9 research outputs found

    Multi-scale navigation of large trace data: A survey

    Get PDF
    Dynamic analysis through execution traces is frequently used to analyze the runtime behavior of software systems. However, tracing long running executions generates voluminous data, which are complicated to analyze and manage. Extracting interesting performance or correctness characteristics out of large traces of data from several processes and threads is a challenging task. Trace abstraction and visualization are potential solutions to alleviate this challenge. Several efforts have been made over the years in many subfields of computer science for trace data collection, maintenance, analysis, and visualization. Many analyses start with an inspection of an overview of the trace, before digging deeper and studying more focused and detailed data. These techniques are common and well supported in geographical information systems, automatically adjusting the level of details depending on the scale. However, most trace visualization tools operate at a single level of representation, which are not adequate to support multilevel analysis. Sophisticated techniques and heuristics are needed to address this problem. Multi-scale (multilevel) visualization with support for zoom and focus operations is an effective way to enable this kind of analysis. Considerable research and several surveys are proposed in the literature in the field of trace visualization. However, multi-scale visualization has yet received little attention. In this paper, we provide a survey and methodological structure for categorizing tools and techniques aiming at multi-scale abstraction and visualization of execution trace data and discuss the requirements and challenges faced to be able to meet evolving user demands

    Efficient caching algorithms for memory management in computer systems

    Get PDF
    As disk performance continues to lag behind that of memory systems and processors, fully utilizing memory to reduce disk accesses is a highly effective effort to improve the entire system performance. Furthermore, to serve the applications running on a computer in distributed systems, not only the local memory but also the memory on remote servers must be effectively managed to minimize I/O operations. The critical challenges in an effective memory cache management include: (1) Insightfully understanding and quantifying the locality inherent in the memory access requests; (2) Effectively utilizing the locality information in replacement algorithms; (3) Intelligently placing and replacing data in the multi-level caches of a distributed system; (4) Ensuring that the overheads of the proposed schemes are acceptable.;This dissertation provides solutions and makes unique and novel contributions in application locality quantification, general replacement algorithms, low-cost replacement policy, thrashing protection, as well as multi-level cache management in a distributed system. First, the dissertation proposes a new method to quantify locality strength, and accurately to identify the data with strong locality. It also provides a new replacement algorithm, which significantly outperforms existing algorithms. Second, considering the extremely low-cost requirements on replacement policies in virtual memory management, the dissertation proposes a policy meeting the requirements, and considerably exceeding the performance existing policies. Third, the dissertation provides an effective scheme to protect the system from thrashing for running memory-intensive applications. Finally, the dissertation provides a multi-level block placement and replacement protocol in a distributed client-server environment, exploiting non-uniform locality strengths in the I/O access requests.;The methodology used in this study include careful application behavior characterization, system requirement analysis, algorithm designs, trace-driven simulation, and system implementations. A main conclusion of the work is that there is still much room for innovation and significant performance improvement for the seemingly mature and stable policies that have been broadly used in the current operating system design

    Advanced Memory Data Structures for Scalable Event Trace Analysis

    Get PDF
    The thesis presents a contribution to the analysis and visualization of computational performance based on event traces with a particular focus on parallel programs and High Performance Computing (HPC). Event traces contain detailed information about specified incidents (events) during run-time of programs and allow minute investigation of dynamic program behavior, various performance metrics, and possible causes of performance flaws. Due to long running and highly parallel programs and very fine detail resolutions, event traces can accumulate huge amounts of data which become a challenge for interactive as well as automatic analysis and visualization tools. The thesis proposes a method of exploiting redundancy in the event traces in order to reduce the memory requirements and the computational complexity of event trace analysis. The sources of redundancy are repeated segments of the original program, either through iterative or recursive algorithms or through SPMD-style parallel programs, which produce equal or similar repeated event sequences. The data reduction technique is based on the novel Complete Call Graph (CCG) data structure which allows domain specific data compression for event traces in a combination of lossless and lossy methods. All deviations due to lossy data compression can be controlled by constant bounds. The compression of the CCG data structure is incorporated in the construction process, such that at no point substantial uncompressed parts have to be stored. Experiments with real-world example traces reveal the potential for very high data compression. The results range from factors of 3 to 15 for small scale compression with minimum deviation of the data to factors > 100 for large scale compression with moderate deviation. Based on the CCG data structure, new algorithms for the most common evaluation and analysis methods for event traces are presented, which require no explicit decompression. By avoiding repeated evaluation of formerly redundant event sequences, the computational effort of the new algorithms can be reduced in the same extent as memory consumption. The thesis includes a comprehensive discussion of the state-of-the-art and related work, a detailed presentation of the design of the CCG data structure, an elaborate description of algorithms for construction, compression, and analysis of CCGs, and an extensive experimental validation of all components.Diese Dissertation stellt einen neuartigen Ansatz für die Analyse und Visualisierung der Berechnungs-Performance vor, der auf dem Ereignis-Tracing basiert und insbesondere auf parallele Programme und das Hochleistungsrechnen (High Performance Computing, HPC) zugeschnitten ist. Ereignis-Traces (Ereignis-Spuren) enthalten detaillierte Informationen über spezifizierte Ereignisse während der Laufzeit eines Programms und erlauben eine sehr genaue Untersuchung des dynamischen Verhaltens, verschiedener Performance-Metriken und potentieller Performance-Probleme. Aufgrund lang laufender und hoch paralleler Anwendungen und dem hohen Detailgrad kann das Ereignis-Tracing sehr große Datenmengen produzieren. Diese stellen ihrerseits eine Herausforderung für interaktive und automatische Analyse- und Visualisierungswerkzeuge dar. Die vorliegende Arbeit präsentiert eine Methode, die Redundanzen in den Ereignis-Traces ausnutzt, um sowohl die Speicheranforderungen als auch die Laufzeitkomplexität der Trace-Analyse zu reduzieren. Die Ursachen für Redundanzen sind wiederholt ausgeführte Programmabschnitte, entweder durch iterative oder rekursive Algorithmen oder durch SPMD-Parallelisierung, die gleiche oder ähnliche Ereignis-Sequenzen erzeugen. Die Datenreduktion basiert auf der neuartigen Datenstruktur der "Vollständigen Aufruf-Graphen" (Complete Call Graph, CCG) und erlaubt eine Kombination von verlustfreier und verlustbehafteter Datenkompression. Dabei können konstante Grenzen für alle Abweichungen durch verlustbehaftete Kompression vorgegeben werden. Die Datenkompression ist in den Aufbau der Datenstruktur integriert, so dass keine umfangreichen unkomprimierten Teile vor der Kompression im Hauptspeicher gehalten werden müssen. Das enorme Kompressionsvermögen des neuen Ansatzes wird anhand einer Reihe von Beispielen aus realen Anwendungsszenarien nachgewiesen. Die dabei erzielten Resultate reichen von Kompressionsfaktoren von 3 bis 5 mit nur minimalen Abweichungen aufgrund der verlustbehafteten Kompression bis zu Faktoren > 100 für hochgradige Kompression. Basierend auf der CCG_Datenstruktur werden außerdem neue Auswertungs- und Analyseverfahren für Ereignis-Traces vorgestellt, die ohne explizite Dekompression auskommen. Damit kann die Laufzeitkomplexität der Analyse im selben Maß gesenkt werden wie der Hauptspeicherbedarf, indem komprimierte Ereignis-Sequenzen nicht mehrmals analysiert werden. Die vorliegende Dissertation enthält eine ausführliche Vorstellung des Stands der Technik und verwandter Arbeiten in diesem Bereich, eine detaillierte Herleitung der neu eingeführten Daten-strukturen, der Konstruktions-, Kompressions- und Analysealgorithmen sowie eine umfangreiche experimentelle Auswertung und Validierung aller Bestandteile

    Multi-Level Trace Abstraction, Linking and Display

    Get PDF
    RÉSUMÉ Certains types de problèmes logiciels et de bogues ne peuvent être identifiées et résolus que lors de l'analyse de l'exécution des applications. L'analyse d'exécution (et le débogage) des systèmes parallèles et distribués est très difficile en utilisant uniquement le code source et les autres artefacts logiciels statiques. L'analyse dynamique par trace d'exécution est de plus en plus utilisée pour étudier le comportement d'un système. Les traces d'exécution contiennent généralement une grande quantité d'information sur l'exécution du système, par exemple quel processus/module interagit avec quels autres processus/modules, ou encore quel fichier est touché par celui-ci, et ainsi de suite. Les traces au niveau du système d'exploitation sont un des types de données des plus utiles et efficaces qui peuvent être utilisés pour détecter des problèmes d'exécution complexes. En effet, ils contiennent généralement des informations détaillées sur la communication inter-processus, sur l'utilisation de la mémoire, le système de fichiers, les appels système, la couche réseau, les blocs de disque, etc. Cette information peut être utilisée pour raisonner sur le comportement d'exécution du système et investiguer les bogues ainsi que les problèmes d'exécution. D'un autre côté, les traces d'exécution peuvent rapidement avoir une très grande taille en peu de temps à cause de la grande quantité d'information qu'elles contiennent. De plus, les traces contiennent généralement des données de bas niveau (appels système, interruptions, etc ) pour lesquelles l'analyse et la compréhension du contexte requièrent des connaissances poussées dans le domaine des systèmes d'exploitation. Très souvent, les administrateurs système et analystes préfèrent des données de plus haut niveau pour avoir une idée plus générale du comportement du système, contrairement aux traces noyau dont le niveau d'abstraction est très bas. Pour pouvoir générer efficacement des analyses de plus haut niveau, il est nécessaire de développer des algorithmes et des outils efficaces pour analyser les traces noyau et mettre en évidence les événements les plus pertinents. Le caractère expressif des événements de trace permet aux analystes de raisonner sur l'exécution du système à des niveaux plus élevés, pour découvrir le sens de l'exécution différents endroits, et détecter les comportements problématiques et inattendus. Toutefois, pour permettre une telle analyse, un outil de visualisation supplémentaire est nécessaire pour afficher les événements abstraits à de plus hauts niveaux d'abstraction. Cet outil peut permettre aux utilisateurs de voir une liste des problèmes détectés, de les suivre dans les couches de plus bas niveau (ex. directement dans la trace détaillée) et éventuellement de découvrir les raisons des problèmes détectés. Dans cette thèse, un cadre d'application est présenté pour relever ces défis : réduire la taille d'une trace ainsi que sa complexité, générer plusieurs niveaux d'événements abstraits pour les organiser d'une facon hiérarchique et les visualiser à de multiples niveaux, et enfin permettre aux utilisateurs d'effectuer une analyse verticale et à plusieurs niveaux d'abstraction, conduisant à une meilleure connaissance et compréhension de l'exécution du système. Le cadre d'application proposé est étudié en deux grandes parties : d'abord plusieurs niveaux d'abstraction de trace, et ensuite l'organisation de la trace à plusieurs niveaux et sa visualisation. La première partie traite des techniques utilisées pour les données de trace abstraites en utilisant soit les traces des événements contenus, un ensemble prédéfini de paramètres et de mesures, ou une structure basée l'abstraction pour extraire les ressources impliquées dans le système. La deuxième partie, en revanche, indique l'organisation hiérarchique des événements abstraits générés, l'établissement de liens entre les événements connexes, et enfin la visualisation en utilisant une vue de la chronologie avec échelle ajustable. Cette vue affiche les événements à différents niveaux de granularité, et permet une navigation hiérarchique à travers différentes couches d'événements de trace, en soutenant la mise a l'échelle sémantique. Grâce à cet outil, les utilisateurs peuvent tout d'abord avoir un aperçu de l'exécution, contenant un ensemble de comportements de haut niveau, puis peuvent se déplacer dans la vue et se concentrer sur une zone d'intérêt pour obtenir plus de détails sur celle-ci. L'outil proposé synchronise et coordonne les différents niveaux de la vue en établissant des liens entre les données, structurellement ou sémantiquement. La liaison structurelle utilise la délimitation par estampilles de temps des événements pour lier les données, tandis que le second utilise une pré-analyse des événements de trace pour trouver la pertinence entre eux ainsi que pour les lier. Lier les événements relie les informations de différentes couches qui appartiennent théoriquement à la même procédure ou spécifient le même comportement. Avec l'utilisation de la liaison de la correspondance, des événements dans une couche peuvent être analysés par rapport aux événements et aux informations disponibles dans d'autres couches, ce qui conduit à une analyse à plusieurs niveaux et la compréhension de l'exécution du système sous-jacent. Les exemples et les résultats expérimentaux des techniques d'abstraction et de visualisation proposés sont présentes dans cette thèse qui prouve l'efficacité de l'approche. Dans ce projet, toutes les évaluations et les expériences ont été menées sur la base des événements de trace au niveau du système d'exploitation recueillies par le traceur Linux Trace Toolkit Next Generation ( LTTng ). LTTng est un outil libre, léger et à faible impact qui fournit des informations d'exécution détaillées à partir des différents modules du système sous-jacent, tant au niveau du noyau Linux que de l'espace utilisateur. LTTng fonctionne en instrumentant le noyau et les applications utilisateur en insérant quelques points de traces à des endroits différents.----------ABSTRACT Some problems and bugs can only be identified and resolved using runtime application behavior analysis. Runtime analysis of multi-threaded and distributed systems is very difficult, almost impossible, by only analyzing the source code and other static software artifacts. Therefore, dynamic analysis through execution traces is increasingly used to study system runtime behavior. Execution traces usually contain large amounts of valuable information about the system execution, e.g., which process/module interacts with which other processes/modules, which file is touched by which process/module, which function is called by which process/module/function and so on. Operating system level traces are among the most useful and effective information sources that can be used to detect complex bugs and problems. Indeed, they contain detailed information about inter-process communication, memory usage, file system, system calls, networking, disk blocks, etc. This information can be used to understand the system runtime behavior, and to identify a large class of bugs, problems, and misbehavior. However, execution traces may become large, even within a few seconds or minutes of execution, making the analysis difficult. Moreover, traces are often filled with low-level data (system calls, interrupts, etc.) so that people need a complete understanding of the domain knowledge to analyze these data. It is often preferable for analysts to look at relatively abstract and high-level events, which are more readable and representative than the original trace data, and reveal the same behavior but at higher levels of granularity. However, to achieve such high-level data, effective algorithms and tools must be developed to process trace events, remove less important ones, highlight only necessary data, generalize trace events, and finally aggregate and group similar and related events. The expressive nature of the synthetic events allows analysts to reason about system execution at higher levels, to uncover execution behavior in different areas, and detect its problematic and unexpected aspects. However, to allow such analysis, an additional visualization tool may be required to display abstract events at different levels and explore them easily. This tool may enable users to see a list of detected problems, follow the problems in the detailed levels (e.g., within the raw trace events), analyze, and possibly discover the reasons for the detected problems. In this thesis, a framework is presented to address those challenges: to reduce the execution trace size and complexity, to generate several levels of abstract events, to organize the data in a hierarchy, to visualize them at multiple levels, and finally to enable users to perform a top-down and multiscale analysis over trace data, leading to a better understanding and comprehension of underlying system execution. The proposed framework is studied in two major parts: multi-level trace abstraction, and multi-level trace organization and visualization. The first part discusses the techniques used to abstract out trace data using either the trace events content, a predefined set of metrics and measures, or structure-based abstraction to extract the resources involved in the system execution. The second part determines the hierarchical organization of the generated abstract events, establishes links between the related events, and finally visualizes events using a zoomable timeline view. This view displays the events at different granularity levels, and enables a hierarchical navigation through different layers of trace events by supporting the semantic zooming. Using this tool, users can first see an overview of the execution, and then can pan around the view, and focus and zoom on any area of interest for more details and insight. The proposed view synchronizes and coordinates the different view levels by establishing links between data, structurally or semantically. The structural linking uses bounding times-tamps of the events to link the data, while the latter uses a pre-analysis of the trace events to find their relevance, and to link them together. Establishing Links connects the information that are conceptually related together ( e.g., events belong to the same process or specify the same behavior), so that events in one layer can be analyzed with respect to events and information in other layers, leading to a multi-level analysis and a better comprehension of the underlying system execution. In this project, all evaluations and experiments were conducted on operating system level traces obtained with the Linux Trace Toolkit Next Generation (LTTng). LTTng is a lightweight and low-impact open source tracing tool that provides valuable runtime information from the various modules of the underlying system at both the Linux kernel and user-space levels. LTTng works by instrumenting the (kernel and user-space) applications, with statically inserted tracepoints, and by generating log entries at runtime each time a tracepoint is hit

    Trace reduction for virtual memory simulations

    No full text

    Trace reduction for virtual memory simulations

    No full text

    Trace Reduction for Virtual Memory Simulations

    No full text
    The unmanageably large size of reference traces has spurred the development of sophisticated trace reduction techniques. In this paper we present two new algorithms for trace reduction --- Safely Allowed Drop (SAD) and Optimal LRU Reduction (OLR). Both achieve high reduction factors and guarantee exact simulations for common replacement policies and for memories larger than a user-defined threshold. In particular, simulation on OLR-reduced traces is accurate for the LRU replacement algorithm, while simulation on SAD-reduced traces is accurate for the LRU and OPT algorithms. OLR also satisfies an optimality property: for a given trace and memory size it produces the shortest possible trace that has the same LRU behavior as the original for a memory of at least this size. Our approac
    corecore