-

ranking role (Nurse) key components for himself. However, the lower-ranking role

cannot derive anything useful regarding the higher-ranking role.
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Algorithm 9 Encrypt

1: Calculate C = Ke(ϕ, ψ)αs, C ′ = ϕβs and C ′′ = EncK(ROOT );

2: For each attribute An, if a triplet (C1,n, C2,n, C3,n) has already been calculated,

move to the next attribute An+1 and restart step 3 with An+1; else, goto step 4;

3: Choose a random number ln ∈ Z∗n′ ;

4: Calculate:

C1,n = ψ(In−1−In)ln ,

C2,n = T (In−1−In)ln
n ,

C3,n = (knln)−1.

1 ≤ n ≤ m;

5: Calculate C1,m+1 = ψ(Im−IPub), C2,m+1 = T
(Im−IPub)
Pub .

Such capability can be achieved by deliberately assigning appropriate values in

KeyGen algorithm. Specifically, as in the previous example, the scheme assigns hP

for Physician and hN for Nurse such that hP = hαP , hN = hαN , h ∈ Z∗n′ , and

αP < αN . Thus, it is easy to derive SP = ϕhP and SN = ϕhN . This is different

from traditional ABE scheme, where both SP and SN are randomly chosen. Such

difference is the connection that is established between comparable values (Physician

and Nurse) of the same attribute (Occupation).

Recall when the order of Gs is defined, it is written as n′ = pq, where p and q are

two large prime numbers. In other words, n′ is a composite number satisfying RSA

algorithm requirements. If a user UP is assigned with SP = ϕh
αP , i.e. the key for

Physician, the user is able to calculate the corresponding key SN for Nurse as long

as αP < αN . This process can be done as:

SN = ϕh
αN = (ϕh

αP )h
αN−αP = (SP )h

αN−αP (3.1)
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Algorithm 10 Decrypt
1: Start from the public attribute APub;

2: For each attribute An that the decrypter possesses, compute:

Zn,UIDdec · e(Xn,UIDdec , (C1,n)
knC3,n)

e(Yn, (C2,n)knC3,n)

= e(ϕ,ψ)rUIDdec (In−1);

3: If e(ϕ,ψ)rUIDdec (In−1) is the decrypter’s private key, go to step 2 with attribute An−1;

else go to step 4;

4: Calculate

Sk = C/(e(C ′, DUID)/e(ϕ,ψ)
rUIDdec (In−1)).

if DecSk(C
′′) == ROOT , Success; else Failure.

This means when attributes are assigned to UP , it is optional to assign the value

hαN−αP to the user together with SP . Thus, when the user needs to decode some

message dedicated for Nurse, he can easily calculate SN following equation (3.1).

However, if another user UN has the attribute Nurse, he cannot deduce SP following

the same equation in a similar way. This is because in this case, αP −αN < 0. Under

RSA assumption, h−1 cannot be efficiently computed due to the secrecy of n′.

A benefit of such extension to the original scheme is that it allows the ranking

relations among attributes without incurring too much workload on TTP. Only eli-

gible users, Physician owners in this example, can use such capability and the value

hαN−αP is only useful to eligible users.

It is necessary to clarify that the attribute authority can decide whether to assign

the value hαN−αP to a specific Physician owner or not. In other words, a Physician

owner does not automatically have the capability to derive his Nurse components

unless it acquires such value. Such derivation capability is carried out under the

control of TTP.
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With such knowledge, the TTP can assign two more values ∆h and ∆r to user

UP in KeyGen algorithms. When needed, the user can derive his key values corre-

sponding to attribute Nurse afterwards. The modified step 3 of KeyGen is as:

XP,UID = ϕrUIDSrPP ,

YP = ϕrP ,

ZP,UID = e(ϕ, ψ)rUIDIP ,

LUID = T
1/PUID
Pub ,

∆h = h(αN−αP )rP ,

∆r = ∆hIN/IP .

Thus, the rUID for UP ’s Nurse attribute is changed to r′UID = rUID∆h. Correspond-

ingly, the following can be computed:

XN,UID = (XP,UID)∆h = ϕrUID∆hSrPN = ϕr
′
UIDSrPN ,

YN = YP ,

ZN,UID = (ZP,UID)∆r = (e(ϕ, ψ)rUIDIP )∆hIN/IP

= e(ϕ, ψ)rUID∆hIP = e(ϕ, ψ)r
′
UIDIP ,

L′UID = LUID.

Here, it is necessary to point out that to make sure the values of h for two com-

parable attributes are the same, comparable attributes need to be managed by the

same authority. This means one single authority defines the relative order between

these attribute values. This requirement is reasonable in real-world scenario since

in most cases a single authority (the hospital in this example) defines values of the

same attribute (job position). It is rare to require two separate authorities to define

separate values for the same attribute. Even if such conditions are needed, it can be

easily handled with Ontology-based attribute management solutions.
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3.4.4 Apply ABE-based Naming Scheme in ICN

With the above naming scheme, the following capabilities can be achieved in ICN

scenarios:

• A content owner is able to specify the access control policy without knowing

the consumers’ keys;

• The policy confidentiality can be fully protected from being leaked to adver-

saries;

• Step-by-step attribute exposure is enforced for consumers to determine their

eligibility efficiently in computation;

• Flexible attribute management is supported.

Using this scheme, any entity who wants to publish data contents needs to create

the content following the procedures shown in Fig. 3.3.

The owner firstly creates a random symmetric key K. Then the data to be pub-

lished is encrypted using K. The resulting ciphertext C is then used to generate

a metadata of C. Both the metadata and C are parts of the final content. Then

the owner needs to specify an access policy P of attributes, which identifies what

attribute requirements an authentic consumer should satisfy. After that, the owner

uses this policy to encrypt K following Encrypt algorithm. The result is used as the

content name.

In this way, the owner does not need to know individual public keys of all the

potential consumers in advance, which is required in traditional methods.
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3.5 Performance Analysis and Evaluation

The performance improvement provided by the proposed scheme is evaluated in

this section. In the following, the computation and communication performance is

presented in two parts: real-world implementation and complexity analysis.

3.5.1 Evaluation of the Naming Scheme

In this section, the ABE-based naming scheme is evaluated from performance

aspect. This includes analysis on its computation and communication (storage) over-

heads. The computation consumption analysis is carried out by comparing the pro-

posed scheme with existing ABE schemes. The communication comparison is carried

out on both the content name and the content itself respectively since they both are

transmitted in the network.

From computation perspective, the time consumptions for key generation, en-

cryption and decryption processes are tested. In real world application, the time

consumption for a consumer to decrypt the content’s name is much more important

than that for other functions. This is because each content is encrypted once, but de-

crypted by multiple users for multiple times. In addition to testing the real-world time

consumption for each function, a comparison is conducted on the decryption over-

head with existing ABE solutions: CP-ABE Bethencourt et al. (2007), CN scheme

Cheung and Newport (2007), NYO scheme (the 2nd construction in Nishide et al.

(2008)), YRL scheme Yu et al. (2008) and GIE scheme Huang et al. (2010). The idea

is to compare the number of most time-consuming operations needed in each scheme.

Such comparison is carried out in complexity analysis.
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3.5.2 Real-world Implementation

For real-world implementation, a machine with a four-core 2.80GHz processor and

4GB memory running Ubuntu 10.04 is used for experiment. Pairing-Based Cryptog-

raphy (PBC) Library Lynn (2014) is used to handle the pairing computations. A

type-A1 curve Lynn (2006) is generated using the parameter generating tools included

in this library for the following tests. It randomly generates the prime numbers used

for the curve, with a length of 512 bit for each of them.

Each operation is run for ten times for key generation, encryption and decryption

(Fig. 3.4). Here the policies are set to be a conjunctive clause of different number

(shown in x-axis) of attributes. This is because given a fixed number of attributes, this

form requires the most time for computation. In other words, it directly represents

the correlation between the number of attributes involved and the time needed for

computations. The reason why the encryption function consumes more time when the

number of attributes is small is that the cost for computing C in Algorithm 9 requires

an additional pairing operation, which is independent to the number of attributes.

When few attributes are involved, this additional pairing takes a high portion of the

entire time consumption. This portion reduces as the attribute number grows, which

explains why the time consumption for encryption eventually becomes the smallest

among the three functions.

In theory, the time consumption should be linear to the number of attributes

involved. The curve in Fig. 3.4 is not perfectly linear, but it meets the expected

growing trend. There are several reasons why it is not strictly linear. Before de-

crypting the message attribute by attribute, in the implemented program, there are

some necessary steps to initialize global parameters, read files and allocate memory

space. Similarly, at the end of the algorithm, there are some clean-up work involved,
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such as writing files and releasing memory space. Such time consumption is related

to the number of attributes involved but not strictly proportional. Also, at step 4

of Decryption algorithm, there is one additional pairing operation. Thus, when the

number of attributes is small, this additional operation takes more portion of the total

time than when the number of attributes is large. If the possible variance introduced

by system level factors, for instance the resource consumption from other processes,

are also considered, the variance in the figures is reasonable in practice.

3.5.3 Complexity Comparison

For comparison purpose, every atomic operation is tested for fifty times and the

average values are chosen as benchmarks for further comparison. Results of the exper-

iment (Table 3.1) show that pairing operation takes longer than any other operations.

Therefore, the comparison metric is set to be the number of pairing operations in de-

cryption process.

Table 3.1: Time-consumption of Different Operations (in milliseconds)

Pairing Exponentiation Multiplication Inversion

Time 7.675 0.491 0.029 0.024

Following the above-mentioned idea, there are some terms that need to be defined:

Nattr is used to denote the number of attributes a consumer has, Nall refers to the

total number of attributes defined in the network (Nall � Nattr). The proposed

naming scheme is denoted as ICN-ABE in the rest of this manuscript. Since the

policy is publicly known in CP-ABE and CN, decrypting parties are able to decide

what attributes to use in decryption. Therefore, for those who satisfy the policy, the

time taken for decryption in CP-ABE is proportional to the number of attributes

involved, which is denoted as Ninvo, Ninvo 6 Nattr. The time taken for a successful
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Figure 3.4: Computation Performance

decryption in CN is related to the number of attributes defined in the entire system.

This is because each user is assigned with a value (Positive, Negative, and Wildcard)

for every attribute defined in CN. It is obvious that unauthorized users would not

bother to try decryption, which is why an alternative result in both schemes is that

it takes 0 in time as the user would halt the decryption process.

An unauthorized user in GIE or ICN-ABE is not able to proceed with the de-

cryption process if it cannot satisfy the next attribute. In this situation, Npart is

used to denote the number of attributes that the consumer has already decrypted,

where Npart 6 Ninvo. Therefore, there are two possibilities for the computation cost

in GIE and ICN-ABE, one for a successful decryption and the other for a failed one.

Since OR-gate is not widely supported by all the ABE-schemes mentioned before,

the performance is tested with policies consisting of attributes and AND-gates. Test
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Table 3.2: Comparison of Computation Cost in Decryption

Scheme Hidden Policy Number of Pairings

CP-ABE No 2Ninvo + 1 or 0

CN No Nall + 1 or 0

NYO Yes 2Nattr + 1

YRL Yes 2Nattr + 2

GIE Yes 3Ninvo or 3Npart

ICN-ABE Yes 2Ninvo + 1 or 2Npart

result is shown in Table 3.2. It is necessary to point out that in real world, Nall is

much larger than Nattr. Therefore, CN scheme has the largest cost. Among all the

anonymity schemes, GIE and the proposed scheme cost less than NYO and YRL. As

a matter of fact, the cost of the proposed scheme is around 2 thirds of that of GIE.

To evaluate the communication costs, the size of content names are compared.

The purpose to compare network names is to make sure that names generated by the

proposed scheme do not consume much more storage space than existing solutions.

In PBC library Lynn (2014), a data structure element t with size of 8 bytes is used to

represent an element. For the proposed scheme, a block of 24 bytes is needed to store

the network name. Compared with this name size, a content in CBCB Carzaniga

et al. (2004) is identified by a set of attributes with corresponding values. The size

of this attribute set is determined by the content owners. Thus, it is reasonable to

model the names as a human-readable string of an undetermined size. NDN named

data (2015) shares a similar problem with the name size since the names in NDN

also consists of a number of human-readable strings. As mentioned before, DONA
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Koponen et al. (2007), NetInf Dannewitz et al. (2010) and PURSUIT Fotiou et al.

(2012b) share the same naming scheme. Therefore, only the size of DONA’s name is

used for comparison. In Koponen et al. (2007), the size of a name is confined to 40

bytes in its protocol header. Thus, the size of network names in the proposed scheme

is small enough to fit in existing ICN solutions.

The number of attributes used in ciphertext is denoted as Nciph. For each attribute

in the policy, the corresponding ciphertext consists of 2 elements from G0 and 1

element from Zp in ICN-ABE. The total size of a ciphertext is 1G1 +(2Nciph+4)G0 +

NciphZp. This means the ciphertext consists of 1 element from G1, 2Nciph+4 elements

from G0 and Nciph elements from Zp. Comparison results are shown in Table 3.3. Here

the sizes of attribute policy in CP-ABE and CN are not considered. CP-ABE has

the smallest ciphertext size. Among the four schemes supporting anonymity, the

ciphertext sizes in NYO and YRL are much larger than those in GIE and ICN-ABE.

This is because these two schemes encrypt the ciphertext for all the attributes in

the network. GIE and ICN-ABE are of the same order of magnitude with ICN-ABE

performing better.

3.6 Security Analysis

From security perspective, the strength of the proposed scheme is analyzed based

on the attack model presented in Section 3.3.4. For the first attack goal, a security

theorem is provided with its corresponding security proof as in Section 3.6.2. For the

second goal, the scheme is analyzed based on details of the algorithms.

Theorem 1 Let G0 and G1 defined as in Section 3.4.4. For any adversary A, the

advantage it can gain from the interaction with the security game defined in Section

3.6.1 is negligible.
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Table 3.3: Comparison of Ciphertext Size

Scheme Ciphertext Size

CP-ABE 1G1 + (2Nciph + 1)G0

CN 1G1 + (Nall + 1)G0

NYO > 1G1 + (2Nall + 1)G0

YRL 1G1 + (3Nall + 3)G0

GIE NciphG1 + 3NciphG0

ICN-ABE 1G1 + (2Nciph + 4)G0 +NciphZp

The proof for this theorem is provided in Section 3.6.2. In the proof, it is verified

that the attacker cannot break the encryption algorithm to get any data exposed.

Furthermore, it is also proved that attackers cannot conduct collusion attacks onto

the system. This is because if collusion attacks are feasible, the adversary in the

security game of Section 3.6.1 can overcome the constrain that no single user can

satisfy the policy and still get the secret information decrypted. Thus, the attacker

is able to gain a non-negligible advantage in this game.

For the second attack goal, the attacker will stop at the first attribute, Ak, that he

doesn’t own in the decryption process. If he can get to know this additional attribute,

he must get it from step 3 in Algorithm 10. This means that the attacker possesses

the secret key Zi,UID of the attribute Ak, which contradicts to the assumption that

he does not possess such an attribute.

The rest of this section focuses on the proof of Theorem 1. Before going into details

of the proof, the security model in terms of a security challenge game is presented in

Section 3.6.1.
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3.6.1 ABE Security Model

In this section, the focus is placed on the naming scheme, which can be modeled in

the form of a game between a challenger and an adversary. The challenger simulates

the operations of the TTP and the attribute authorities, while the adversary tries to

impersonate as a number of normal network nodes. The game consists of the following

five steps:

• Setup. The challenger runs the GlobalSetup algorithm and returns to the

adversary the global parameters.

• Phase 1. The adversary can ask for a certain number of attribute keys in the

name of a number of different users from the challenger. The amount of allowed

keys and users are arbitrary. The challenger runs the NodeJoin algorithm

for each user involved in the requests and returns the corresponding secret

information. The adversary then plays in the roles of these users to request

for attributes from the challenger. The challenger runs the AuthoritySetup

algorithm to create parameters for authorities and runs the KeyGen algorithm

to generate the corresponding attribute keys that are requested by the adversary

on behalf of the authorities and the TTP. In other words, KeyGen in this game

is conducted all by the challenger itself. The challenger creates new authorities

only when it is necessary.

• Challenge. The adversary provides two messages M0 and M1 to the challenger

together with an access policy A. A satisfies that none of the users created by

the challenger has attributes satisfying A. It is possible that a combination of

attributes belonging to different users who are impersonated by the adversary

60



can satisfy policy A. The challenger flips a coin b and encrypts Mb using A as:

C =

 e(ϕ, ψ)αs if b = 1

e(ϕ, ψ)θ if b = 0

It then sends the ciphertext back to the adversary.

• Phase 2. The adversary can ask for more attributes and users from the chal-

lenger. But if any single user can gain satisfactory attribute combinations for

A, the challenger aborts the game. Up to now, all the attributes or attribute

keys mentioned in the game description refer to private keys. The adversary

can always request for any public keys, which is only for encryption purpose.

• Guess. The adversary makes a guess b’ on the real value of b.

The adversary’s advantage in this game can be defined as ADV = P [b′ = b]− 1
2
.

The proposed scheme is secure if for all the polynomial time adversaries, the advantage

is at most negligible in the game.

3.6.2 Security Proof Sketch

In this section, the sketch for security proof is provided following the structure in

Bethencourt et al. (2007). Before going into details of the proof, the security game

described in section 3.6.1 is modified. This modification follows the same idea as in

Bethencourt et al. (2007) and it is intended to change from differentiating two random

messages M0,M1 to differentiating e(ϕ, ψ)αsj , e(ϕ, ψ)θj so that the generated interme-

diate results can be represented using the four mappings that are to be introduced in

this section. The goal of such modification is essentially to facilitate the subsequent

security proof. To differentiate these two games, the one in section 3.6.1 is referred

to as Game1 and the modified game as Game2.
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Modified Game

Game2 consists of five steps similar to Game1. The steps Setup, Phase1, and

Phase 2 are the same as in Game1. The Challenge step is different in that the

challenger does not choose one message to construct the ciphertext C. Instead, it

outputs Cj as:

Cj =

 e(ϕ, ψ)αsj if b = 1

e(ϕ, ψ)θj if b = 0

Here, all the θj are randomly chosen from Z∗n′ following independent uniform

distribution.

Suppose an adversary adv1 in Game1 has the advantage of ε, his corresponding

adversary adv2 in Game2 can be constructed according to the following strategy:

• Forward all the messages between adv1 and the challenger during Setup,

Phase1, and Phase 2;

• In the Challenge step, adv2 gets two messages M0 and M1 from adv1 and

the challenge C from the challenger. adv2 flips a coin δ and sends C ′ = MδC

to adv1 as the challenge for adv1 in Game1. adv2 generates its guess based

on the output δ′ from adv1. If δ′ = δ, then the guess is 1; otherwise, it is 0.

The advantage that adv2 has in this game can be calculated as δ
2
.

In the following, it will be shown that no polynomial adversary can distinguish

between e(ϕ, ψ)αs and e(ϕ, ψ)θ. Therefore, no adversary can have non-negligible

advantage in the security model.
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Security Guarantee in the Modified Game

In this section, the proof sketch follows the generic group model introduced in Shoup

(1997) and uses a simulator to model the modified security game between the chal-

lenger and the adversary. The simulator chooses random generators ϕ ∈ Gs and

ψ ∈ Gt. It then encodes any member in Gs and Gt to a random string following

two mappings: f0, f1 : Zn′ → {0, 1}dlogn′e. It also encodes any member in G1 to a

random string in a similar way: f2 : Zn → {0, 1}dlogne. One additional mapping f3

is used to convert elements in Z∗n′ to string representations: f3 : Z∗n′ → {0, 1}dlogn′e.

These four mappings should be invertible so that the simulator and the adversary

can map between the strings and the elements of corresponding algebraic structures

in both directions. Four oracles are provided to the adversary by the simulator to

simulate the group operations in Gs, Gt, G1, and the pairing respectively. Only the

string representations can be applied to the oracles. The results are returned from

the simulator in such string representations as well. These oracles will strictly accept

inputs from the same group, i.e. strict enforcement on the input from the same group

for the respective group operations. The simulator plays the role as the challenger in

the modified game.

• Setup. The simulator chooses Gs, Gt, G1, e, ϕ, ψ, and random values α, β.

It also defines the mappings f0, f1, f2 and the four oracles mentioned above.

The simulator chooses the public attribute parameters IPub ∈ Z∗n′ , SPub =

f0(µ) ∈ Gs, TPub = f1(λ) ∈ Gt, and ROOT ∈ G1, where λ and µ are random

strings. The public parameters are Gs, Gt, ϕ := f0(1), ψ := f1(1), ϕβ := f0(β),

e(ϕ, ψ)α := f2(α), (SPub, TPub, IPub), and ROOT .

• Phase 1. When the adversary runs NodeJoin for a new user with UID, the

simulator generates a random number rUID ∈ Z∗n′ . It returns to the adversary
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with DUID = f1((α+ rUID)/β), XPub,UID = f0(rUID)f0(µrPub,UID) = f0(rUID +

µrPub,UID), YPub = f0(rPub), and ZPub,UID = f2(rUIDIPub), here rPub,UID ∈ Z∗n′

is a random number chosen by the simulator. When the adversary requests for a

new attribute Ai that has not been used before, the simulator randomly chooses

Ii, ki, hi ∈ Z∗n′ and Si = f0(hi) ∈ Gs, Ti = f1(hi) ∈ Gt to simulate the process for

setting up an attribute authority for this new attribute. For each attribute key

request made from the adversary, the simulator computes Xi,UID = ϕrUIDSrii =

f0(rUID + hiri), Yi = ϕri = f0(ri), and Zi,UID = e(ϕ, ψ)rUIDIi = f2(rUIDIi),

where ri is a random number chosen from Z∗n′ . The simulator passes all these

values to the adversary as the attribute keys associated with Ai.

• Challenge. When the adversary asks for a challenge, the simulator flips a

coin b and chooses a random value s ∈ Z∗n′ . If b = 1, the simulator calculates

C = f2(αs); if b = 0, it picks a random value s′ ∈ Z∗n′ and calculates C = f2(s′).

In addition, it calculates C ′ = ϕβs and C ′′ = EncK(ROOT ). It also computes

other components of the ciphertext following Encrypt: C1,n = f1((In−1−In)ln),

C2,n = f1(hn(In−1−In)ln), and C3,n = f3((kntn)−1), where hn ∈ Z∗n′ is a random

number chosen by the simulator.

• Phase 2. The simulator interacts with the adversary in a similar way as in

Phase 1 with the exception that the adversary could not acquire attribute keys

enabling a single user to satisfy the access policy A. The output of this step is

similar to that of Phase 1 except that the simulator obtains more user IDs and

attributes in this step.

From the above game, it can be seen that the adversary only acquires string

representations of random values in Z∗n′ , Zn and combinations of these values. All

the queries can be modeled as rational functions. It can further be assumed that
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different terms always result in different string representations Bethencourt et al.

(2007). As shown in Bethencourt et al. (2007), the probability that two terms share

the same string representation is O(q2/n), where q is the number of queries made by

the adversary. It is assumed in the rest of the proof that no such collision happens.

Now an argument can be made that the adversary’s views are identically dis-

tributed between the two cases when C = f1(αs)(b = 1) and when C = f1(s′)(b = 0).

As a matter of fact, what the adversary can view from the modified game with the

simulator are independent elements that are uniformly chosen and the only operation

that the adversary can do on these elements is to test if two of them are equal or not.

Thus, the situation that the views of the adversary differ can only happen when there

are two different terms ν1 and ν2 that are equal when b = 1. Since αs and s′ only

occur in group G1, the results from f1 cannot be paired. Queries by the adversary can

only be in the form of additive terms. Then it can be derived: ν1 − ν2 = γαs− γ′s′,

where γ is a constant. By transformation, it can be written as: ν1 − ν2 + γ′s′ = γαs.

This implies that by deliberately constructing a query ν1 − ν2 + γ′s′, the adversary

may be able to get the value of e(g, g)γαs. Now it needs to be proved that such a

query cannot be constructed by the adversary based on the information it gets from

the modified game.

In fact, the information that an adversary can acquire from this game is listed as

in Table 3.4. This table excludes values related to LUID as it is not related to αs. To

construct the desired value, the adversary can map two elements from Gs and Gt into

one element in G1. He can also use elements in Zn to change the exponentials. From

this table, it can be easily seen that to obtain a value containing αs, the adversary

can pair βs and (α + rUID)/β to get αs + rUIDs in G1. In fact, this is the only way

to get a term containing αs. But it is not feasible. Both βs and (α+ rUID)/β belong

to Gt while the pairing requires one element from Gs and one from Gt respectively.
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A more detailed illustration for the above argument is that: by conducting the

query on behalf of the users that the adversary has established in Phase 1, the ad-

versary can get a polynomial γαs +
∑

UID∈Uquery γrUIDs, where Uquery is the set of

UIDs used by the adversary. To eliminate the second part in this polynomial, the

adversary can use items in the table containing In−1− In and rUID to construct desir-

able polynomial. But this is impossible for the adversary under the game assumption

because:

• Firstly, the adversary can’t reconstruct s from either tn(In−1− In)hn or (In−1−

In)hn since the hns are chosen as random values for each attribute that it is

impossible to get s =
∑

n∈Pa(In−1 − In) + IPub from them without peeling off

the hns. Here, Pa represents the set of attributes satisfying the policy;

• Secondly, the adversary can’t reconstruct s from IPub and Ii in Zp. This is be-

cause no single user is assumed to satisfy the attribute policy that the adversary

cannot reconstruct a valid attribute combination satisfying the policy. Thus,

he cannot find the constitution of Pa for the equation s =
∑

(In−1− In) + IPub.

• Thirdly, the item with rUID cannot be canceled.

Therefore, based on the information an adversary can get from the proposed

scheme, the attacker can not differentiate a random ciphertext from an authentic

one. The security of the proposed scheme is proved. �
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Table 3.4: Query Information Accessible to the Adversary

µ β rUID + µrPub,UID

rPub hi rUID + hiri

ri (In−1 − In)hn tn(In−1 − In)hn

λ (α + rUID)/β βs

hi

α rUIDIPub rUIDIi

IPub Ii ki

(kntn)−1 hi

3.7 Conclusion

In this chapter, a comprehensive access control solution for ICN network is pro-

posed. This solution is based on a privacy-preserving ABE-based naming scheme.

This scheme greatly reduces the communication and computation overhead compared

to existing ABE solutions. Also, this scheme is designed in a public-key pattern, mak-

ing it more flexible for attribute management. From security and privacy perspective,

the ABE-based naming scheme achieves a high security level as CP-ABE, but with

attribute anonymity protection for policy privacy and flexible attribute rankings. Ex-

periments and analysis confirm the effectiveness of the proposed solution.
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Chapter 4

ATTRIBUTE DELEGATION FOR ID-REVOCABLE ATTRIBUTE BASED

ENCRYPTION

4.1 Introduction

Following the research work on Attribute Based Encryption (ABE) in the pre-

vious chapter, a notable issue came up in real world application scenarios. Under

certain circumstances, the size of attribute policies would be very large in order to

accommodate the need for a set of targeted users.

4.1.1 ID-revocable Attribute Based Encryption

The complex attribute policy issue comes from the fact that the policies in ABE

aim to use combinations of attributes to represent or denote a set of individual users.

When there are a large portion of shared attributes among these users, the policy can

be constructed nice and simple. However, if such condition is difficult to satisfy, a

very complex policy tree may be the only solution with attributes. The corresponding

computation and communication/storage costs would therefore be too large for ABE

to be applied in such circumstances, when it is compared with traditional cryptogra-

phy algorithms or access control mechanisms.

One extreme example of such scenarios is when the targeted users are all the

entities who own a certain attribute, except for a specific user. Following the example

in health care, this attribute can be Physician. Under certain circumstances, a

specific physician (who is denoted as John) at a hospital is rules out of a secret

message that is prepared for all the other physicians at the hospital. There are several
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possible cases when such scenario is true. For instance, John may be temporarily

suspended from his duty. Or the content of the message has certain relation to John.

Therefore, to avoid conflicts of interest, John is determined by hospital administrators

not suitable for this message. Similar reasons can be listed on and on, none of which

is rare in real world scenarios.

In traditional Attribute Based Encryption solutions, to avoid involving John as

this message’s intended receiver, the only option is to use attributes that are not

owned by John. In this example, Physician is definitely not a choice. Instead, it is

necessary to find out all the attribute combinations that are shared by part of the

rest of physicians. This can be done level-by-level to rule out the targeted revocation

user, John. For example, medical department, such as Cardiology and Pediatrics, can

be used to identify people that are not from the same department as John. Other

attribute genre will need to be used to further identify the physicians who work with

John in the same department. Obviously, the resulting policy is much more complex

than using a single attribute Physician.

The above-mentioned example is only for the cases when a single user needs to

be excluded from a group. Cases can become much more complicated when the

number of users for such exclusion is bigger, the size of the user group is larger,

and the constitution of the group is very complicated, e.g. people from different

organizations. Under such circumstances, relying solely on attributes to construct

the policy is not an efficient solution. Intuitively, it can be easier and simpler if it is

possible to rule out the limited number of outliers by their IDs.

Following this idea, several researchers at SNAC group of Arizona State Univer-

sity carried out a study on the feasibilities of enabling ID-revocation in Attribute

Based Encryption schemes. Two schemes were eventually developed and is ready for

publication. With such schemes, user IDs are embedded into the key components of
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user attributes when they are assigned by the Trusted Third Party (TTP). These two

schemes are referred to as the baseline schemes in the rest of this chapter.

4.1.2 Attribute Delegation Issue

The work in this chapter is based on such ID-revocation ABE scheme to further

explore approaches to make it more applicable in real-world scenarios. Specifically,

this chapter aims to solve the issue with key delegation features in such scheme.

Attribute delegation function is supported from the first Ciphertext Policy-ABE

scheme Bethencourt et al. (2007). Most of the subsequent schemes proposed after-

wards do support such delegation function as one of its five core functions. The

delegation function allows a user with attribute set A to be able to generate and

assign attribute keys of set A′, A′ ⊆ A, to other users.

The goal of such function is to help reduce the work load of the TTP in assigning

attribute keys. However, as the f parameter is included in the public key PK in

Bethencourt et al. (2007), there is no limitation on the number or the kind of at-

tributes that a user is allowed to generate/delegate. Thus, any authentic user in the

system is able to generate and assign unlimited amount of attribute keys that are in

its own attribute set to other users, who are not guaranteed to be authentic users.

In real world application scenarios, this means that the authenticity of the in-

tended attribute owners may be jeopardized. When the TTP assigns attribute keys

to users, there is a authentication and authorization process associated with it. Such

process protects the attributes from being assigned to wrong owners or even adversary

parties. However, when a normal user performs the delegation function to generate

attribute keys to other users, there is a risk that the users with the newly assigned

keys may not be the ones that should be allowed to possess the attributes. In other

words, the standards of trust at the TTP and a normal user may be greatly different.
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Therefore, the delegation function provides a potential adversary with an additional

way to gain an attribute that he is not authorized to own.

Following the health care example used in the previous chapter, if the TTP is

assumed to be in charge of attribute assignment at hospital A, then the traditional

delegation approach allows any Physician at this hospital to assign this attribute to

any users not in this system. In real life, it is much easier to gain trust from a human

user than the TTP through different approaches, social engineering as an example.

Thus, it is desirable to design a delegation approach that can help prevent abuse of

delegation functions in ABE schemes.

This chapter aims to conduct a preliminary study on such issue. An exploration

of possible approaches and their relationships with each other is conducted. Based on

that, a restricted delegation approach for the ID-revocable ABE scheme is proposed.

The contribution of the work in this chapter can be summarized as:

• This is the first work, according to the author’s knowledge, on how to control

the use of delegation functions in ABE schemes. Existing ABE schemes use a

component in the public key to enable delegation, which is in a lack of control

on such capability;

• For the ID-revocable ABE scheme proposed before, a corresponding delega-

tion scheme is proposed in this chapter to enforce control over the delegation

function.

4.2 Related Work

In this section, related works are introduced in two parts: the delegation scheme

in original ABE schemes and the ID-revocable ABE scheme that this chapter studies

on.
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4.2.1 Delegation Scheme in Original ABE Schemes

In the original CP-ABE scheme Bethencourt et al. (2007), the TTP sets up the

entire system and publishes the public key to every user within the system. One of

the component in the public key is f = g1/β. This is used in the Delegate function

to generate authentic secret key components for another user. The newly generated

key components need to satisfy two conditions:

• It is authentic in that it can be used in encryption and decryption in the same

way as a key directly obtained from the TTP;

• The newly generated key should be different from the keys belonging to the

delegation user. Otherwise, it does not make much sense as a simple copy of

the delegation user’s key materials will do the same work.

In other words, one of the assumptions hold in the rest of this chapter is that no

user will give a copy of his own keys to any other party in the system.

As the value of f is publicly known to every participants in the ABE system,

any party who has a set of assigned attribute keys from the TTP is able to generate

unlimited amount of new keys for these assigned attributes. The TTP itself has

no control over such behavior. What is worse, the TTP does not even know who

has been assigned with attributes through the delegation process. In this way, one

extreme resulting scenario is that every participant is able to get a delegation key

component for any attribute from a delegation party in the ABE system. In other

words, the entire ABE system may fail if the delegation function is abused without

proper restrictions.
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4.2.2 ID-revocable ABE Scheme

As mentioned in Section 4.1.1, it is necessary to provide a flexible ABE scheme that

supports the revocation of individual identities in policy construction. In this way,

it provides an additional metric (identity) to existing attribute-only policy construc-

tions. In some ABE schemes, users may also treat individual identities as attributes.

However, these schemes uses identities in the same way as traditional attributes in

policy construction. Therefore, they do not help simplify the attribute policy, but

make it more complex.

In the rest of this chapter, identities are treated as a new set of metrics that are

used differently from attributes. If attributes are treated as one dimension to describe

a subject, identities can be viewed as another dimension that has no overlapping

common set with attributes. Specifically, one identity is mutually exclusively owned

by one single user. No two or more users share the same identity.

In the ID-revocable ABE Scheme that this chapter is based on, identities for each

user is embedded in his assigned attribute key components. In other words, the

TTP uses the users identities as one of the input to generate the attribute keys for

corresponding users. A normal user cannot forge his attributes even though he knows

his own identity. A benefit of such approach is that if a user leaks his attribute keys

to other unauthorized users, his identity is embedded in the keys. This makes it

possible to trace back to the person who initially leaked the keys. In traditional ABE

scheme, it is impossible to do so.

When a certain party wants to encrypt a message, he not only creates an attribute

policy for the encryption process. He also needs to provide a list of identities that

should not be allowed to access the message. The combination of the attribute pol-

icy and the identity list determines the group of authorized users. Any user whose
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identity is on this list is not able to decrypt the message. This is enabled through

a mathematical trap that makes the denominator of a fraction become zero. For

authorized users, the fraction denominator equals to the numerator, thus making the

overall value equals to the identity element. The list of unauthorized users’ identities

are published together with the ciphertext to make sure anybody who receives a copy

of the ciphertext is aware of such list.

4.3 Discussion on Attribute Delegation

Problem Statement: The goal of restricted attribute delegation is to block an

attribute assignee from further acting as an delegation party for certain attributes

assigned by the TTP.

Restricted delegation is in fact a very important feature for attribute delegations.

Without a properly designed system to support it, authentic users may be able to

grant privilege to untrusted parties. For instance, an authentic user may have a lower

standard or an incomplete view of the standard for assigning a certain attribute. He

may assign the attribute to an attacker based on his partial judgment. In other cases,

an authentic user may accidentally or intentionally assign an attribute to unqualified

users. Under such circumstances, the TTP is virtually deprived of his control over

the attribute management.

How to view the attribute delegation capability is an important starting point.

Under a general assumption, the entire delegation hierarchy is a tree structure rooted

at the TTP. From the TTP’s perspective, ruling out the attribute capability of a

certain node is removing a subtree. As long as the root of the subtree is revoked,

the children in that subtree are revoked. In other words, what is desired is an on-off

switch associated with a certain node in the tree so that the TTP or any other parent

to that node is able to toggle the switch.
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Under different application scenarios, the requirements on restricted delegation

are different. Here, mainly three scenarios are proposed and discussed: breadth-first

restriction, depth-first restriction, and hybrid restriction.

For breadth-first restriction, the goal is to enable a parent to be able to block

some of his children, which are referred to as blocked users, from further delegating

an attribute or a set of attributes. All the children of the blocked users are deprived

of the attribute. In other words, an on-off switch needs to be implemented for the

parent so that he can make a binary decision on whether allowing further delegation

of certain attributes or not. If the delegation relationship is viewed as a tree structure,

the goal of this category is to disable a sub-tree of the original delegation tree. Such

decision is made at the root of the sub-tree. As in the example of Figure 4.1, if

the TTP in the delegation tree specifies blocking delegation of his child A, user A is

allowed for possessing the attribute while none of the grandchildren (User D and E)

is able to do so. The delegation capability of A is blocked though A still possesses

such an attribute.

Figure 4.1: Breadth-First Restriction.

For depth-first restriction, the goal is to allow a parent to designate the maximum

depth (or number of levels) of delegation relationship allowed in the delegation tree
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structure. It differs from the previous category in that the parent can block not only

the immediate children, but also grandchildren depending on how many levels he

specifies. In the example of Figure 4.2, the root node TTP specifies that the target

attribute can be delegated by its children for one more level, meaning only up to its

grandchildren can have such attribute. In this case, the delegation capability of D

and E are blocked, making it impossible for F to get such attribute from D.

Figure 4.2: Depth-First Restriction.

It is necessary to stress that in both Figure 4.1 and 4.2, delegation restrictions can

be enforced by any node that possesses the attribute (blue nodes in both figures), not

necessarily the root of the whole tree, i.e. the TTP. Thus, at each node, the effect

of delegation restrictions is a combination of all the rules set by every node along

the path from itself to the root. For example, the effect at node F in Figure 4.1 is a

combination of rules set by TTP and node C. Following such combination idea is the

hybrid restriction.

For hybrid restriction, the goal is to block specific individual child or grandchild

from being able to further delegate the target attributes. This category is more

general, yet more difficult to achieve. By specifying black list of unwanted attribute

delegates, the TTP is able to rule out the delegation capability of certain nodes.
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This requirement is very similar to attribute revocation. The only difference is in

the capability that is being revoked: attribute delegation v.s. attribute ownership.

Hybrid restriction is the most flexible delegation control form that suits most of the

application scenarios.

Before going into further details, there is one more assumption that needs to be

emphasized. Obviously, if an attribute owner A sends an exact copy of his attribute

components to an illegal attribute assignee B, the assignee does possess the same

capability as an authentic owner of that attribute. Under such circumstances, it

is obviously impossible to prevent A from enabling B with the attribute capability.

However, such action will not be treated as a violation of the restricted attribute del-

egation capability this work is targeting for. This is because there is no new attribute

components created during the entire process. It is more of a key management issue

than attribute delegation. Thus, one assumption to follow is that:

Assumption:

A delegation key is guaranteed to share no key component with the original key

it is derived from. This includes both the K part and the Kx part.

Starting from the simplicity point of view, it would be possible if a trap can be

added to the original CP-ABE attribute key component. The trap plays as the on-off

switch so that the attribute assigner is able to decide whether to allow the assignees

to further delegate.

An interesting problem with attribute delegation is: how to blindly block a group

of users from being able to use an attribute. The issue is that in the original CP-ABE

scheme, there is no way to exclude an organization of users out of a certain decryption

other than specifying a certain attribute that exclusively identifies that organization.
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This incurs heavy attribute management workload in applications. Such issue comes

from a lack of connections between the TTP and its attribute assignees in the at-

tribute key components. With the proposed schemes, such connection is established

through the ID value in the key component. Following this idea, anonymous attribute

delegation is further illustrated with a use case.

A typical application scenario where the anonymous attribute delegation plays

an important role is when the key of an organization A is compromised. Under

such circumstances, every attribute key assigned under organization A needs to be

revoked. Following the previous examples, an application scenario in health care is:

the administrator at hospital A is compromised and therefore all the attributes within

the hospital should be voided. Next time when Department of Health and Human

Services(HHS) sends out a message, those attribute owners in hospital A should not

be able to use their attributes for a successful decryption.

In the proposed preliminary scheme in the next section, this scenario maps A to

a user who also has the capability for attribute delegation from TTP. Following the

idea of delegation algorithm, a user’s key is generated using A’s ID as the ID value in

the generated key components. Thus, when needed, all the keys can be anonymously

revoked by TTP using A’s ID, even though the key owners’ IDs are not known to

TTP (HHS in this case). With such capability, the TTP does not have to be aware

of the individual users under each organization. Instead, when needed, the keys can

be more efficiently revoked with the anonymous attribute delegation. The fact that

the TTP does not need to know individual users’ identities provides certain degree of

anonymity to the system. All the TTP needs to know is the identity of the delegation

party, in this example, the hospital.

The preliminary scheme solves the issue of enforcing permission on delegation

functions by the TTP. However, it only supports one identity in each attribute key
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component. If used as the delegation agent’s identity, the individual users’ identities

are not included in the keys. Thus, it is impossible to revoke those identities when

used with the id-revocable ABE scheme. What’s more desirable is a scheme that

is able to support revocation based on both delegation agency’s identities and the

attribute key users’ identitites.

4.4 Proposed Delegation Scheme for ID-revocable ABE

Continuing from previous discussions, two categories of attribute delegation schemes

are proposed. As a preliminary solution, the first scheme allows only one identity in

the key attribute components for delegation. Based on this scheme, a further step

on attribute delegation is that both individual users and delegation agents, organi-

zations for instance, can be revoked at the same time. To enable such capability,

two IDs need to be embedded, one for individual users and the other for delegation

agents, into ciphertexts and attribute keys. Following this idea, a modification to the

preliminary approach will be presented.

4.4.1 Preliminary Attribute Delegation Scheme

Before going into details of the preliminary delegation scheme, it is necessary to

provide details of the scheme functions of the ID-revocable ABE scheme. It is a joint

work by the author with his advisor and two other members of the research group.

The scheme is as follows:

a. Setup(U , I)

The Setup algorithm takes an attribute set U and an identity set I as inputs, where

|U| = m and |I| = n. It chooses a group G of prime order p, a generator g of the

group, and m random group elements h1, h2, · · · , hm ∈ G that are associated with
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the m attributes in the system. It also chooses random exponents α, b ∈ Zp, which

are kept as the master secrets for the entire system.

Therefore, the public key is in the form:

PK = {g, gb, gb2 , e(g, g)α, hb1, · · · , hbm}.

The master secret key is in the form:

MSK = {α, b}.

b. KeyGen(MSK,S, ID)

S is the attribute set of user ID ∈ I. KeyGen algorithm chooses a random t ∈ Zp

and generates secret keys for user ID as follows:

SK = (K = gαgb
2t, {Kx = (gb·IDhx)

t}∀x∈S, L = g−t).

c. Encrypt(PK, (M, ρ),M, IDj)

Encrypt algorithm takes as inputs: an LSSS access infrastructure (M,ρ) and the func-

tion ρ associates each row of M to corresponding attributes. IDj is the identity to be

revoked. Let M be an l×n′ matrix. The Encrypt algorithm chooses a random vector

v = (s, y2, · · · , yn′) ∈ Zn′p . These values will be used to share an encryption exponent

s. For x ∈ [1, l], it calculates λx = v ·Mx, where Mx is the vector corresponding to

the x-th row of M . The Encrypt algorithm chooses random values r1, · · · , rl ∈ Zp.

Then, for message M, the ciphertext is presented as follows:

C =Me(g, g)αs,

C0 = gs,

Ĉ = {C∗k = gb·λk , C ′k = (gb
2·IDjhbρ(k))

λk}∀k=1,...,l.
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d. Decrypt(CT,SK)

CT is the input ciphertext with access structure (M,ρ) and SK is a private key for

an attribute set S:

CT = (C,C0, Ĉ, (M,ρ)).

Suppose that S satisfies the access structure and let I ⊂ {1, 2, ..., l} be defined

as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a set of constants such that if {λi} are

valid shares of any secret s according to M , then Σi∈Iωiλi = s. If the identity ID

embedded in SK is not equal to the revocation identity IDj in the ciphertext, the

decryption process can be performed as:

e(C0, K)

(
∏

i∈I [e(Kρ(i), C
∗
i ) · e(L,C ′i)]ωi)1/(ID−IDj)

=
e(gs, gαgb

2t)

(
∏

i∈I [e((g
b·IDhρ(i))t, gb·λi) · e(g−t, (gb2·IDjhbρ(i))

λi)]ωi)1/(ID−IDj)

=
e(gs, gα) · e(gs, gb2t)

(
∏

i∈I [e(g
b·ID·t, gb·λi) · e(htρ(i), g

b·λi) · e(g−t, gb2·IDj ·λi) · e(g−t, hb·λiρ(i))]
ωi)1/(ID−IDj)

=
e(g, g)αs · e(g, g)b

2st

(
∏

i∈I [e(g, g)b2tλi(ID−IDj)]ωi)1/(ID−IDj)

=
e(g, g)αs · e(g, g)b

2st

(
∏

i∈I e(g, g)b2tλiωi)

=
e(g, g)αs · e(g, g)b

2st

e(g, g)b
2t

∑
i∈I λiωi

= e(g, g)αs
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e. Preliminary Delegation

K̃ = K · gb2t′ = gαgb
2(t+t′),

K̃x = K((t+t′)/t)
x = (gb·IDhx)

(t+t′) = Kx · gb·ID·t
′ · ht′x ,

L = g−t.

Here, hx is a random element selected by the TTP. It corresponds to one attribute

defined in the cryptosystem. Without a knowledge of hx, an entity cannot generate

an authentic K̃x value. When TTP allows a certain party to delegate an attribute,

it assigns hx to the entity. The entity selects a random value t′. The other parts of

˜SK can be generated by the delegation agent based on public keys. Specifically, the

component K̃ can be calculated as product of K and gb
2t′ , where K is a part of the

delegation agent’s own key. K̃x can be calculated as the product of Kx, g
b·ID·t′ , and

ht
′
x . Here, ID is the identity of the delegation agent instead of the targeted user. gb

is one of the public parameters that are published by the TTP with Setup() function.

With this approach, the value hx is what is needed to turn an ordinary user into

a delegation agent. Revealing the hx value to a user becomes a feasible approach

for restricting the delegation capability of the delegation agent. By providing a false

value, i.e. a mismatching t’ to hx, to the agent, he cannot generate authentic key

components of the key.

4.4.2 Modified Revocation-supporting Schemes

As discussed before, the preliminary scheme cannot sufficiently meet the demand

of revoking a delegation agency and/or an individual user at the same time. It is

desirable to be able to embed both delegation agency’s identity, which is named as
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delegation identity or delegation ID in the rest of this chapter, and user’s own identity,

which is referred to as user identity or user ID, in the same policy.

An ideal situation is that the delegation ID is a prefix of the user ID and a powerful

algorithm is able to revoke either a prefix or the entire length of the identity. However,

as explained before, the success of the ID-revocable scheme is based on the fact that

a denominator cannot be equal to zero. If prefix is used as in the perfect algorithm,

such foundation fact cannot be satisfied. Thus, this “perfect” solution is not feasible

in real-world application scenarios.

Comparatively, a less perfect, but more realistic solution is to assign two identities

(a delegation ID and a user ID) into the attribute key components. A user is not

allowed to successfully decrypt a ciphertext if both his delegation ID and his user ID

are in the list of revoked identity list constructed by the encrypting party. In other

words, this approach uses two lists, one for delegation IDs and the other for user

IDs, to realize the expected revocation goal. A user is not revoked from a successful

decryption if only his delegation ID or only his user ID is included in the lists. In

other words, a pair of (delegation ID, user ID) is used to pin-point to individual users.

This feature is supported based on the same fact that a denominator cannot be equal

to zero in decryption process.

In the rest of this section, two schemes are introduced. The first scheme is based

on the single-ID revocation ABE scheme that is a result of a joint research work by

the author and his colleagues. The second one corresponds to the scheme from the

same work for multiple ID revocation purpose. Both schemes presented below are

significantly modified versions following the discussion as illustrated in the previous

paragraphs.
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4.4.3 Single-ID Two-Level Revocation for CP-ABE Scheme (SID2LR-CP-ABE)

In the following, five functions are presented for SID2LR-CP-ABE scheme. The

first four functions are deep modifications of the previous research work, while the

last function is presented for the first time for restricted delegation purpose.

a. Setup(U , I)

The Setup algorithm is run by the TTP to set up global parameters for the entire

cryptosystem. It takes an attribute set U , where |U| = m. Depending on how the

keys for a specific user are generated, each user is assigned with a user identity from

the set I, |I| = n, and a delegation identity, which represents the delegator’s identity.

It chooses a group G of prime order p, a generator g, and m random group elements

h1, h2, · · · , hm ∈ G that are associated with the m attributes in the system. It also

chooses random exponents α, β, b ∈ Zp.

Therefore, the public key is published to all the entities in the system following

the form:

PK = {g, gb, gb2 , e(g, g)α, e(g, g)β, hb1, · · · , hbm}.

The Master secret key is in the form:

MSK = {α, β, b}.

They are the global secret that is only known to the TTP. A leak of the MSK

will compromise the entire cryptosystem.

b. KeyGen(MSK,S, ID)

This algorithm is run once for each user ID by the TTP. It generates the corresponding

attribute keys for the user. Here S is the attribute set of user IDu ∈ I, whose keys are
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taken from delegator IDd. KeyGen algorithm chooses a random t ∈ Zp and generates

secret keys for user ID as follows:

SK = (K = g(α+β)gb
2t, {Kx = (gb·IDuhx)

t}∀x∈S, {K ′x = (gb·IDdhx)
t}∀x∈S, L = g−t).

c. Encrypt(PK, (M, ρ),M, IDj)

This is the encryption algorithm that can be run by any user who encrypts a certain

message. Encrypt algorithm takes an LSSS access infrastructure (M,ρ) as input.

The function ρ associates each row of M to corresponding attributes. IDj is the user

identity to be revoked, IDh is the delegator identity to be revoked. Let M be an l×n′

matrix. The Encrypt algorithm first chooses a random vector v = (s, y2, · · · , yn′) ∈

Zn′p . These values will be used to share an encryption exponent s. For x ∈ [1, l], it

calculates λx = v ·Mx, where Mx is the vector corresponding to the x-th row of M .

The Encrypt algorithm chooses random r1, · · · , rl ∈ Zp. Then, for message M, the

ciphertext is presented as follows:

C =Me(g, g)(α+β)s,

C0 = gs,

Ĉu = {C∗uk = gb·λk , C ′uk = (gb
2·IDjhbρ(k))

λk}∀k=1,...,l,

Ĉd = {C∗dk = gb·λk , C ′dk = (gb
2·IDhhbρ(k))

λk}∀k=1,...,l.

d. Decrypt(CT,SK)

This is the decryption algorithm that can be run by any user in this system. Here

CT is the input ciphertext with access structure (M,ρ) and SK is a private key for

a set S of attributes:

CT = (C,C0, Ĉ, (M,ρ)).
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Suppose that S satisfies the access structure and let I ⊂ {1, 2, ..., l} be defined

as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a set of constants such that if {λi} are

valid shares of any secret s according to M , then Σi∈Iωiλi = s. If the user identity

IDu combined in the SK is not equal to the revocation identity IDj in the ciphertext

and the delegation identity IDd is not equal to IDh in the ciphertext, the decryption

process can be performed as:

e(C0, K)

(
∏

i∈I [e(Kρ(i), C
∗
ui) · e(L,C ′ui) · e(K ′ρ(i), C

∗
di) · e(L,C ′di)]ωi)∆j,h

=
e(gs, g(α+β)gb

2t)

(
∏

i∈I [e((g
b·IDuhρ(i))t, gb·λi) · e(g−t, (gb2·IDjhbρ(i))

λi) · e((gb·IDdhρ(i))t, gb·λi)

·e(g−t, (gb2·IDhhbρ(i))
λi)]ωi)∆j,h

=
e(gs, gα) · e(gs, gβ) · e(gs, gb2t)

(
∏

i∈I [e(g
b·IDu·t, gb·λi) · e(htρ(i), g

b·λi) · e(g−t, gb2·IDj ·λi) · e(g−t, hb·λiρ(i))

·e(gb·IDd·t, gb·λi) · e(htρ(i), g
b·λi) · e(g−t, gb2·IDh·λi) · e(g−t, hb·λiρ(i))]

ωi)∆j,h

=
e(g, g)(α+β)s · e(g, g)b

2st

(
∏

i∈I [e(g
b·IDu·t, gb·λi) · e(g−t, gb2·IDj ·λi) · e(gb·IDd·t, gb·λi) · e(g−t, gb2·IDh·λi)]ωi)∆j,h

=
e(g, g)(α+β)s · e(g, g)b

2st

(
∏

i∈I [e(g, g)b2tλi(IDu−IDj) · e(g, g)b2tλi(IDd−IDh)]ωi)∆j,h

=
e(g, g)(α+β)s · e(g, g)b

2st

(
∏

i∈I e(g, g)b2tλiωi)

=
e(g, g)(α+β)s · e(g, g)b

2st

e(g, g)b
2t

∑
i∈I λiωi

= e(g, g)(α+β)s, where∆j,h = 1/(IDu − IDj + IDd − IDh)

e. Delegate(SK, S̃)

To create a set of authentic attribute keys for a user A from a delegator’s own attribute

key, it requires the delegator to acquire some key elements from the TTP. Here, S̃ ⊂ S

is a subset of the attributes possessed by a delegator IDd, which is also the set of
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attributes for user A. The IDu of the delegator in Kx of KeyGen algorithm is in fact

the ID′d in K̃x. The goal is to create the key materials for ID′u, i.e. user A, based on

the key materials for the delegator. The generated attribute keys for user A are:

K̃ = K · gb2t′ = g(α+β)gb
2(t+t′),

{K̃x = (gb·ID
′
uhx)

(t+t′)}∀x∈S̃,

{K̃ ′x = (gb·ID
′
dhx)

(t+t′) = Kx · gb·ID
′
dt
′ · ht′x = Kx · gb·IDut

′ · ht′x}∀x∈S̃,

L = g−t.

As a delegation agent, the required information from the new user A is his identity

ID′u. The delegator chooses a random value t′ for the user and calculates K̃ as product

of the delegator’s own K and gb
2t′ . Here, gb

2
is a public parameter. Similar to the

preliminary scheme, hx is required from the TTP to convert a normal user to a

delegation agent. With t′ and hx, a delegator is able to calculate K̃ ′x. Here, the IDu

is the identity of the delegator. K̃x can be viewed as the product of (gb·ID
′
uhx)

t and

(gb·ID
′
uhx)

t′ . It’s not difficult for the delegator to calculate the value of (gb·ID
′
uhx)

t′ .

However, for (gb·ID
′
uhx)

t, the TTP has two options to enable the delegation capability.

The first option is that the delegator sends the user’s identity ID′u to the TTP and the

TTP calculates (gb·ID
′
uhx)

t for the delegator. The second approach is that the TTP

assigns the value pair (gbt, htx) to the delegator to allow the delegation capability. The

first option allows the TTP to control not only which attribute an agent is allowed to

delegate, but also which user is allowed to take the attribute from the delegator. The

cost for such advanced capability is the computation cost happened at the TTP. The
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second approach only allows the TTP to control which attribute an agent is allowed

to delegate. In either case, without the information from the TTP, the delegation

capability will be blocked. In other words, without such information, an ordinary

user cannot generate legit attribute key components for any other user in the system.

4.4.4 Multiple-ID Two-Level Revocation for CP-ABE Scheme (MID2LR-CP-ABE)

The above-mentioned scheme is designed for enabling restricted delegation capa-

bility while revoking a single user, i.e. a single pair of (delegation ID, user ID). To

further extend such a capability in real world application scenarios, a modified scheme

is presented below to support multiple ID revocation.

a. Setup(U , I)

This algorithm is run to establish the entire cryptosystem. The TTP generates global

security parameters through this algorithm. The algorithm takes an attribute set U

and an identity set I as input, where |U| = m and |I| = n. It chooses a group G of

prime order p, a generator g and m random group elements h1, h2, · · · , hm ∈ G that

are associated with the m attributes in the system. It also chooses random exponents

α, β, b ∈ Zp, which are kept as global secret keys.

Therefore, the public keys are output as:

PK = {g, gb, gb2 , e(g, g)α, e(g, g)β, hb1, · · · , hbm}.

These keys are published globally to every participant in this system.

The Master secret key is:

MSK = {α, β, b}.

MSK is stored securely at the TTP and is only known to the TTP itself. A leak

of this key will directly compromise the entire system.
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b. KeyGen(MSK,S, ID)

This algorithm is run by the TTP to generate individual attribute keys for each user.

The TTP runs this algorithm for each member of the system when they join in it. In

this algorithm, S is the attribute set of user IDu ∈ I. IDd is the delegation ID of

the same user. The algorithm chooses a random t ∈ Zp and derives the secret keys

for the user as follows:

SK = (K = g(α+β)gb
2t, {Kx = (gb·IDuhx)

t}∀x∈S, {K ′x = (gb·IDdhx)
t}∀x∈S, L = g−t).

Here, Kx and K ′x are generated corresponding to each attribute that the user

owns. Thus, the overall size of SK differs from user to user and it is closely related

to the number of attributes a user has.

c. Encrypt(PK, (M, ρ),M,S)

This algorithm is designed for every user in the system. It takes an LSSS access

infrastructure (M,ρ) and a function ρ associates rows of M to attributes as input. Let

M be an l×n′ matrix. The algorithm chooses a random vector v = (s, y2, · · · , yn′) ∈

Zn′p . These values will be used to share the encryption exponent s. For x ∈ [1, l],

it calculates λx = v ·Mx, where Mx is the vector corresponding to the x-th row of

M . Let r = |S|. IDuj is used to denote the j-th user identity in S and IDdj denotes

the j-th delegation identity. The algorithm chooses random µ1, ..., µr ∈ Zp such that
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µ = µ1 + ...+ µr. The generated ciphertext is in the form as follows:

C =Me(g, g)(α+β)sµ, C0 = gsµ

C∗1,1 = gb·λ1µ1 , Cu
′
1,1 = (gb

2·IDu1hbρ(1))
λ1µ1 , Cd

′
1,1 = (gb

2·IDd1hbρ(1))
λ1µ1 · · ·

C∗l,1 = gb·λlµ1 , Cu
′
l,1 = (gb

2·IDu1hbρ(l))
λlµ1 , Cd

′
l,1 = (gb

2·IDd1hbρ(l))
λlµ1 ;

C∗1,2 = gb·λ1µ2 , Cu
′
1,2 = (gb

2·IDu2hbρ(1))
λ1µ2 , Cd

′
1,2 = (gb

2·IDd2hbρ(1))
λ1µ2 · · ·

C∗l,2 = gb·λlµ2 , Cu
′
l,2 = (gb

2·IDu2hbρ(l))
λlµ2 , Cd

′
l,2 = (gb

2·IDd2hbρ(l))
λlµ2 ;

· · ·

C∗1,r = gb·λ1µr , Cu
′
1,r = (gb

2·IDurhbρ(1))
λ1µr , Cd

′
1,r = (gb

2·IDdrhbρ(1))
λ1µr · · ·

C∗l,r = gb·λlµr , Cu
′
l,r = (gb

2·IDurhbρ(l))
λlµr , Cd

′
l,r = (gb

2·IDdrhbρ(l))
λlµr .

d. Decrypt(CT,SK)

In the decryption process, CT is the input ciphertext with access structure (M,ρ)

and SK is a private key for an attribute set S. Suppose that S satisfies the access

structure and let I ⊂ {1, 2, ..., l} be defined as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I

be a set of constants such that if {λi} are valid shares of any secret s according to

M , then Σi∈Iωiλi = s. If the identity IDu embedded in the SK is not equal to the

revocation identity IDuj in the ciphertext and the identity IDd embedded in the SK

is not equal to the revocation identity IDdj in the ciphertext, the decryption process

can be carried out as:
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e(C0, K)∏
i∈I(

∏r

j=1[e(Kρ(i), C
∗
i,j) · e(L,Cu′i,j) · e(K ′ρ(i), C

∗
i,j) · e(L,Cd′i,j)]∆j)ωi

=
e(gsµ, gα+βgb

2t)∏
i∈I(

∏r

j=1[e((gb·IDuhρ(i))t, gb·λiµj) · e(g−t, (gb2·IDujhbρ(i))
λiµj)

·e((gb·IDdhρ(i))t, gb·λiµj) · e(g−t, (gb2·IDdjhbρ(i))
λiµj)]∆j)ωi

=
e(gsµ, gα) · e(gsµ, gβ) · e(gsµ, gb2t)∏

i∈I(
∏r

j=1[e(gb·IDu·t, gb·λiµj) · e(htρ(i), g
b·λiµj) · e(g−t, gb2·IDuj ·λiµj) · e(g−t, hb·λiµjρ(i) )

·e(gb·IDd·t, gb·λiµj) · e(htρ(i), g
b·λiµj) · e(g−t, gb2·IDdj ·λiµj) · e(g−t, hb·λiµjρ(i) )]∆j)ωi

=
e(g, g)αsµ · e(g, g)βsµ · e(g, g)b

2sµt∏
i∈I(

∏r

j=1[e(gb·IDu·t, gb·λiµj) · e(g−t, gb2·IDuj ·λiµj)

·e(gb·IDd·t, gb·λiµj) · e(g−t, gb2·IDdj ·λiµj)]∆j)ωi

=
e(g, g)αsµ · e(g, g)βsµ · e(g, g)b

2sµt∏
i∈I(

∏r

j=1[e(g, g)b2tλiµj(IDu−IDuj) · e(g, g)b
2tλiµj(IDd−IDdj)]∆j)ωi

=
e(g, g)(α+β)sµ · e(g, g)b

2sµt∏
i∈I(

∏r

j=1 e(g, g)b2tλiµj)ωi

=
e(g, g)(α+β)sµ · e(g, g)b

2sµt∏
i∈I(e(g, g)

(
∑r

j=1 µj)b
2tλi)ωi

=
e(g, g)(α+β)sµ · e(g, g)b

2sµt

e(g, g)b
2tµ

∑
i∈I λiωi

= e(g, g)(α+β)sµ, where∆j = 1/(IDu − IDuj + IDd − IDdj)

With the value of e(g, g)(α+β)sµ and the ciphertext C, the message M can be

recovered successfully.

e. Delegate(SK, S̃)

Due to the fact that the key structure of both SID2LR-CP-ABE and MID-2LR-

CP-ABE are highly resemble to each other, the delegation algorithms are similarly

designed. To create a set of authentic attribute keys for a user A from a delegator’s

own attribute key, it requires the delegator to acquire some key elements from the
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TTP. Here, suppose S̃ ⊂ S is a subset of the attributes possessed by a delegator

IDd, which is also the set of attributes for user A. The IDu of the delegator in Kx of

KeyGen() function is in fact the ID′d in K̃X . The goal is to create the keys for IDu,

i.e. user A, based on the key materials for the delegator. The generated attribute

keys are:

K̃ = K · gb2t′ = g(α+β)gb
2(t+t′),

{K̃x = (gb·ID
′
uhx)

(t+t′)}∀x∈S̃,

{K̃ ′x = (gb·ID
′
dhx)

(t+t′) = Kx · gb·ID
′
dt
′ · ht′x = Kx · gb·IDut

′ · ht′x}∀x∈S̃,

L = g−t.

Similar as in SID2LR-CP-ABE, the required information from the new user A is

his identity ID′u. The delegator chooses a random value t′ for the user and calculates

K̃ as product of the delegator’s own K and gb
2t′ . Here, gb

2
is a public parameter

published by the TTP through Setup() function. Similar to the preliminary scheme,

hx is a required component to convert a normal user to a delegation agent. With t′ and

hx, a delegator is able to calculate K̃ ′x. Here, IDu is the delegator’s identity instead

of the user A’s. K̃x can be viewed as the product of (gb·ID
′
uhx)

t and (gb·ID
′
uhx)

t′ .

It’s not difficult for the delegator to calculate the value of (gb·ID
′
uhx)

t′ . However, for

(gb·ID
′
uhx)

t, the TTP has two options to enable the delegation capability. The first

option is that the delegator sends the user’s identity ID′u to the TTP and the TTP

calculates (gb·ID
′
uhx)

t for the delegator. The second approach is that the TTP assigns

the value pair (gbt, htx) to the delegator to allow the delegation capability. As discussed
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before, the first option allows the TTP to control not only which attribute an agent

is allowed to delegate, but also which user is allowed to take the attribute from the

delegator. The cost for such advanced capability is the computation cost happened

at the TTP. The second approach only allows the TTP to control which attribute an

agent is allowed to delegate. In either case, without the information from the TTP,

the delegation capability will be blocked. In other words, without such information,

an ordinary user is not able to generate legit attribute key components for any other

user in the system.

4.5 Analysis on the Proposed Scheme

The schemes proposed in the previous section enable restricted delegation capa-

bility for ABE schemes. In this section, how these schemes can be used in different

application scenarios are discussed. Moreover, the performance overhead introduced

by these schemes, compared to previous solutions, is also analyzed in this section.

4.5.1 Application Scenarios

For the usage of the preliminary delegation scheme, a typical application scenario

is illustrated in Figure 4.3. The TTP defines three attributes globally in this exam-

ple. Following the restricted delegation feature, the TTP selects users ID1 and ID2

as delegation agents. These two agents are able to help reduce the burden of key

generation for the TTP. To some extent, they can help distribute and balance the

workload of the TTP. As illustrated in Figure 4.3, ID1 generates the attribute keys

for users ID3 and ID4 in green color while ID2 generates the keys for ID5 and ID6 in

red color.

The illustrated example is simple in that the number of attributes defined and the

amount of users involved are small. When extended to real world scenarios with larger
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amount of users and attributes, the effectiveness of such load-balanced delegation is

much more significant.

Figure 4.3: Preliminary Delegation Solution Application Scenario

The designs of SID2LR-CP-ABE and MID2LR-CP-ABE schemes are for the same

goals in terms of ID revocation functionality. Therefore, their application scenarios

are discussed together in this section. As illustrated before, using attributes only

to describe a certain set of users has its application limitations. Depending on how

each attribute is defined and assigned, cases are different. Using IDs together with
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attributes allows a user to represent a group of users with more concise policy con-

structions. Moreover, under certain circumstances, it also makes it possible to identify

certain sets of user combinations.

From delegation perspective, the goal is different. As mentioned before, instead

of allowing any user to generate unlimited key components, only designated users are

allowed to generate authentic new key components in the proposed scheme. Moreover,

this scheme overcomes the identity issue with the preliminary scheme discussed above.

In other words, the message encryption party is able to identify a specific (delegation

ID, user ID) pair to be revoked from decryption. In the preliminary scheme, as

there is only one ID embedded in the key components, a key generating party can

either assign a delegation ID or a user ID to the new keys, not both of them at the

same time. Therefore, the proposed scheme is more robust and more applicable for

real-world applications.

As shown in Figure 4.4, the TTP assigns three attributes to ID1 and ID2 re-

spectively. With the assigned attribute key components, neither ID1 nor ID2 is able

to generate new key components by themselves or by collusion with each other. To

further generate keys for ID3 and ID4, ID1 requests for permission from the TTP.

From the angle of the TTP, it is able to disable a certain delegation capability from

three levels:

• Delegation Agent: As shown in Figure 4.4, ID2 is revoked from further delegat-

ing his attributes to other users in the system. In other words, with the proposed

scheme, the TTP is able to deprive any user of his delegation capability;

• Delegation Attribute: This corresponds to the case of Attr1 under ID1 in Figure

4.4. The TTP is able to identity which specific attribute that a user is requesting

for delegation purpose based on the proposed schemes;
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Figure 4.4: Proposed Delegation Solution Application Scenario

• Delegation Receiver: Using the proposed scheme, the TTP is also able to trace

and block a certain user from getting an attribute key assigned by a delegation

agent. This corresponds to the case of ruling out ID3 from the key delegation

scenario in Figure 4.4.

Delegation Agent level corresponds to the need for an on-off switch in the delega-

tion hierarchy in order to enforce restricted delegation capability as discussed before.

It is the basis for other delegation restriction forms.
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Delegation attribute is a new level that allows the TTP to define if a certain at-

tribute is suitable for delegation purpose. For different attributes, their corresponding

meanings and sensitivities in real world vary a lot. For sensitive attributes, it is of-

ten preferred to be managed and assigned by the TTP only, in order to maintain a

high level of security. The issue with delegation is that it involves more participants

into the key management and assignment process, which incurs more risk to security

breaches. The TTP is assumed to have the highest security level in most scenar-

ios, while a delegation agent is not guaranteed for the same capability. Delegation

attribute allows the TTP to keep the control of certain attributes to itself.

Delegation Receiver allows the TTP to rule out certain users from getting attribute

keys from a delegation agent. Similar to the discussion in the previous paragraph,

some users may not be able to directly acquire certain attribute keys from the TTP

due to their lack of trust by the TTP. Therefore, a feasible approach for them is to get

a key component from a certain delegation agent as long as he can obtain trust from

that agent. From the TTP’s perspective, such approach is harmful to the integrity

of the entire cryptosystem. The Delegation Receiver feature allows the TTP to block

such approach so that certain users are virtually excluded from the system.

4.5.2 Delegation Agent Federation

One issue that comes with the proposed schemes is that if a user gets attribute keys

from two or more delegation agents, these keys cannot be used for decryption at the

same time. This is because the Delegation ID embedded in these attribute keys are

different from agent to agent. Another reason is that the random value t’s selected

by these agents are not guaranteed to be the same by default. Therefore, under

traditional system assumptions, these keys from different agents are not compatible

with each other.
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However, if the assumption is changed to that the Delegation Agents are selected

by the TTP carefully such that they can be trusted at the same level as the TTP,

then such issue can be solved. As mentioned in the Delegate function sections of each

scheme, the crucial parts that define a delegation key are IDd and t. When all the

Delegation Agents are trusted, there is no need to revoke a specific agent. Therefore,

the value of IDd can be set to a common value IDD. When an agent creates keys for

a user, this value IDD is used as the delegation ID in the user’s key. In this way, all

the delegation ID values in the delegation keys are set to the same value. Therefore,

the Delegation ID difference issue is solved.

The other issue that needs to be addressed is the random value t. One approach

for such issue is secure multi-party computation. The goal is to compute a random

value t by all the Delegation Agents. This approach is secure, but it requires a large

amount of computation and communication cost among all the Delegation Agents.

When applied in mobile environment, such requirements are not easy to be satisfied.

Another approach is to make the user as the media for communications among all the

agents. When the first agent gets a request for attributes from a user, it randomly

chooses the value for t and use other agents’ public keys to encrypt the random value.

The results are sent back to the user so that next time when it requests attributes

from another agent, it needs to present the ciphertext to the agent so that the value

t can be acquired by the agent.

Following the above discussion, the proposed schemes can be extended to support

federation among Delegation Agents. It is worthwhile to point out that the discussion

presented above is a special application case of the proposed schemes.
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4.5.3 Performance Complexity Analysis

From performance perspective, it is worthwhile to analyze the cost for the addi-

tional delegation features introduced in the proposed schemes. In this section, such

cost is further divided into computation cost and storage cost. A comprehensive anal-

ysis on the proposed schemes is provided in terms of complexity with regard to the

notations listed in Table 4.1. Among all the schemes, there are five functions: Setup(),

KeyGen(), Encrypt(), Decrypt(), and Delegate(), respectively. The analysis is carried

out corresponding to the same function in each scheme in terms of computation cost

and storage cost.

Computation Complexity Analysis

When analyzing the computation complexity, it is necessary to find out the most

time-consuming operations involved in all the schemes. In fact, there are mainly four

types of operations that are time-consuming: Pairing, Exponentiation, Multiplica-

tion, and Inversion. According to Li et al. (2014), the most computation-intensive

operations are Pairing and Exponentiation. Thus, in this section, the amount of pair-

ing operations and that of exponentiation operations needed for each function are

taken as metrics for computation complexity. The complexity of all the schemes in

the two metrics are presented in Table 4.2 and Table 4.3 respectively. The schemes

OIDR-CP-ABE and MIDR-CP-ABE are the base schemes for SID2LR-CP-ABE and

MID2LR-CP-ABE, respectively. The analysis is presented as follows:

In the original CP-ABE scheme, the amount of pairing operations needed for

Setup() function is 1. Pairing is only incurred in calculating for the value of e(g, g)α.

For the other four schemes, the number of pairing needed in Setup() is also 1 for the

same reason that only e(g, g)α in the global key materials require a pairing operation.
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Table 4.1: Notations.

Sym Meaning

p the prime order of the multiplicative cyclic group G

g the generator of the multiplicative cyclic group G.

m the number of attributes defined in the system.

U the attribute set defined in the system, |U| = m.

n the number of identities in the system.

I the identity set defined in the system, |I| = n.

α a random element chosen by TTP from G.

b a random element chosen by TTP from G.

M a message to be encrypted by the system.

M a l × n matrix

ρ a function that associates rows of M to attributes.

Ax the x-th row of A.

S the set of attributes created for a specific user.

S̃ the set of attributes used for delegation purpose.

l the number of attributes involved in the encryption process.

r the number of identities involved in the encryption process .

Due to such fact, it is more important to focus on the amount of exponentiation

operations involved in the five schemes. In CP-ABE, the amount of exponentiation

needed in Setup() function is 3. However, in both OIDR-CP-ABE and MIDR-CP-

ABE, the amount of such operations required is m + 3, where m is the amount of

attributes defined globally as illustrated in Table 4.1. Such difference comes from

the fact that each attribute is defined as a value hx in CP-ABE, while it is de-

fined as hx
b in both OIDR-CP-ABE and MIDR-CP-ABE. For SID2LR-CP-ABE and
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Table 4.2: Computation Complexity Comparison in Pairing Operations

Function CP-ABE
OIDR-

CP-ABE

MIDR-

CP-ABE

SID2LR-

CP-ABE

MID2LR-

CP-ABE

Setup() 1 1 1 1 1

KeyGen() 0 0 0 0 0

Encrypt() 0 0 0 0 0

Decrypt() 2|I|+ 1 2|I|+ 1 2|I|r + 1 4|I|+ 1 4|I|r + 1

Delegate() 0 0 0 0 0

Table 4.3: Computation Complexity Comparison in Exponentiation Operations

Function CP-ABE
OIDR-

CP-ABE

MIDR-

CP-ABE

SID2LR-

CP-ABE

MID2LR-

CP-ABE

Setup() 3 m+ 3 m+ 3 m+ 4 m+ 4

KeyGen() |S|+ 2 |S|+ 3 |S|+ 3 2|S|+ 4 2|S|+ 4

Encrypt() 3l + 2 3l + 2 3lr + 2 5l + 2 5lr + 2

Decrypt() |I|+ 1 |I|+ 1 |I|r + 1 |I|+ 1 |I|r + 1

Delegate() 2|S̃|+ 1 2|S̃|+ 1 2|S̃|+ 1 4|S̃|+ 1 4|S̃|+ 1

MID2LR-CP-ABE, the additional computation cost is one more exponentiation op-

eration, compared to OIDR-CP-ABE and MIDR-CP-ABE respectively. Such cost

difference is relatively small in real-world application scenarios.

In all the five schemes, there is no need for any pairing operation in preparing for

the keys of any user. Comparatively, exponentiation operation is the key contributer

to the time cost in this function for all the three schemes. In CP-ABE, the number

of exponentiations needed is |S| + 2. In both OIDR-CP-ABE and MIDR-CP-ABE,

such number is increased to |S|+ 3, which is a small increase. For SID2LR-CP-ABE

and MID2LR-CP-ABE, such number is doubled due to the additional component for

each attribute. It is clear from the table that the time consumption is linear to the
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number of attributes assigned for a user if the major time-consuming operation is

exponentiation.

When it comes to the Encrypt() function, the computation cost in terms of pairing

operations is zero for all the five schemes. The amount of exponentiation operations

is more useful in differentiating the computation cost among these schemes. In both

CP-ABE and OIDR-CP-ABE, it takes 3l+ 2 exponentiations for encryption process.

Here l is the number of attributes involved in the encryption process. It can be seen

that SID2LR-CP-ABE and MID2LR-CP-ABE need about 2/3 more computation cost

than OIDR-CP-ABE and MIDR-CP-ABE, respectively, in terms of exponentiation

operations. The increased cost is still of the same order of significance as OIDR-CP-

ABE and MIDR-CP-ABE. Such increase mainly comes from the more time needed

in encryption with the additional delegation keys.

The Decrypt() function is the most time-consuming one among the five functions

as it incurs more pairing operations than the other three functions. In CP-ABE,

the number of pairings needed is 2|I| + 1, where I is the set of attributes involved

in the decryption process. It requires the same amount of pairings in OIDR-CP-

ABE. SID2LR-CP-ABE and MID2LR-CP-ABE almost double the amount of pairings

as in OIDR-CP-ABE and MIDR-CP-ABE respectively. In the decryption process,

the contribution from exponentiation is much less because the amount of pairings

is significant in Decrypt() function. The numbers of exponentiations in these five

schemes are |I|+ 1, |I|+ 1, |I|r + 1, |I|+ 1, and |I|r + 1, respectively.

For Delegate() function, the costs for pairing operations are zero for all the five

schemes. In terms of exponentiation operations, the cost for original CP-ABE, OIDR-

CP-ABE, and MIDR-CP-ABE are all 2|S̃|+ 1. For SID2LR-CP-ABE and MID2LR-

CP-ABE, such numbers are almost doubled to 4|S̃| + 1 in both cases. The major

increase comes from the fact that the key components for each attribute are doubled
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in SID2LR-CP-ABE and MID2LR-CP-ABE schemes due to the additional cost for

delegation ID related computations. The same reason also contributes to the changes

in KeyGen() function.

Storage Complexity Analysis

Table 4.4: Storage Cost Comparison

Function CP-ABE
OIDR-

CP-ABE

MIDR-

CP-ABE

SID2LR-

CP-ABE

MID2LR-

CP-ABE

Setup() m+ 5 m+ 6 m+ 6 m+ 8 m+ 8

KeyGen() |S|+ 2 |S|+ 2 |S|+ 2 2|S|+ 2 2|S|+ 2

Encrypt() 2l + 2 2l + 2 2lr + 2 3l + 2 3lr + 2

Delegate() |S′|+ 2 |S′|+ 2 |S′|+ 2 2|S′|+ 2 2|S′|+ 2

When it comes to storage cost, the case is different in that there is no additional

storage cost for Decrypt() function as its results are directly used as the final plain-

text. For storage cost, only the storage space for final results of each function is

considered. In other words, the storage for temporary variables that are normally

used in computer memories are not considered. Each element used in the functions is

a member from one of the four groups: G1, G2, GT , Zr, which is stored as an element t

data structure in PBC library Lynn (2014). Therefore, the number of such elements

is used as a metric for storage cost analysis. Table 4.4 summarizes the overall cost

corresponding to each function in all the five schemes.

In Setup() function, the resulting storage cost is used for storing PK and MSK.

It takes m+ 4 for storing PK in the first three schemes. The same cost for the latter

two schemes is m + 5, due to the addition of e(g, g)β. The storage cost for MSK

is 1 in CP-ABE and 2 in both OIDR-CP-ABE and MIDR-CP-ABE. The same cost

for SID2LR-CP-ABE and MID2LR-CP-ABE is 3. Overall, the additional storage
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cost, compared with the former three schemes, is small and constant, which is not a

significant issue in applications.

In KeyGen(), the cost for the first three schemes is |S| + 2. However, the same

cost in SID2LR-CP-ABE and MID2LR-CP-ABE is almost twice as that in the first

three. This comes from the need for two components corresponding to each attribute

value: one for delegation ID and the other for user ID. As mentioned before, this is

the approach how the proposed two schemes achieve their designed functionalities.

Thus, such additional cost is necessary.

The storage cost for Encrypt() function, which equals to the size of the ciphertext

generated in this phase, is 2l + 2 in both CP-ABE and OIDR-CP-ABE. The size of

ciphertext in MIDR-CP-ABE is larger than the former two schemes, which is 2lr+ 2.

For SID2LR-CP-ABE and MID2LR-CP-ABE, the same cost is almost 1.5 times of

that for OIDR-CP-ABE and MIDR-CP-ABE, respectively. Such difference also comes

from the fact that an additional pair of key components need to be generated for each

delegation ID.

Based on the analysis presented above, it can be seen that the overall costs in both

computation and storage is no more than twice as those in the corresponding baseline

schemes. Between the two proposed schemes, the SID2LR-CP-ABE scheme performs

better than MID2LR-CP-ABE in both computation cost and storage cost. This is

straightforward as SID2LR-CP-ABE is functionally less powerful than MID2LR-CP-

ABE. The overall costs for both schemes are practical for real-world applications.

4.5.4 Real-world Implementation

To further evaluate the real-world time consumption, the proposed schemes are

implemented in C language using PBC library Lynn (2014) on Ubuntu 14.04 64bit

operating system. The hardware configuration for the machine that runs the exper-
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iment is: Intel i7 Quad-core CPU at 2.60GHz; 8GB memory. To test the relations

between the amount of attributes involved and the time consumption, the number

of IDs revoked is fixed to 1 and the number of attributes that are involved in each

of the four functions, Setup(), KeyGen(), Encrypt(), and Decrypt(), is gradually in-

creased. In other words, the first test is run for the SID2LR-CP-ABE scheme. The

time consumption of these functions are tested separately.

For each attribute setting, the experiments mentioned above are run for ten times

and the average values, in milliseconds, are taken as the results, which are presented

in Figure 4.5.

Figure 4.5: Relations between the Amount of Attributes and Time Consumption
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As can be seen in the figure, the time consumption for all the four functions

are generally linear to the number of involved attributes. The cost for KeyGen() is

much larger than that for the other three functions. This is because the KeyGen()

function requires a process for random element generation and element setting in

implementation. Such process takes much more time than pairing or exponentiation

operations. It happens once for each attribute. Therefore, this function takes the

largest time cost. As in real applications, KeyGen() is run once for each user. It is

relatively less frequent than Encrypt() and Decrypt(). Thus, such cost is acceptable.

For Setup() function, it is only executed once by the TTP when the cryptosystem

is established. The cost for Encrypt() and Decrypt() functions are more important

to applications as they are the most frequently used functions. With 45 attributes

involved, the cost for Encrypt() is right over 200 milliseconds. The cost for Decrypt()

under the same setting is less than 150 milliseconds.

To further explore the influence on the time consumption from the number of

IDs revoked, a second experiment is conducted with a fixed number of attributes

and changing numbers of revoked IDs. This experiment is an implementation of

MID2LR-CP-ABE scheme. In this experiment, the number of attributes is set to 20

and the number of revoked IDs is gradually increased from 1 to 10. The evaluation

result is shown in Figure 4.6. It can be seen that the time consumption of Setup()

and KeyGen() are not sensitive to the number of IDs revoked. This is because both

functions do not have the revoked ID list involved in their operations. Both Encrypt()

and Decrypt() follow a linear trend in Figure 4.6. The Encrypt() function is the most

sensitive one to the number of revoked IDs. When the number of revoked IDs is greater

than 6, with 20 attributes involved, the overall time cost for Encrypt() increases to

more than 1 second. The Decrypt() function is relatively less sensitive to the increase

of revoked ID amount.
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Figure 4.6: Relations between the Amount of Revoked IDs and Time Consumption.

When comparing Figure 4.5 with Figure 4.6, it can be seen that the time cost

is more sensitive to the number of revoked IDs than that of attributes as the curves

for Encrypt() and Decrypt() in Figure 4.6 increases much faster than those in Figure

4.5. Therefore, from performance perspective, it is recommended that a user should

increase the number of revoked IDs only when it’s necessary.

4.6 Conclusion

In this chapter, the idea of restricting the delegation capability in CP-ABE schemes

is proposed and discussed with details. Different feasible directions for realizing such
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capability are analyzed. Based on such analysis, two schemes that correspond to the

two ID-revocable baseline schemes are proposed. Such schemes allow users to enforce

restricted delegation capabilities in three different levels: Delegation Agent, Delega-

tion Attribute, and Delegation Receiver. Performance analysis on these schemes are

proposed in terms of their computation cost and storage cost. Here, the storage cost

is also referred to as communication cost in networking scenarios. Based on the per-

formance analysis, the proposed schemes provide restricted delegation features with

practical cost for computation and storage.
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Chapter 5

FUTURE RESEARCH DIRECTIONS

In this chapter, future research directions based on the work presented in previous

chapters are discussed. The discussion is organized as two parts: one on anonymous

communications in mobile environment and the other on further development for

ABE schemes.

5.1 Anonymous Communications in Mobile Environment

The proposed scheme in Chapter 2 aims to solve the anonymity issue in MANETs

by relaxing the strict system model assumptions so that it is more realistic for real-

world application scenarios. The scheme is able to handle the influence from local-

ization errors that are inherent with all localization techniques. It also helps reduce

the scale of the entire network. Other research directions that meet the real-world

requirements are worthwhile for further investigation. For instance, the relationship

between the amount of information leak and the ratio of monitored network. In the

proposed scheme in Chapter 2, the monitoring system is assumed to be able to mon-

itor the entire traffic in the target network. It is not clear that if the capability of the

monitoring system is reduced and only covers a small portion of the target network,

how the analysis result accuracy is deteriorated.

Anonymity issues with mobile networks have been an important topic for quite a

while. A main threat to anonymity in traditional MANETs is the link-based com-

munication patterns. For link-less approaches, ICN networking as a example, it is

worthwhile to further investigate on improving performance under certain security

guarantees. The proposed scheme in Chapter 3 works fine for enforcing access con-
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trol on contents. However, using ABE related scheme has a drawback that the time

consumption for encryption and decryption increases high when attribute policies

are large and complex. It is necessary to further explore more efficient and powerful

schemes for such purpose, whether it be ABE-based or not.

5.2 Further Development for ABE Schemes

Many of existing works on ABE schemes are focused on extending functional

capabilities. Such features include hidden policy, constant-length ciphertext, multi-

authority, comparable attribute values, ID revocation, and attribute revocation.

Hidden policy refers to the case that the attribute policy is protected in certain

ways so that anyone who obtains a copy of the ciphertext cannot directly read the

content of the policy. The constant-length ciphertext feature aims to break the re-

lation between the size of the attribute policy and that of the ciphertext as in the

original CP-ABE scheme. One direct benefit from this is that an attacker is not able

to correlate the size of the ciphertext to any information regarding the ciphertext

when all of them are of the same size. Multi-authority is a feature that supports

more than one single TTP in the entire cryptosystem. The feature of comparable

attribute values extends the meaning of attribute definition. In original ABE scheme,

each attribute value is defined as a nominal value. The comparable attribute feature

allows comparison between attribute values. Thresholds and intervals can be enforced

with such feature. ID-revocation allows a user to combine user IDs with attributes

when identifying a group of users through a policy. Under certain circumstances, it

allows to identify a group of users that cannot be directly specified through attribute

combinations only. It also helps reduce the size of policies, therefore also reduces the

computation and storage cost, in certain scenarios. The need for attribute revoca-

tion comes from the observation that it is impossible in some ABE schemes or would
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be very complex in other schemes to enforce a policy which specifies that a certain

attribute owners should definitely be excluded from decryption. Such issue lies in

the fact that one such attribute owner can simply avoid using that specific attribute

in the decryption process in the original ABE scheme and he will still succeed. The

original ABE scheme does not have such a mechanism to force a decryptor get all his

attributes involved in the decryption process. Therefore, such unwanted attributes

can be “hidden” by the decryptor without raising any error or alerts.

All the above mentioned features are very useful and desirable in real applica-

tion scenarios. They are of great value for future research work on ABE schemes.

However, each additional feature comes with a certain cost. The most straightfor-

ward cost is in terms of additional computation powers needed and extra storage

space/communication cost incurred. Another direct and difficult challenge to further

extensions is the feasibility issue. In other words, the more features get incorporated,

the less likely a feasible solution can be designed because each feature requires a spe-

cially designed scheme. Different special schemes are not compatible in most cases.

Even if it is feasible, the more features get involved, the more complicated the re-

sulting scheme will be. This directly incurs more additional performance cost. It is

always a great challenge to balance between functionality, cost, and security in de-

signing new ABE schemes. Security evaluation is another challenging direction that

comes with such extension works. Under different security assumptions, the corre-

sponding evaluation models and approaches are different. In many cases, such works

are unprecedented.

5.3 Restrict Delegation Capability in ABE Schemes

In Chapter 4, a pioneer work on restricting the delegation function in ABE schemes

is discussed, with a specific scheme designed for ID-revocable solutions as a concrete
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research outcome. Restricted delegation capability is worthwhile to be further ex-

plored in a broad scope for all the ABE schemes. Specifically, different levels of such

work, including those discussed in Section 4.3, need further investigation.

The majority of Chapter 4 solved the issue with breadth-first restriction. From

utility perspective, it is very useful to allow each delegation agent in a delegation tree

to specify his own delegation restriction rules. In a real world application scenario,

U.S. Department of Education (DoED) may play the role as the TTP. It defines global

parameters and creates attributes for all the education participants. Corresponding

attributes are assigned to education organizations to simplify the management over-

head on TTP. However, for different such organizations, DoED may have different

restrictions on how an organization can further delegate different attributes. For in-

stance, Arizona State University (ASU) may have a less rigid restriction than Mesa

Community College (MCC) due to its much bigger size. ASU also needs to further

allow delegations on some attributes at each of its schools due to its large populations.

ASU itself as a university may have different rules for different schools. Each depart-

ment under the same school also needs to further extend the delegation relation on

some attributes to further specify their management policies.

To realize more powerful delegation restriction capabilities, it is necessary to start

at the simple scenarios. The breadth-first solution serves as such a lead to future so-

lutions. Following the discussion in Section 4.3, the next step is to realize depth-first

restriction. This helps extend the control of a certain node in the delegation tree to

more than his direct children nodes. As in the above example, with such capability,

the DoED is able to control the delegation capability of School of Computing, Infor-

matics, and Decision Systems Engineering (CIDSE) at ASU, or even the Computer

Science department at ASU. Such capability can be realized by embedding secret into

delegation keys that are passed along multiple generations within a delegation tree.
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Both the breadth-first and the depth-first approach solve the delegation restriction

issue in an all-or-nothing way. A parent node in the delegation tree is only able to

enable or disable the delegation capability of a certain child node. It is not able to

provide fine-grained controls. For instance, a parent node cannot specify the amount

of children a certain node can create in the delegation tree. As shown in Figure 5.1,

the TTP cannot control the value of n, i.e. the amount of users that A can generate

delegation attribute keys for, with either breadth-first or depth-first approach.

Figure 5.1: Fine-Grained Restriction.

Such fine-grained solution is very useful in practice. As in the above example,

the DoED is able to put a limit on the number of schools ASU can create under its

administration. For some sensitive attributes, it is desirable for the TTP to be able to

track the number of assignees through the entire system, including those who obtain

the attributes via delegation.

Based on the work presented in Chapter 4, the depth-first restriction and the

fine-grained solution are two of the most important and interesting topics to work on

in attribute delegation. Other aspects that need further investigation include perfor-
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mance optimizations and security evaluations. As shown in Chapter 4, the delegation

restriction schemes proposed require additional computation cost and storage cost.

For all the ABE schemes, performance concerns are always a significant factor that

determines the wide application of such schemes. For security evaluations, delegation

function is entirely a different scope from the evaluation of a typical ABE scheme.

It faces different types of attacks, security assumptions, and security models. Due to

the novelty of restricted delegations, no previous work has been found on the security

evaluation of such topic. Thus, future work in this direction is of great importance.
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Chapter 6

SUMMARY

In Chapter 2, 3, and 4, one specific topic is discussed with proposed solutions

for the problems targeted respectively. All the work is summarized in this chapter

following the same sequence as they are presented.

The first topic of this dissertation is on the anonymity issue with MANETs. The

proposed work analyzes the issue from an attacking party’s perspective. If a powerful

monitoring system is deployed in the same area as the targeted MANET to passively

collect traffic of the MANET, what approaches can the attacker employ and how

much useful information can he get from such system. A clear view on such problem

provides insights on how much useful information is leaked in the wireless channel

from the MANET. More importantly, it provides guidance for proposing counter-

attack strategies on such issue.

Following this idea, an obstacle to applying the monitoring system in real world

scenarios is the localization errors that come with every system. This is the focus of

Chapter 1. The proposed scheme for super nodes is able to handle the influence from

localization errors. With such approach, the above-mentioned monitoring system for

anonymity analysis can be carried out in real life. This is the major goal of this part

of work.

Following the work on anonymity in Chapter 2, one conclusion that is made from it

is that the link-based communication pattern is a major contributor to the anonymity

issue. Therefore, a direct alternative is to use link-less communications. One such

solution is Information Centric Networking (ICN). ICN breaks the direct connections

between a message sender and corresponding receivers. Instead, messages are indi-
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rectly transmitted from one side to the other in the form of contents. In this way,

the two parties are decoupled in their communication behaviors.

However, the indirect communication pattern also introduces challenges in main-

taining a global content management mechanism, specifically in access control. For

this purpose, a new naming scheme in ICN based on Attribute-Based Encryption

(ABE) algorithms is proposed in Chapter 3. This scheme embeds the message en-

crypting key in content names, which are used for routing purpose in ICN. In this

way, a potential receiver is able to determine his eligibility in decrypting the content

through the content name at hand. Only permitted users are able to successfully

decrypt the ciphertext.

The proposed ABE-based scheme also achieves features such as multi-authority.

Such capability allows easy management on attributes among a number of trusted

attribute authorities. For attribute management, attribute delegation is another ap-

proach. It helps reduce the workload on the centralized TTP. It allows a normal user

to create and assign attribute keys to other users. However, it also introduces security

concerns. Unrestrained delegation capability is harmful to the entire cryptosystem.

To properly handle such an issue, restricted delegation functions are proposed in

Chapter 4. It is designed for an ID-revocable ABE scheme, but can also be extended

to other ABE schemes. With such capability, a TTP is able to determine which

attributes a specific user can further delegate. This serves as the first step of the

road-map to delegation restriction schemes, which is discussed in Chapter 4.

The overall arrangement of this dissertation follows the thread presented above.

For each of the three aspects, there is a performance evaluation to assess the overall

cost for the proposed solutions. Based on the discussions and the evaluation results,

future paths for continuing work in these aspects are presented in Chapter 5, which

is expected to serve as a reference for interested readers in these areas.
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