
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2004

Efficient caching algorithms for memory management in Efficient caching algorithms for memory management in

computer systems computer systems

Song Jiang
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jiang, Song, "Efficient caching algorithms for memory management in computer systems" (2004).
Dissertations, Theses, and Masters Projects. Paper 1539623446.
https://dx.doi.org/doi:10.21220/s2-q8t1-e863

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-q8t1-e863
mailto:scholarworks@wm.edu

Efficient Caching Algorithms

for Memory Management in Computer Systems

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William & Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Song Jiang

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Song Jiang

Approved by the Committee, June 2004

Phil Kearns

Bruce Lowekamp

W ’ A ' "

Andreas''Statlibpoulos

,rVI » v *

a
Fabrizio Petrini

Los Alamos National Laboratory

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my mother, my wife and my son.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

A cknow ledgm ents x

List o f Tables xii

List o f F ig u res xiv

A bstract xxiii

1 Introduction 2

1.1 Memory Hierarchies and C ach in g .. 3

1.1.1 Locality and Replacement algorithms ... 6

1.1.2 Replacement Policies for Virtual M e m o ry 8

1.1.3 Global Replacement in Multiprogramming Environments 10

1.1.4 Placement and Replacement in Distributed File Buffer Caches . . . 13

1.2 C on tribu tions.. 15

1.3 O rg a n iz a tio n ... 17

2 G eneral-Purpose R eplacem ent A lgorithm s 19

2.1 B ackground .. 19

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 The Problems of the LRU Replacement A lg o rith m 19

2.1.2 An Executive Summary of my A lg o r ith m .. 22

2.2 Related W o rk ... 23

2.2.1 User-level H in ts ... 24

2.2.2 Tracing and Utilizing History Information of a B lo ck 24

2.2.3 Detection and A daptation of Access R eg u la rities 27

2.2.4 Working Set M o d e ls .. 29

2.3 The LIRS a lg o r i th m .. 29

2.3.1 General I d e a ... 29

2.3.2 The LIRS Algorithm Based on LRU S tack .. 32

2.3.3 A Detailed D escription.. 34

2.4 Performance E v a lu a tio n ... 36

2.4.1 Experimental S e tt in g s .. 36

2.4.2 Access Pattern Based Performance Evaluation 38

2.4.2.1 Performance for the Looping T y p e .. 40

2.4.2.2 Performance for the Probabilistic T y p e 44

2.4.2.3 Performance for the Temporally-Clustered T y p e 46

2.4.2.4 Performance for the Mixed T y p e ... 48

2.4.3 LIRS Performance with High End Systems ... 49

2.4.4 LIRS versus Other Stack-Based Replacem ents.. 51

2.4.4.1 LIRS Threshold and Access C haracteristics........................... 53

2.4.4.2 LRU as a Special Member of the LIRS F a m ily 55

2.5 Sensitivity and Overhead A n a ly s is .. 57

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.1 Size Selection of List Q Holding Resident HIR Blocks (Lhirs) 57

2.5.2 Overhead A n a ly s is ... 58

2.6 S u m m a ry ... 60

3 V irtual M em ory R eplacem ent Policies 61

3.1 B ackground ... 61

3.1.1 The Research Status of Memory Replacement P o lic ie s 61

3.1.2 LRU/CLOCK and their Performance Disadvantages 63

3.1.3 LIRS and its Performance A dvan tages... 66

3.2 Related W o rk .. 68

3.3 Description of C L O C K -P ro ... 71

3.3.1 Main I d e a ... 71

3.3.2 D ata S tru c tu re ... 73

3.3.3 Operations on Searching Victim P a g e s ... 74

3.3.4 Making CLOCK-Pro A d a p tiv e .. 76

3.4 Performance E v a lu a tio n ... 78

3.4.1 Simulation on Buffer Cache for File I/O ... 78

3.4.2 Simulation on Memory for Program E xecu tions..................................... 82

3.4.3 Simulation on Program Executions with Interference of File I/O . . 87

3.5 S u m m a ry .. 90

4 Thrashing in M ultiprogram m ing Environm ents 91

4.1 B ackground ... 91

4.1.1 MPL versus System T h ra s h in g .. 91

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.2 Thrashing and Page Replacem ent... 92

4.1.3 Effectiveness of adaptive page replacement ... 93

4.1.4 Our w o r k ... 94

4.2 Evolution of Page Replacement in Linux K ern e l... 95

4.2.1 Kernel 2 .0 .. 95

4.2.2 Kernel 2 .2 ... 96

4.2.3 Kernel 2 .4 .. 99

4.2.4 The Impact pf Page Replacement on CPU and Memory Utilizations 100

4.3 Evaluation of Page Replacement in Linux Kernels 2.2 101

4.3.1 Experimental environm ent.. 101

4.3.2 Page Replacement Behavior of Kernel 2.2.14 104

4.4 The Design and Implementation of T P F .. 109

4.4.1 The detection r o u t i n e .. 110

4.4.2 The protection ro u tin e .. 113

4.4.3 State transitions in the s y s t e m ... 113

4.5 Performance Measurements and Analysis ... 115

4.5.1 Observation and measurements of T PF f a c i l i ty 115

4.5.2 Experiences with T PF in the multiprogramming environment 119

4.6 Related W o rk .. 121

4.6.1 The Working Set Model and its Implementation Issues 122

4.6.2 Other Related W o r k ... 124

4.7 S u m m a ry ... 126

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 M ulti-L evel Buffer Cache M anagem ent 128

5.1 B ackground .. 128

5.1.1 Hierarchical Caching and its C h a llen g es ... 128

5.1.2 Possible Solutions: Customized Second-Level Replacement and the

Unified LRU .. 130

5.1.3 Our Principles to Address the C h a lle n g e s ... 133

5.2 Quantifying Non-uniform Locality Strengths in Hierarchical Buffer Caching 134

5.2.1 Methods to Distinguish Locality S trengths... 134

5.2.2 Comparisons of Locality Strength Quantification M eth o d s 137

5.3 The Unified and Level-aware Caching (ULC) Protocol 144

5.3.1 An Executive S u m m a ry .. 144

5.3.2 A Detailed D escription............... 145

5.3.2.1 The Single-client ULC Protocol ... 147

5.3.2.2 The Multi-client ULC P ro to co l... 149

5.4 Performance E v a lu a tio n .. 152

5.4.1 Performance M e t r i c 152

5.4.2 Simulation E nvironm ent.. 153

5.4.3 Comparisons of Multi-level Schemes in a Three-level Structure . . . 155

5.4.4 The Performance Implication of System P a ra m e te r s 158

5.4.4.1 The Impact of Server Cache S iz e 159

5.4.4.2 The Impact of Client Cache S iz e 160

5.4.4.3 The Impact of Network Bandwidth 162

5.4.5 Comparisons of Caching Schemes for Multi-client Workloads 163

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Related Work and Discussions.. 165

5.6 S u m m a ry .. 167

6 C onclusions and Future W ork 168

6.1 General-Purpose Replacement A lg o rith m s... 169

6.2 Low Cost V irtual Memory Replacement Algorithms 170

6.3 Thrashing Prevention ... 172

6.4 Multi-Level Buffer Cache M anagem ent.. 173

Bibliography 175

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

Foremost, I give my thanks to my Lord, who strengthen me when I am weak, show

me the way when I am lost, teach me the wisdom out of heaven, and love me in all the

circumstances.

I would like to give my thanks to my adviser, Xiaodong Zhang, from my deepest heart.

During the past five years, he has provided me every guidance and help for my research

work and life needs. He always has the passion to motivate me with new research directions,

to challenge me for better solutions, and to guide me through the difficulties in the process.

He has always been discussing research issues with me open-mindedly and encouraged me

to think in a broader background. The benefits I have so gratefully received from him are

well beyond those on the academic. He has also put much effort to help me overcome the

difficulties in my life and taken care of my well-being. I feel extremely lucky to have a

person like Xiaodong to be my adviser, which makes my time at William and Mary a warm

and happy memory.

I thank my committee, Phil Kearns, Bruce Lowekamp, and Andreas Stathopoulos at

William and Mary, and Fabrizio Petrini at Los Alamos National Laboratory for their en

couragement and advice on my research work. I learned a lot from the system course taught

by Phil, which prepared me for my system implementation work. Fabrizio has provided me

with his insightful comments on my research work and much help on my career development.

I am really impressed by his dedication and passion as a researcher. I would also thank

William Bynum for his help in reading almost every my manuscripts and giving his detailed

comments and suggestions. I thanks Dimitrios Nikolopoulos for his valuable cooperations

and discussions. I really appreciate the help and encouragement from Evgenia Smirni and

Andreas Stathopoulos, who even gave so much baby stuff for my new-born son. I thank

Vanessa Godwin, who, as the administrative director of the department, was so helpful and

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thoughtful in providing me with the assistance I needed.

I also give my thanks to Shirong Zhen, who was my master thesis adviser in the Univer

sity of Science and Technology of China (USTC). He had inspired my interests in research

in the computer science field.

I wish to give my thanks to my colleagues and friends for making my educational life

being so memorable, to name a few, Songqing Chen, Xin Chen, Lei Guo, Yongguang Liang,

Hui Li, Ling Liu, Shuquan Nie, Shansi Ren, Tanping Wang, Qi, Zhang, and Donghua Zhou.

I will miss the time I spent with them.

I would like to thank the warm-hearted friends I got to know over the years in the

Williamsburg community. In particular, Harry Ambrose, who helped me with my English

study for over three years, Debra Kemelek, who hosted me as an international student, as

well as Eddie and Grace Liu, Walter and Elisabeth Kurth, Libby Von Fange, Connie and

Richard Castor, Erwoom Chiou, and Florence Lee, who consistently showed their care and

love to me and my family. They made my life in Williamsburg being so unforgettable.

Last, but not least, my deepest appreciation goes to my family. My wife, Shengli, has

been with me shortly after I arrived at Williamsburg. Her commitment to our family has

made my life full of happiness. No words can fully express my gratitude to her. Furthermore,

I am really blessed to have my son, Caleb, who always reminds me of how beautiful a life

can be! I also give my thanks to my parents, in particular, my mother, Yinghua Wang, who

always loves me and supports me with all her heart under any circumstance. W ithout all

of their love and supports, there would be no this dissertation.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

2.1 An example to explain how a victim block is selected by the LIRS algorithm

and how LIR /H IR statuses are switched. A “X” refers the block of the

row is referenced at the virtual time of the column. The recency and IRR

Lurs = 2 and L^irs = 1, and at the time 10 the LIRS algorithm leaves two

blocks in the LIR set = {A, B}, and the HIR set is {C, D, E}. The only

resident HIR block is E ... 31

3.1 Hit ratios of the replacement algorithms OPT, CLOCK-Pro, LIRS, CAR,

and CLOCK on workload cpp.. 81

3.2 Hit ratios of the replacement algorithms OPT, CLOCK-Pro, LIRS, CAR,

and CLOCK on workload sprite ... 81

3.3 A brief description of the benchmark programs (“Size” is in number of mil

lions of in s tru c tio n s) .. 83

3.4 The performance (number of page faults in one million of instructions) of

algorithms CLOCK-Pro, CAR and CLOCK on program m 8 8 ksim with and

without the interference of I/O file data accesses... 88

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 The performance (number of page faults in one million of instructions) of

algorithms CLOCK-Pro, CAR and CLOCK on program sor with and without

the interference of I/O file data accesses... 89

4.1 Execution performance and memory related data of the 3 benchmark programs. 104

5.1 Comparisons of the four measures on locality strengths by comparing their

abilities to distinguish locality strengths, the stabilities of the distinctions,

and if on-line measurements are possible... 143

xm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Memory system is organized as a hierarchy, giving the user the illusion of a

memory tha t is as large as largest level of memory and has the access speed

as fast as the first level of cache.. 3

1.2 The CLOCK replacement algorithm. The clock hand moves in the counter

clockwise direction. The reference bit of each page is either set (1) or unset

(0)... 9

1.3 CPU utilization is plotted against the number of processes in the system.

Though increasing processes in the system could increase CPU utilization,

too many processes could over-commit the limited memory and cause thrashing. 11

1.4 Multi-level buffer cache hierarchy. Caches are distributed along the clients,

intermediate servers, and disk array, where accessed blocks can be buffered. 13

2.1 The LIRS stack S holds LIR blocks as well as HIRS blocks with or without

resident status, and a list Q holds all the resident HIR blocks. 34

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Illustration of the reference results in the example shown in Table 1 on the

LIRS stack. In this figure, (a) corresponds to the state at virtual time 9.

Accessing B, E, D, or C at virtual time 10 result in (b), (c), (d) and (e),

respectively . 36

2.3 The time-space map (left) of cs and the hit rate curves by various replacement

policies (right)... 41

2.4 The time-space map (left) of glim pse and the hit rate curves by various

replacement policies (right).. 42

2.5 The time-space map (left) of postgres and the hit rate curves by various

replacement policies (right).. 43

2.6 The time-space map (left) of cpp and the hit rate curves by various replace

ment policies (right) . 45

2.7 The time-space map (left) of 2-pools and the hit rate curves by various re

placement policies (right)... 46

2.8 The time-space map (left) of sprite and the hit rate curves by various re

placement policies (right) . 47

2.9 The time-space map (left) of m u ltil and the hit rate curves by various

replacement policies (right)... 48

2.10 The time-space map (left) of m ulti2 and the hit rate curves by various

replacement policies (right)... 49

2.11 The time-space map (left) of m ultiS and the hit rate curves by various

replacement policies (right).. 50

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.12 The hit rate curves of workload OpenM ail (left figure) and workload Cello99

(right figure) . .. 50

2.13 The IRRs of references of the workloads postgres (left) and sprite (right) 52

2.14 The rates of R m ax and cache size in blocks (L) for workloads postgres

(left) and sprite (right). R m ax is the size of LIRS stack, which changes

with virtual time. Cache size is 500.. 54

2.15 The hit rate curves of workload postgres (left figure) and workload sprite

(right figure) by varying the rates of threshold values for LIR/HIR status

switching and R m ax in LIRS, as well as curves for O PT and LRU... 56

2.16 The hit rate curves of workload postgres (left figure) and workload sprite

(right figure) by varying the size of list Q (L^irs > the number of cache buffers

assigned to HIR block set) of LIRS algorithm, as well as curves for OPT and

LRU. “LIRS 2” means size of Q is 2, “LIRS x%” means size of Q is x% of

the cache size in blocks.. 58

2.17 The hit rate curves of workload postgres (left) and workload sprite (right)

by varying the LIRS stack size limits, as well as curves for OPT and LRU.

Limits are represented by rates of LIRS stack size limit in blocks and cache

size in blocks (L) ... 59

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 There are three types of pages in CLOCK-Pro, hot pages marked as “H”, res

ident cold pages marked as “C” and non-resident cold pages marked as shad

owed block with “C”. Around the clock, there are three hands: H A N D hot

pointing to the list tail (i.e. the last hot page) and searching a hot page to

tu rn into a cold page, H A N D ^ a pointing to the last resident cold page and

searching for a cold page to replace out of memory, and H A N D test pointing

to the last cold page in the test period, terminating test periods of cold pages,

and removing non-resident cold pages passing the test period out of the list.

The attached black dots represent the reference bits of 1..................................

3.2 Hit ratios of the replacement algorithms OPT, CLOCK-Pro, LIRS, CAR,

and CLOCK on workloads glimpse and m ulti2 ...

3.3 Adaptively changing the percentage of memory allocated to the cold pages

in workloads m ulti2 and sprite ...

3.4 Performance of CLOCK, CAR, CLOCK-Pro and O PT on programs with

strong locality..

3.5 Performance of CLOCK, CAR, CLOCK-Pro and O PT on programs with

moderate locality...................... ..

3.6 Performance of CLOCK, CAR, CLOCK-Pro and OPT on programs with

weak lo c a lity ..

4.1 The memory performance of gcc in a dedicated environment...........................

4.2 The memory performance of gzip in a dedicated environment..........................

4.3 The memory performance of vortexl in a dedicated environment....................

xvii

73

80

82

84

85

86

105

105

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 The memory performance of gzip (left figure) and vortex3 (right figure) dur

ing the interactions... 107

4.5 The memory performance of gcc (left figure) and vortexS (right figure) during

the interactions... 107

4.6 The memory performance of vortex 1 (left figure) and vortexS (right figure)

during the interactions.. 108

4.7 Dynamic transitions among normal, monitoring, and protection states in the

improved kernel system... 114

4.8 The execution time comparisons (left figure) and comparisons of numbers of

page faults (right figure) for the three group of program interactions in the

Linux without TPF and with T P F ... 115

4.9 The memory performance of gzip (left figure) and vortexS (right figure) dur

ing the interactions in the Linux with T P F .. 116

4.10 The memory performance of gcc (left figure) and vortexS (right figure) during

the interactions in the Linux with T P F .. 118

4.11 The memory performance of vortex 1 (left figure) and vortexS (right figure)

in the Linux with T P F 118

4.12 Comparison of total interaction execution times for the three group of pro

gram interactions in the Linux with TPF, without TPF and the ideal inter

action tim es.. 119

5.1 Multi-level buffer cache hierarchy. Caches are distributed along the clients,

intermediate servers, and disk array, where accessed blocks can be buffered. 129

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 In the two-level unified LRU scheme, there is an unified LRU stack corre

sponding to the two level of caches. The size of each individual LRU stack,

JV1 or N 2 is equal to its respective cache size in terms of blocks, there are

three type of accesses: (1) a hit in the L I cache. (2) a hit in the LI cache.

(3) a miss in the two caches. If all the three cases, the accessed blocks are

moved to the top of the stack. Except the first case, the block at the bottom

of L I LRU stack is demoted onto the top of the L2 stack................................. 132

5.3 In access stream { R t ,t = 0 ,1 ,2 , ...}, Ri, R j , and Ri are three immediately

consecutive references to block b. The current time is k. W ith these timing

points, there are various measurements tha t can be used to quantify the

locality strength of block b at time k, including the distance from R% to Ri),

called OPT Distance (OD), the distance from R j to R^), called Recency

Distance (R D), the distance from R j to Ri, called Current Re-use Distance

(CRD), and the distance from Ri to Rj, called Last Re-use Distance (LRD). 135

5.4 In the LRU stack, for a given block, the position for the last access to the

block corresponds to its LRD, its current position in the stack corresponds to

its RD, and the position for its next access corresponds to its CRD. Before its

current position exceeds its last access position (see left figure (a)), LRD-RD

is LRD; after tha t (see right figure (b)), LRD-RD becomes RD. This allows

LRD-RD to more accurately simulate CRD. The illustration also shows that

RD and OD change with every reference.. 137

xix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Reference ratios to each of the segments (the ratios between the number of

references to a segment and the number of all references in a workload). It

also shows the accumulative reference ratios for the first N segments in each

workload, where N is 1 through 10.. 140

5.6 Movement ratio curves showing the ratios between the number of block move

ments across a segment boundary of the ordered lists and the number of total

references for the four measures: OD, RD, CRD, and LRD-RD on various

workloads. It shows th a t there are two groups of curves: OD and RD with

high movement ratios, NRD and LRD-RD with low movement ratios. . . . 142

5.7 An example to show the data structure of ULC for a 3-level hierarchy. The

blocks with their recencies less than that of yardstick Y3 are kept in uniLRU -

stack. The level status (L%, L 2 or L3) of a block is determined by its position

between two yardsticks where it was accessed last time. Its recency status

(f?i, f?2 or R%) is determined by its position between two yardsticks where

it sits currently. To decide which block should be replaced in each level, the

blocks in the same level can be viewed to be organized in a separate LRU

stack (LRU i, LRU 2 , or LRU 3), and the bottom block is for replacement. . 146

xx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.8 An example to explain how a requested block is cached in the server cache,

and how the allocation scheme adjusts the size of the server cache used by

various clients in a multi-client two-level caching structure. Originally in (a)

server stack gLRU holds all the L 2 blocks from clients 1 and 2, which are

also in their LRU 2 stacks, respectively. Then block 9 is accessed in client 1.

Because block 9 is between yardstick Y\ and I 2 in its uniLRU stack, it turns

into L 2 block and needs to be cached in the server. Because the server cache

is full, the bottom block of gLRU, block 14, is replaced, which will be notified

to its owner, client 2, through a piggyback on the next retrieved block going

to client 2 (delayed notification). After the server buffers re-allocation (b),

the size of server cache for client 1 is increased by 1 and tha t for client 2 is

decreased by 1. So the clients and the server cooperate to make the server

cache efficiently allocated with the aim of high performance for the entire

system.. 150

5.9 hit ratios in each of the three levels, demotion rates at each of two boundaries

(between LI and L2, and between L2 and L3 cache), and average access time

for each workload with the multi-level caching schemes indLRU, uniLRU and

ULC... 156

5.10 The average access times for schemes ULC, uniLRU, MQ and indLRU with

various server cache sizes. The client cache size is fixed. It is 256MB for

z ip f, and 128MB for httpd and dev 1... 159

xxi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.11 The average access times for schemes ULC, uniLRU, MQ and indLRU with

various client cache sizes. The server cache size is fixed. It is 200MB for z ip f

and dev 1, and 150MB for httpd .. 161

5.12 The average access times for schemes ULC, uniLRU, MQ and indLRU with

various block transfer times. The client and server cache sizes are fixed, and

are 100MB each for all the workloads... 162

5.13 The average access times of multi-client traces httpd, openmail, and db2 with

various server cache sizes. Among them httpd is with 7 clients, openmail is

with 6 clients, and db2 is with 8 clients. Each client contains 8MB, 1GB, or

256MB respectively... 163

xxii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

As disk performance continues to lag behind that of memory systems and processors,
fully utilizing memory to reduce disk accesses is a highly effective effort to improve the
entire system performance. Furthermore, to serve the applications running on a computer
in distributed systems, not only the local memory but also the memory on remote servers
must be effectively managed to minimize I /O operations. The critical challenges in an ef
fective memory cache management include: (1) Insightfully understanding and quantifying
the locality inherent in the memory access requests; (2) Effectively utilizing the locality
information in replacement algorithms; (3) Intelligently placing and replacing data in the
multi-level caches of a distributed system; (4) Ensuring tha t the overheads of the proposed
schemes are acceptable.

This dissertation provides solutions and makes unique and novel contributions in appli
cation locality quantification, general replacement algorithms, low-cost replacement policy,
thrashing protection, as well as multi-level cache management in a distributed system. First,
the dissertation proposes a new method to quantify locality strength, and accurately to iden
tify the data with strong locality. It also provides a new replacement replacement algorithm,
which significantly outperforms existing algorithms. Second, considering the extremely low-
cost requirements on replacement policies in virtual memory management, the dissertation
proposes a policy meeting the requirements, and considerably exceeding the performance
existing policies. Third, the dissertation provides an effective scheme to protect the system
from thrashing for running memory-intensive applications. Finally, the dissertation pro
vides a multi-level block placement and replacement protocol in a distributed client-server
environment, exploiting non-uniform locality strengths in the I/O access requests.

The methodology used in this study include careful application behavior characteriza
tion, system requirement analysis, algorithm designs, trace-driven simulation, and system
implementations. A main conclusion of the work is that there is still much room for innova
tion and significant performance improvement for the seemingly mature and stable policies
that have been broadly used in the current operating system design.

xxiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Efficient Caching Algorithms

for Memory Management in Computer Systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

W ith the ongoing dramatic increase in processor speeds, and relatively stable disk speed,

the disparity between processor speeds and disk access times are keeping widened. For

memory-intensive applications and those with frequent file data accesses, their execution

t imes are often dominated by I/O latency. Since disk access times are improving slowly,

these applications are receiving decreasing benefits from the rapid advance of processor

technology, and I/O latency is accounting for an increasing proportion of their execution

times. This technology trend makes memory play an increasingly im portant role to serve

as a cache for I/O file data and virtual memory swap files. So, fully utilizing memory to

reduce disk accesses is an im portant issue concerning to the entire system performance. To

serve the applications running on a computer in a distributed system, not only the local

memory but also the memories distributed on remote servers, even on other clients have to

be effectively managed to minimize I/O operations.

In this dissertation, we examine four challenging issues in the effective memory man

agement to reduce I/O accesses, including (1) General-purpose memory replacement al

gorithms; (2) Low-cost virtual memory replacement policies; (3) Thrashing prevention for

running multiple memory-intensive programs; (4) Multi-level distributed cache manage-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRO D U CTIO N 3

ment. Our dissertation provides solutions to these challenging issues, and use trace-driven

simulation or implementation techniques to demonstrate their effectiveness in terms of both

performance and cost. Our dissertation demonstrates tha t innovative methods can signif

icantly improve the utilization of available memory and reduce I/O accesses by effectively

exploiting the locality in the access requests.

1.1 M emory Hierarchies and Caching

Smaller,
faster, and
more expensive
(per byte) on—chip LI

cache (SRAM)

on-chip L2
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

global secondary storage
(distributed systems, web servers)

CPU regiesters hold words fetched
from LI chahe

LI cache holds cacje lines fetched
from L2 cache

L2 cache holds cache lines fetched
from main memory

Main memory holds blocks (pages)
from local/remote disks

Larger,
slower, and
Cheaper
(per byte)

Figure 1.1: Memory system is organized as a hierarchy, giving the user the illusion of a memory
that is as large as largest level of memory and has the access speed as fast as the first level of cache.

In computer systems, memory is organized as a memory hierarchy. A memory hierarchy

consists of multiple levels of memory with different speed, size and unit cost (see Figure 1.1).

In the hierarchy, the layers close to processors are two or three levels of fast and expensive

SRAM (Static RAM) cache memory, with their size from 128K to a few Megabytes. The

next layer is main memory made of DRAM (Dynamic RAM), which is of a higher capacity

in the same size of chip area, and less costly, but is slower in access time. Currently the

typical size of main memory is from 128MB to 1GB. A layer below the main memory, which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 1. INTRO D U CTIO N 4

is further away from processors, is the mechanical disk. The size of disk can be hundreds

of Gigabytes, but its speed is several magnitudes slower than the memory made of RAM

chips. The goal of organizing memory into the hierarchy is try to present the user with a

fast, large and affordable memory, with its speed close to the CPU caches, and its size close

to the disk.

When a program is running at a processor, it always tries to fetch the data it needs from

the memory close to it. If the data is found there, called a hit, the program will continue

its execution with the fetched data. However, if the data is not found there, called a miss,

the request has to be sent to the next layer of the memory hierarchy to retrieve the data.

CPU caches are implemented primarily in hardware to match the processor speed. The

speed of the caches, especially for the first-level cache, is critical to the processor speed,

because they directly affect the performance of load and store instructions. Because of the

critical importance of hit times of hardware cache, its design is severely constrained - only

very simple and low cost operations are allowed, so tha t most of them can be wired in the

hardware. For this purpose, direct mapped or set associative mapping are used to minimize

the addressing cost both in time and extra parts. The associativity of the set-associativlty

is typically from 2 to 16. Further increasing associativity is not worthwhile because of the

diminishing hit rate increase and rapidly increased comparator cost.

It is a different case for main memory and disk. On one hand, misses are much more

expensive than those in CPU caches. So even a small decrease of misses could considerably

reduce execution time. On the other hand, the main memory can afford fully associative

mapping and more sophisticated management algorithms to reduce misses.

To run programs with their total memory demand larger than the amount of main

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 1. INTRO DUCTION 5

memory available on the machine, virtual memory (VM) is devised to use the main memory

as a cache tha t contains only the active portions of one or multiple programs. The rest of

programs are saved on the swap areas on disks. Conventionally, a virtual memory block

is called a page, and a virtual memory miss is called a page fault. To support a fully

associative virtual memory system, each program is equipped with a page table to index

its virtual memory space. When a page fault occurs with a memory access, which means

the virtual page can not be mapped onto a page resident in the main memory, the program

issuing the memory access request has to stop and wait for the page to be retrieved from

the disk, which is much more expensive than a memory hit. Even though the size of both

memory and disk have rapidly increased, their speed gap remains largely unchanged.

W ith the dramatically decreased memory price, the memory installed on the computer

has been significantly increased. However, this does not relent the pressure on memory

used as a cache of swap area. Parkinson’s Law [58] states that “Work expands to fill

the time available.” In the virtual memory case, the law actually reflects the fact that

programs expand to fill the memory available to hold them. The most obvious example

is tha t Microsoft continues to increase the memory demand of its operating systems and

office software to include more advanced functionalities and increased performance. In the

field of scientific computations, many of the computational problems of interest to scientists

and engineers involve data sets that are much larger than physical memory. Increases in

processor power and the available memory capacity make it feasible to solve larger problems,

or to solve the same problem at a finer granularity, and the size of the data set grows with

the problem being solved. For example, the visualization of Computational Fluid Dynamics

(CFD), input data sets today can surpass 100 Gbytes, and are expected to scale with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRO DU CTION 6

ability of supercomputers to generate them. Despite the continuing trend toward larger

memories, it is unlikely that these data sets will fit entirely within the main memory. How

to make an effective use of main memory as a cache of data on disks to reduce disk accesses

is a ever-existing challenge to operating system designers. The goal of caching is to keep

those active pages in memory, so tha t their next references are hits without the need of disk

accesses. The effectiveness of the caching in main memory depends on how effectively to

identify active portions of program address space for storing in memory. This is also the

theme of this dissertation.

1 .1 .1 L o ca lity an d R ep la cem e n t a lg o r ith m s

Caching works because of the existence of program access locality, which states tha t “most

of the time, a program tends to reference only a few of its pages and the set of pages

being referenced changes slowly [12]” . The locality consisting of a small portion of program

address space is of two types. The first type is temporal locality, which states tha t if an

item is accessed, it will tend to be accessed again soon. The second type is spatial locality,

which states tha t if an item is accessed, items whose addresses are close to it will tend

to be accessed soon. The locality information exhibited in the memory access provides a

very useful hints to predict which set of pages are probably to be used soon and should

be prefetched or kept in memory. The spatial locality is mostly exploited by large page

size and prefetching. Prefetching is to fetch pages in advance into memory before there are

access requests on the pages. In contrast, demand paging states tha t a page is brought into

memory only on a page fault. The temporal locality is used in caching to decide which

pages should be kept in memory and which pages should be evicted out of memory to make

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRO DU CTION 7

room for faulted pages. The algorithm used in the decision process is called replacement

algorithm.

The study on replacement algorithms has a long history since 1950s and generate nu

merous papers on the algorithms, modeling, implementation and performance evaluation.

However, the problem is still far from being effectively solved and continues to draw atten

tion from the industry and academia. Meanwhile, the changes of the program memory access

behaviors and system configurations generate new demands on replacement algorithms.

Traditionally, the metric to evaluate replacement algorithms is hit ratio, which is defined

as the ratio of the number of misses and the number of accesses. Using the metric, the

optimal algorithm is the one called OPT [1] or MIN [7, 63], which replaces the page that

will not be used for the longest period of time. It is easy to describe, but unfortunately, it is

a off-line, unimplementable algorithm, because it requires future knowledge of the reference

requests. As a result, OPT is used mainly for comparison studies.

There are two types of history locality information used in the general-purpose replace

ment algorithms: recency and frequency. Recency of a page refers to the time of its last

reference. Least Recently Used (LRU) [46, 7] is the most well known replacement algorithm.

It assumes that a page not accessed recently will not be accessed in the near future. Thus

it chooses the page whose last reference is the farthest to replace. LRU is very successful

due to its simplicity, low-cost and good performance in most cases and is widely used in

various systems. However, because it considers very limited history accesses, and makes

a assumption tha t does not hold for certain access patterns, LRU performance could be

unacceptably poor. In contrast, Least Frequently Used (LFU) replacement algorithm [20]

uses frequency, the number of times a page has been accessed, to select victim pages. How

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRO D U CTIO N 8

ever, LFU is rarely used in practice because of its severe drawbacks: it requires a very high

running cost, cause cache pollution, in which pages that have accumulated large frequencies

in history and will not be used are hard to be replaced.

Most recently proposed replacement algorithms take both recency and frequency factors

into consideration. For example, Least Recently/Frequently Used (LRFU) algorithm [45]

uses a parameter to dictate how much more weight given to the recent history than to the

past history. Other algorithms considering more history information include LRU-2 [57],

2Q [37], EELRU [67], MQ [82] LIRS [33] and ARC [51]. These algorithms differ in their

hit ratios with different access patterns, their overhead, and adaptivity to access pattern

changes.

The key challenge for a high performance and low-cost replacement algorithm is to

accurately quantify locality strength and make an efficient use of the locality information.

The first part of this dissertation provide solution to meet the challenge.

1 .1 .2 R ep la cem e n t P o lic ie s for V ir tu a l M em o r y

We have stated that LRU is the most widely used replacement algorithm. Because of a very

stringent cost requirement on the policy from virtual memory (VM) management, actually

it is the LRU approximations tha t are used for VM page replacement. It requires the cost

be associated with the number of page faults or a moderate constant. An algorithm with

its cost proportional to the number of memory references would be prohibitively expensive.

This causes the user program to incur a trap to the operating system every few instructions,

the CPU would spend much more time on page replacement work than doing useful work

for the user application even when there are not paging requests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRO D U CTIO N 9

C lo c k H a n d

Figure 1.2: The CLOCK replacement algorithm. The clock hand moves in the counter-clockwise
direction. The reference bit of each page is either set (1) or unset (0).

There are several low-cost VM replacement algorithm, most of them attem pt to simulate

LRU behavior. The FIFO (Fist-In, First-Out) replacement policy maintains a list of all

pages currently in memory, where the page at the head of the list represents the oldest

one, and the page at the tail the most recently accessed one. On a page fault, the page

at the head is removed for the replacement and the faulted page is placed at the list tail.

This simple algorithm does not allow actively accessed pages to always stay in memory.

To make recent access information considered, it is evolved into the Second-Chance (SC)

algorithm [70]. In the SC algorithm, there is a reference bit associated with each resident

page, which is set by hardware with every memory access. When a page moves to the head

of the list, its reference bit is checked. If its bit is set, the page is given a second chance

and move to the list tail. Otherwise, the page is replaced. So SC is looking for an old

page that has not been referenced in the previous clock interval. One way to implement the

algorithm is to maintain the list as a circular queue called CLOCK. A pointer called clock

hand indicates which page to be replaced next (see Figure 1.2). W hen a free page is needed,

the hand advances until it finds a page with an unset reference bit. The implementation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRO D U CTIO N 10

is usually called the CLOCK algorithm. Experiences and experiments have shown that

CLOCK has effectively simulated LRU and has the performance very close to that of LRU.

In a generalized CLOCK version called GCLOCK[69], a counter is associated with each

page rather than a single bit. The counter will be incremented if the page is hit. The

circulating clock hand sweeps through the page decrementing the counter until a page with

its count of zero is found for replacement.

The CLOCK algorithm and its alternatives have been dominating the VM replacements

for more than three decades. Though their performance is satisfactory in general, they

inherit the performance drawbacks from LRU and seriously under-perform for some com

monly observed access patterns. On one hand, there are many general-purpose replacement

algorithms improving LRU performance. One the other hand, due to the extremely low cost

requirement of VM management, the performance advantages of the algorithms are difficult

to transfer to VM performance. So the challenge is to design a VM replacement algorithm

that has a cost comparable to CLOCK and overcomes the performance disadvantages of

LRU and CLOCK. The second part of the dissertation is to address this challenge.

1 .1 .3 G lob a l R e p la c e m e n t in M u ltip r o g ra m m in g E n v iro n m en ts

In a multiprogramming environment, when multiple processes compete for page frames,

page replacement algorithms can be classified into two broad categories: local replacement

and global replacement. Local replacement requires that each process select from only its

own set of allocated page frames for replacement to satisfy its page fault. Global replacement

allows a process to select a page frame belonging to any processes for replacement and load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRO DU CTION 11

its faulted page into the frame l . So one process can take a frame from another. Memory

allocation can be re-distributed according to the competition among processes.

A local replacement uses a memory scheme to assign the allocation to each process.

The assignment can be based on the estimation of the need of each process. However, the

static allocation can not capture dynamical changing memory demand of each program

[38]. As a result, memory space is not well utilized. If we dynamically adjust the allocation

to the current demand of individual process, the local replacement will essentially evolve

into a global one. Researchers and system practitioners seem to have agreed that a local

policy is not an effective solution for virtual memory management, and it is rarely used

nowadays. Global replacement can automatically implement memory allocation adapting

to the memory demands of processes through their page replacement interaction. This would

make memory better utilized in a global replacement than that in a local replacement.

Thrashing

CPU
Utilization

The number of processes in the systems simultaneously

Figure 1.3: CPU utilization is plotted against the number of processes in the system. Though
increasing processes in the system could increase CPU utilization, too many processes could over
commit the limited memory and cause thrashing.

1 Actually in practice the page frame used for the current page fault may not be the frame just replaced.
Normally, operating systems do not wait to start the search free pages until all the free pages are running
out. Instead, they set a threshold for the minimal available free pages. Once the threshold is reached, they
start to search proper replacement candidates to fill up the pool of free pages. And these free pages are
ready for use whenever needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRO DU CTION 12

One problem with global replacement algorithm is thrashing among multiple processes.

A primary objective of memory management is to maximize the effectiveness of main mem

ory in meeting the overall goals of sharing, throughput, and responsiveness. For this pur

pose, we need to maintain a proper number of processes active simultaneously in memory.

If there are not enough active processes, main memory is underutilized, and the possibility

of all processes being blocked, leaving the CPU idle, is increased. If there is an excess of

active processes in memory, the main memory will be over-committed, excessive number of

page faults will take place, also CPU idling. This is called thrashing (see Figure 1.3).

Now let’s have a brief look into how a thrashing is developed among multiple processes.

The set of recently used, active pages of a process are called its working set [24], which is used

to estimate the current memory demand of a running program in the system. Now suppose

a process enters a new phase in its execution and needs more page frames. It starts faulting

and could take pages away from other processes under a global page replacement policy. The

replaced pages may belong to their working sets because of the memory overcommitment.

So these processes need these pages, they also fault, taking pages from other processes,

which escalates the problem further. The situation can be worsen until the system ends up

spending most of its time in page fault handling, and the processes can make little progress.

Thus a thrashing occurs.

This problem may be addressed by reducing the number of active processes, thus con

trolling the system load. This is called load control. However, by abruptly suspending, even

killing active processes, the brute-force mechanism could introduce an unnecessary working

set reloading overhead, excessively reducing active processes, and reduce user interactivity.

Actually the thrashing is directly related to the global replacement policy. W ithout having

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. IN TRO D U CTIO N 13

to resort to local replacement policies, a global replacement policy that can adapt its re

placement behavior to the current CPU utilization would be a promising idea to overcome

the aforementioned difficulties, and as well alleviate or even solve thrashing problem. The

third part of the dissertation is to develop techniques to address the thrashing problem.

1 .1 .4 P la c e m e n t an d R e p la c e m e n t in D is tr ib u te d F ile B uffer C ach es

High Level Caches

Low Level Caches

Client
Front -T ier Server End -T ier Serve

Client

Network

Disk Array

Figure 1.4: Multi-level buffer cache hierarchy. Caches are distributed along the clients, intermediate
servers, and disk array, where accessed blocks can be buffered.

When a user requests a remote data item in a client-server distributed environment, the

retrieved data is cached a t the client file buffer cache, it could also be cached at intermediate

server buffer caches and disk built-in caches, which forms a multi-level buffer cache hierarchy

(see Figure 1.4). For example, disk arrays use a significant amount of cache RAM as a data

buffer attempting to provide as much as re-accessed data as possible from the cache without

access disks. As an example case, EMC 8830 disk array supports up to 64 GBytes cache

for this purpose. We might naively expect a large amount of cache memory invested on the

data retrieving path in the distributed system would automatically gain steady performance

increase. However, in the distributed situation, the issue can be more complicated than we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRO D U CTIO N 14

thought because of the existing buffer cache management.

Unlike the processor cache hierarchy, where the multi-level inclusivity [3] between L\, L 2 ,

,.Ln cache could be accepted as a principle to simplify the cache coherence protocol and the

cache behaviors at different levels are well coordinated, the multi-level caches here are much

loosely connected. The placement of cached file block in the hierarchy and the replacement

at each level of cache are determined by local policies independently from each other. Any

client requested blocks are cached by intermediate caches, when they are on their way to

the clients passing through the caches. This causes accessed blocks be redundantly cached

and makes caches under-utilized. Only block misses from the high level caches, which are

close to clients, appear at the low level caches, which are far away from clients. This causes

the locality, which the replacement algorithm depend on for its replacement decision, is

weakened and makes the hit ratios at the low level caches significantly deteriorate.

There are several possible approaches to attack the problems. One approach is to make

the replacement algorithms at each level coordinate with each and allow one block be cached

at one place at most. Its potential problem is tha t it could incur excessive amount of com

munication overhead on the network for the coordination. Another approach is to re-design

local replacement algorithms, to improve their hit ratios even with weakened locality infor

mation. This is certainly inadequate in the whole system point of view, because each cache

still makes replacement decisions independently and the block redundant caching problem

is not solved. W ithout the coordination among the caches, its performance potential is

greatly limited. In the fourth part of the dissertation, we will address the aforementioned

problems in a distributed environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRO DU CTIO N

1.2 Contributions

15

The contribution of the dissertation in cache management algorithms are fourfold: general-

purpose replacement algorithm [33], low-cost replacement policy for virtual memory, thrash

ing prevention in multiprogramming environments [34], and file block placement and re

placement in multi-level buffer caches [36], and are outlined as follows:

• This dissertation proposes an efficient general-purpose replacement algorithm, called

Low Inter-reference Recency Set (LIRS). We designed the algorithm based on a locality

qualification metric called Low Inter-Reference Recency (IRR), or re-use distance in

the previous studies in the fields such as compiler [28] and CPU cache [64]. It describes

the time between two consecutive references to a block. In the trace-driven simulation,

We compared the hit ratios of LIRS with LRU, LRU-2, 2Q, LRFU, EELRU, ARC,

and UBM. W ithout tuning sensitive parameters and assuming specific properties of

access patterns, LIRS outperforms all the other replacement algorithms across a large

number of real-life and synthetic traces with different memory sizes. In many cases,

its hit ratios are very close to the optimal ones. The data structure and operations

of LIRS are very simple but effective. Its running cost is as low as tha t of LRU.

Its unique performance and cost advantages have made LIRS very attractive to the

industry [73, 51].

• Inspired by the general-purpose LIRS replacement algorithm and the demanding need

of a new virtual memory page replacement policy to improve the performance of the

dominating CLOCK policy, this dissertation proposes an enhanced CLOCK replace

ment policy, called CLOCK-Pro. By additionally keeping track of a limited num-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRO D U CTIO N 16

ber of replaced pages, CLOCK-Pro works in a similar fashion as CLOCK with a

VM-affordable cost. In the meanwhile, it brings all the much-needed performance

advantages from LIRS to CLOCK. CLOCK-Pro even eliminates the only tunable pa

rameter in LIRS and makes itself a policy adapting to the changing access locality

to serve a broad spectrum of workloads. W ith the access patterns where CLOCK is

able to achieve high hit ratios, CLOCK-Pro behaves much like CLOCK. For the ac

cess patterns such as memory scan, large-scale loop accesses, where CLOCK performs

unacceptably poor, CLOCK-Pro significantly reduces the page faults, thus makes sys

tem more robust to various memory access behaviors. We also compared CLOCK-Pro

with other recently proposed VM page replacement policies, such as CAR [6] and show

tha t CLOCK-Pro consistently outperforms CAR.

• To deal with thrashing in multiprogramming environments, this dissertation provide

a scheme, called Thrashing Protection Facility (TPF), which protects the system from

thrashing once a thrashing is detected. The scheme deals with thrashing by adaptively

making adjustments on global page replacement policies. The adjustments are based

carefully analyzing the correlation between global page replacement behaviors and

CPU utilizations. Implementation in Linux kernels shows tha t the scheme can reduce

the program execution t imes by up to 67% when there is thrashing.

• In the area of multi-level buffer cache management, this dissertation proposes a client-

directed, coordinated file block placement and replacement protocol called Unified

Level-aware Caching (ULC), where the strengths of locality are dynamically quanti

fied at the client level, where full locality information is available. The quantification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 1. INTRO DU CTION 17

results are used to direct servers on placing or replacing file blocks at different levels

of the buffer caches. So that the locality of block accesses dynamically matches the

caching layout of the blocks in the hierarchy. The effectiveness of our proposed proto

col comes from achieving the following three goals: (1) The multi-level cache retains

the same hit rate as tha t of a single level cache whose size equals to the aggregate

size of multi-level caches. (2) The non-uniform locality strengths of blocks are fully

exploited and ranked to fit into the physical multi-level caches. (3) The communica

tion overheads between caches are also reduced. Our trace-driven simulation results

show tha t ULC significantly and consistently outperforms existing multi-level caching

schemes.

In this long-term comprehensive study of caching algorithms under the above four sit

uations, the dissertation demonstrates tha t there is still much room for innovation and

significant performance improvement for the seemingly mature and stable policies broadly

used in the system design, such as LRU replacement and load control. The algorithms pro

posed and evaluated in the dissertation are valuable in making the system more capable to

handle large-scale, more complicated applications running on variously-configured systems.

1.3 Organization

Chapter 2 describes our study on general-purpose cache replacement algorithms. Chapter 3

continues the replacement work and customizes the proposed replacement algorithm in the

virtual memory management with an extremely low cost policy. Chapter 4 discusses an ex

perimental study on thrashing prevention in multiprogramming environments by adaptively

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRO D U CTIO N 18

adjusting global page replacements. Chapter 5 describes our study on the management of

distributed, multi-level buffer caches through an effective block placement and replacement

protocol. Chapter 6 provides the conclusions and future work of the dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

G eneral-Purpose Replacem ent

Algorithm s

Replacement algorithms play im portant roles in buffer cache management, and their effec

tiveness and efficiency are crucial to the performance of file systems, databases, and other

data management systems. In this chapter, we will review previous work on improving the

performance of replacement algorithms and introduce the design of a novel replacement

algorithm.

2.1 Background

2 .1 .1 T h e P r o b le m s o f th e L R U R ep la cem e n t A lg o r ith m

The Least Recently Used (LRU) replacement is widely used to manage buffer cache due to

its simplicity, but many anomalous behaviors have been found with some typical workloads,

where the hit rates of LRU may only slightly increase with a significant increase of cache

size. The observations reflect LRU’s inability to cope with access patterns with weak locality

such as file scanning, regular accesses over more blocks than the cache size, and accesses

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALG ORITH M S 20

on blocks with distinct frequencies. Here are some representative examples reported in the

research literature, to illustrate how LRU poorly behaves.

1. Under the LRU policy, a burst of references to infrequently used blocks, such as “se

quential scans” through a large file, may cause replacement of commonly referenced

blocks in the cache. This is a common complaint in many commercial systems: se

quential scans can cause interactive response time to deteriorate noticeably [57]. A

wise replacement policy should prevent “hot” blocks from being evicted by “cold”

blocks.

2. For a cyclic (loop-like) pattern of accesses to a file tha t is only slightly larger than

the cache size, LRU always mistakenly evicts the blocks that will be accessed soon

est, because these blocks have not been accessed for the longest time [67]. A wise

replacement policy should maintain a miss rate close to the buffer space shortage.

3. In an example of multi-user database application [57], each record is associated with

a B-tree index. There are 20,000 records. The index entries can be packed into 100

blocks, and 10,000 blocks are needed to hold records. We use R(i) to represent an

access to Record i, and I(i) to Index i. The access pattern of the database application

alternates references to random index blocks and record blocks by 1(1), R(1), 1(2),

R (2), 7(3), R (3), Thus, index blocks will be referenced with a probability of 0.005,

and data blocks are with a probability of 0.00005. However, LRU will keep an equal

number of index and record blocks in the cache, and perhaps even more record blocks

than index blocks. A wise replacement should select the resident blocks according

to the reference probabilities of the blocks. Only those blocks with relatively high

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. G ENERAL-PURPOSE REPLACEM EN T ALG ORITH M S 21

probabilities deserve to stay in the cache for a long period of time.

The reason for LRU to behave poorly in these situations is that LRU makes a bold

assumption - a block that has not been accessed the longest would wait for relatively

longest time to be referenced again. This assumption cannot capture the access patterns

exhibited in these workloads with weak locality. Generally speaking, there is less locality

in buffer caches than tha t in CPU caches or virtual memory systems [65].

However, LRU has its distinctive merits: simplicity and adaptability. It only samples

and makes use of very limited information - recency. However, while addressing the weak

ness of LRU, existing policies either take more history information into consideration, such

as LFU (Least Frequently Used)-like ones in the cost of simplicity and adaptability, or

switch temporarily from LRU to other policies whenever regularities are detected. In the

switch-based approach, these policies actually act as supplements of LRU in a case-by-case

fashion. To make a prediction, these policies assume the existence of relationship between

the future reference of a block with the behaviors of those blocks in its temporal or spa

tial locality, while LRU only associates the future behavior of a block with its own history

reference. This additional assumption increases the complexity of implementations, as well

as their performance dependence on the specific characteristics of workloads. My LIRS

only samples and makes use of the same history information as LRU does - recency, and

mostly retains the simple assumption of LRU. Thus it is simple and adaptive. In our design,

LIRS is not directly targeted at specific LRU problems but fundamentally addresses the

limitations of LRU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLACEM EN T ALG O RITH M S 22

2 .1 .2 A n Executive S u m m a r y o f m y A lg o r ith m

we use recent Inter-Reference Recency (IRR) as the recorded history information of each

block, where IRR of a block refers to the number of other distinct blocks accessed between

two consecutive references to the block. In contrast, the recency refers to the number of

other distinct blocks accessed from last reference to the current time. We call IRR between

last and penultimate (second-to-last) references of a block as recent IRR, and simply call

it IRR without ambiguity in the rest of the paper. We assume tha t if the IRR of a block is

large, the next IRR of the block is likely to be large again. Following this assumption, we

select the blocks with large IRRs for replacement, because these blocks are highly possible

to be evicted later by LRU before being referenced again under our assumption. Note that

these evicted blocks may also have been recently accessed, i.e. each has a small recency.

Similar definition to IRR for measuring data access locality have been found in literature

as early as in 1970. M attson et al in [46] define “stack distance” by measuring the number of

distinct virtual memory pages accessed between two consecutive accesses of the same page

in a stack. Recently, this concept has been generalized as “reuse distance” [77] referring to

the number of distinct data elements accessed between two consecutive uses of the same

data element.

In comparison with LRU, by adequately considering IRR in history information in our

policy, we are able to eliminate negative effects caused by only considering recency, such

as the problems presented in the above three examples. When deciding which block to

evict, our policy utilizes the IRR information of blocks. It dynamically and responsively

distinguishes low IRR (denoted as LIR) blocks from high IRR (denoted as HIR) blocks, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLACEM EN T ALG ORITH M S 23

keep the LIR blocks in the cache, where the recency of blocks is only used to help determine

LIR or HIR statuses of blocks. We maintain an LIR block set and an HIR block set and

manage to limit the size of the LIR set so tha t all the LIR blocks in the set can fit in the

cache. The blocks in the LIR set are not chosen for replacement, and there are no misses

with references to these blocks. Only a very small portion of cache is assigned to store HIR

blocks. Resident HIR blocks may be evicted at any recency. However, when the recency

of an LIR block increases to a certain point, and an HIR block gets accessed at a smaller

recency than that of the LIR block, the statuses of the two blocks are switched. We name the

proposed policy “Low Inter-reference Recency Set” (denoted as LIRS) replacement, because

the LIR set is what the algorithm tries to identify and keep in cache. The LIRS policy aims

at addressing three issues in designing replacement policies: (1) how to effectively utilize

multiple sources of access information; (2) how to dynamically and responsively distinguish

blocks by comparing their possibility to be referenced in the near future; and (3) how to

minimize implementation overheads.

2.2 Related Work

LRU replacement is widely used for the management of virtual memory, file caches, and data

buffers in databases. The three typical problems described in the previous section are found

in different application fields. A lot of efforts have been made to address the problems of

LRU. We classify existing schemes into three categories: (1) replacement schemes based on

user-level hints; (2) replacement schemes based on tracing and utilizing history information

of block accesses; and (3) replacement schemes based on regularity detections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPOSE REPLAC EM EN T ALG O RITH M S 24

2 .2 .1 U se r - le v e l H in ts

Application- controlled file caching [11] and application-informed prefetching and caching

[59] are the schemes based on user-level hints. These schemes identify blocks with low

possibility to be re-accessed in the future based on available hints provided by users. To

provide appropriate hints, users need to understand the data access patterns, which adds to

the programming burden. In [53], Mowry et. al. attem pt to abstract hints from compilers to

facilitate I/O prefetching. Although their methods are orthogonal to our LIRS replacement,

the collected hints may help us to ensure the existence of the correlation of consecutive

IRRs. However, in most cases, the LIRS algorithm can adapt its behavior to different

access patterns without explicit hints.

2 .2 .2 T racin g an d U tiliz in g H isto r y In fo r m a tio n o f a B lo ck

Realizing tha t LRU only utilizes limited access information, researchers have proposed

several schemes to collect and use “deeper” history information. Examples are LFU-like

algorithms such as FBR, LRFU, as well as LRU-K and 2Q. We take a similar direction by

effectively collecting and utilizing access information to design the LIRS replacement.

Robinson and Devarakonda propose a frequency-based replacement algorithm (FBR)

by maintaining reference counts for the purpose to “factor out” locality [65]. However it

is slow to react to reference popularity changes and some parameters have to be found

by trial and error. Having analyzed the advantages and disadvantages of LRU and LFU,

Lee et. al. combine them by weighing recency factor and frequency factor of a block [45].

The performance of the LRFU scheme largely depends on a parameter called A, which

decides the weight of LRU or LFU, and which has to be adjusted according to different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALGORITHM S 25

system configurations, even according to different workloads. However, LIRS does not have

a tunable param eter tha t is sensitive to the target workload.

The LRU-K scheme [57] addresses the LRU problems presented in the Examples 1 and

3 in the previous section. LRU-K makes its replacement decision based on the time of

the K th-to-last reference to the block. After such a comparison, the oldest resident block

is evicted. For simplicity, the authors recommended K = 2. By taking the time of the

penultimate reference to a block as the basis for comparison, LRU-2 can quickly remove

cold blocks from the cache. However, for blocks without significant differences of reference

frequencies, LRU-2 does not work well. In addition, LRU-2 is expensive: each block access

requires log(iV) operations to manipulate a priority queue, where N is the number of blocks

in the cache.

Johnson and Shasha propose the 2Q scheme tha t has overhead of a constant time [37].

The authors showed that the scheme performs as well as LRU-2. The 2Q scheme can quickly

remove sequentially-referenced blocks and loopingly-referenced blocks with long periods

from the cache. This is done by using a special buffer, called the A lin queue, in which all

missed blocks are initially placed. When the blocks are replaced from the A lin queue in the

FIFO order in a short period of time, the addresses of those replaced blocks are temporarily

placed in a ghost buffer called A lou t queue. When a block is re-referenced, if its address is

in the A lou t queue, it is promoted to a main buffer called Am. That is, only blocks have

short re-use distance measured by the A l in queue and A lo u t queue can be cached for a

long period of time in Am. In this way they are able to distinguish frequently referenced

blocks from those infrequently referenced. By setting of the sizes of A lin and A lou t queues

as constants K in and Kout, respectively, 2Q provides a victim block either from A l in or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPOSE REPLAC EM EN T ALGORITHM S 26

from Am. However, K in and K out are pre-determined parameters in 2Q scheme, which

need to be carefully tuned, and are sensitive to the types of workloads. Although both the

2Q and the LIRS algorithms have simple implementations with low overheads, LIRS has

overcome the drawbacks of 2Q by a properly updating of the LIR block set. Another recent

algorithm, ARC, maintains two variable-sized lists [51]. Their combined size is two times

of the number of pages that are held in the cache, one half of the lists contain the blocks

in the cache and another half are for the history access information of replaced blocks. The

first list contains blocks that have been seen only once recently and the second list contains

blocks that have been seen at least twice recently. The cache spaces allocated to the blocks

in these two lists are adaptively changed, depending on in which list recent misses happen.

More cache spaces will serve cold blocks (resp. hot blocks) if there are more cold block

(resp. hot block) accesses. However, though the authors advocate the superiority of the

ARC algorithm by its adaptiveness and excluding tunable parameters, the locality of blocks

in the two lists, quantified by recency or frequency, can not directly and consistently be

compared. For example, a block tha t is regularly accessed with an IRR a little bit more

than the cache size may have no hits at all while a block in the second list can stay in cache

without any accesses since it has been accepted into the list.

Inter-Reference Gap (IRG) for a block is the number of the references between consec

utive references to the block, which is different from IRR on whether duplicate references

on a block are counted. Phalke and Gopinath considered the correlation between history

IRGs and future IRG [62]. The past IRG string for each block is modeled by Markov chain

to predict the next IRG. However, as Smaragdakis et. al. indicate, replacement algorithms

based on a Markov models fail in practice because they try to solve a much harder problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLACEM EN T ALG ORITH M S 27

than the replacement problem itself [67]. An apparent difference in their scheme from our

LIRS algorithm is on how to measure the distance between two consecutive references on a

block. My study shows tha t IRR is more justifiable than IRG in this circumstance. First,

IRR only counts the distinct blocks and filters out high-frequency events, which may be

volatile with time. Thus the IRR is more relevant to the next IRR than the IRG to the

next IRG. Moreover, it is the “recency” but not “gap” information that is used by LRU.

An elaborate argument favoring IRR in the context of virtual memory page replacement

can be found in [67]. Secondly, IRR can be easily dealt with under the LRU stack model

[20], on which most popular replacements are based.

2 .2 .3 D e te c t io n an d A d a p ta t io n o f A ccess R eg u la r itie s

More recently, researchers took another approach to detect access regularities from the

history information by relating the accessing behavior of a block to those of the blocks in

its temporal or spatial locality scope. Then different replacements, such as MRU, can be

applied to blocks with specific access regularities.

Glass and Cao propose adaptive replacement SEQ for page replacement in virtual mem

ory management[30]. It detects sequential address reference patterns. If long sequences of

page faults are found, MRU is applied to such sequences. If no sequences are detected,

SEQ performs LRU replacement. Smaragdakis et. al. argued that address-based detection

lacks generality, and advocated using aggregate recency information to characterize page

behaviors [67]. Their EELRU examines aggregate recency distributions of referenced pages

and changes the page eviction points using an on-line cost/benefit analysis by assuming the

correlation among temporally contiguously referenced pages, unlike LRU, which actually

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. G ENERAL-PURPOSE REPLACEM EN T ALG O RITH M S 28

always set the eviction point in the bottom of LRU stack. However, EELRU has to choose

a eviction point from a pre-determined set of LRU stack positions. And how to select the

set could affect its performance. Moreover, by aggregate analysis, EELRU can not quickly

respond to the changing access patterns. W ithout spatial or temporal detections, our LIRS

uses independent recency events of each block to effectively characterize their references.

Choi et. al. propose a new adaptive buffer management scheme called DEAR that au

tomatically detects the block reference patterns of applications and applies different re

placement policies to different applications based on the detected reference patterns [19].

Further, they propose an Application/File-level Characterization (AFC) scheme in [18],

which first detects the reference characteristics at the application level, and then at the

file level, if necessary. Accordingly, appropriate replacement policies are used to blocks

with different patterns. The Unified Buffer Management (UBM) scheme by Kim et. al.

also detects patterns in the recorded history [42], Unlike the detection method proposed

in [19], which associates the backward distance and frequency with the forward distances

of blocks between two consecutive detection invocation points, UBM track the reference

information such as the file descriptor, start block number, end block number, and loop

period if re-reference occurs. Though their elaborate detection of block access patterns

provide a large potential to high performance, they address the problems in a case-by-case

fashion and have to cope with the allocation problem, which does not appear in LRU. To

facilitate the on-line evaluation of buffer usage, certain pre-measurements are needed to set

pre-defined parameters used in the buffer allocation scheme [18, 19]. My LIRS does not

have these design challenges. Just as LRU does, it chooses the victim block in the global

stack. However, it can use the advantages provided by the detection based schemes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALG O RITH M S 29

2 .2 .4 W ork in g S e t M o d els

Lastly, we would like to compare our work with the working set model, an early work by

Denning [24]. A working set of a program is a set of its recently used pages. Specifically, at

virtual time t, the program’s working set Wt(9) is the subset of all pages of the program,

which have been referenced in the previous 9 virtual time units (the working set window).

A working set replacement algorithm is used to ensure that no pages in the working set

of a running program will be replaced [25]. Estimating the current memory demand of a

running program in the system, the model does not incorporate the available cache size.

When the working set is greater than the cache size, working set replacement algorithm

would not work properly. Another difficulty with the working set model is its weak ability

to distinguish recently referenced “cold” blocks from “hot” blocks. My LIRS algorithm

ensures that LIR block set size is less than the available cache size and keeps the set in the

cache. IRR helps to distinguish the “cold” blocks from “hot” ones: a recently referenced

“cold” block could have a small recency, but would have a large IRR.

2.3 The LIRS algorithm

2 .3 .1 G en era l Id ea

We divide the referenced blocks into two sets: High Inter-reference Recency (HIR) block set

and Low Inter-reference Recency (LIR) block set. Each block with history information in

cache has a status - either LIR or HIR. Some HIR blocks may not reside in the cache, but

have m etadata in the cache recording their statuses as non-resident HIR blocks. We also

divide the cache, whose size in blocks is L, into a major part and a minor part in terms of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALG ORITHM S 30

their sizes. The major part with the size of Lurs is used to store LIR blocks, and the minor

part with the size of L^irs is used to store blocks from HIR block set, where Lnrs + Lhirs

— L. When a miss occurs and a block is needed for replacement, we choose an HIR block

tha t is resident in the cache. The LIR block set always resides in memory, i.e., there are

no misses for the references to LIR blocks. However, a reference to an HIR block would be

likely to encounter a miss, because Lhirs is very small (its practical size can be as small as

1% of cache size).

We use Table 2.1 as a simple example to illustrate how a replaced block is selected

by the LIRS algorithm and how LIR/HIR statuses are switched. In Table 1, symbol “X”

denotes a block access at a virtual time unit 1. For example, block A is accessed at time

units 1, 6, and 8. Based on the definition of recency and IRR in Chapter 2.1.2, at time

unit 10, blocks A, B, C, D, E have their IRR values of 1, 1, “infinite” , 3, and “infinite” ,

respectively, and have their recency values of 1, 3, 4, 2, and 0, respectively. We assume

Lnrs = 2 and L^*rs — 1, thus at the time 10 the LIRS algorithm leaves two blocks in the

LIR set = {A, B}. The rest of the blocks go to the HIR set = {C, D, E}. Because block E

is the most recently referenced, it is the only resident HIR block due to L^irs = 1. If there

is a reference to an LIR block, we just leave it in the LIR block set. If there is a reference

to an HIR block, we need to know whether we should change its status to LIR.

The key to successfully make the LIRS idea work in practice rests on whether we are

able to dynamically and responsively maintain the LIR block set and HIR block set. When

an HIR block is referenced, it gets a new IRR equal to its recency. Then we determine

whether the new IRR is small compared with reference statistics of existing LIR blocks, so

1 Virtual time is defined on the reference sequence, where a reference represents a time unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLAC EM EN T ALGORITHM S 31

Blocks / Virtual time 1 2 3 4 5 6 7 8 9 10 Recency IRR
E X 0 inf
D X X 2 3
C X 4 inf
B X X 3 1
A X X X 1 1

Table 2.1: An example to explain how a victim block is selected by the LIRS algorithm and how
LIR/HIR statuses are switched. A “X” refers the block of the row is referenced at the virtual time
of the column. The recency and IRR columns represent the values at the virtual time 10 for each
block. We assume Lurs = 2 and Lhirs = 1, and at the time 10 the LIRS algorithm leaves two blocks
in the LIR set = {A, B}, and the HIR set is {C, D, E}. The only resident HIR block is E.

tha t we can decide whether we need to change its status to LIR. Here we have two options:

to compare it either with the IRRs or with the recencies of the LIR blocks. We choose the

recencies for the comparison. There are two reasons for this: (1) The IRRs are generated

before their respective recencies and are outdated, which are not directly relevant to the

new IRR of the HIR block. A recency of a block is determined not only by its own reference

activity, but also the recent activities of other blocks. The result of comparison of the

new IRR and recencies of the LIR blocks determines the eligibility of the HIR block to be

considered as a “hot block”. Though we claim tha t IRRs are used to determine which block

should be replaced, it is the new IRRs that are directly used in the comparisons. (2) If the

new IRR of the HIR block is smaller than the recency of an LIR block, it will be smaller

than the upcoming IRR of the LIR block. This is because the recency of the LIR block

is a part of its upcoming IRR, and not greater than the IRR. Thus the comparisons with

the recencies are actually the comparisons with the relevant IRRs. Once we know tha t the

new IRR of the HIR block is smaller than the maximum recency of all the LIR blocks, we

switch the LIR/HIR status of the HIR block and the LIR block with the maximum recency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. G ENERAL-PURPOSE REPLAC EM EN T ALG O RITH M S 32

Following this rule, we can (1) allow an HIR block with a relatively small IRR to join LIR

block set in a timely way by removing an LIR block from the set; (2) keep the size of LIR

block set no larger than Lurs, thus the entire set can reside in the cache.

Again in the example of Table 1, if there is a reference to block D at time 10, then a

miss occurs. LIRS algorithm evicts resident HIR block E, instead of block B, which would

be evicted by LRU due to its largest recency. Furthermore, because block D is referenced,

its new IRR becomes 2, which is smaller than the recency of LIR block B (=3), indicating

tha t the upcoming IRR of block B will not be smaller than 3. So the status of block D

is switched to LIR, and the block joins the LIR block set, while block B becomes an HIR

block. Since block B becomes the only resident HIR block, it is going to be evicted from the

cache once another free block is requested. If at virtual time 10, block C with its recency 4,

rather than block D with its recency 2, gets referenced, there will be no status switching.

Then block C becomes a resident HIR block, though the replaced block is still E at virtual

time 10. The LIR block set and HIR block set are formed and dynamically maintained in

this way.

2 .3 .2 T h e L IR S A lg o r ith m B a se d o n L R U S tack

The LIRS algorithm can be efficiently built on the model of LRU stack, which is an imple

mentation structure of LRU. The LRU stack is a cache storage containing L entries, each of

which represents a block2. In practice, L is the cache size in blocks. LIRS algorithm makes

use of the stack to record the recency, and to dynamically maintain the LIR block set and

2For simplicity, in the rest of the dissertation we just say without ambiguity “a block in the stack” instead
of “the entry of a block in the stack” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPO SE REPLACEM EN T ALG O RITH M S 33

HIR block set. In contrast to the LRU stack, where only resident blocks are managed by

LRU replacement in the stack, we store LIR blocks, and HIR blocks with their recency less

than the maximum recency of LIRS blocks in a stack called LIRS stack S. S is similar to

the LRU stack in operation but has variable size. W ith this implementation, we do not

need to explicitly keep track of the IRR and recency values and to search for the maximum

recency value. Each entry in the stack records the LIR/HIR status and residence status

indicating whether or not the block resides in the cache. To facilitate the search of resident

HIR blocks, we link all these blocks into a small list Q with its maximum size L ^ rs. Once

a free block is needed, the LIRS algorithm removes a resident HIR block from the front of

the list for replacement. However, the replaced HIR block remains in the stack S with its

residence status changed to non-resident, if it is originally in the stack. We ensure the block

in the bottom of the stack S is an LIR block by removing HIR blocks below it. Once an

HIR block in the LIRS stack gets referenced, which means there is at least one LIR block,

such as the one at the bottom, whose upcoming IRR will be greater than the new IRR of

the HIR block, we switch the LIR/H IR statuses of the two blocks. The LIR block at the

bottom is evicted from the stack S and goes to the end of the list Q as a resident HIR

block. This block will soon be evicted from the cache due to the small size of the list Q (at

most Lhirs)'

Such a scheme is intuitive from the perspective of LRU replacement behavior: if a block

gets evicted from the bottom of LRU stack, it means the block occupies a buffer during

the period of time when it moves from the top to the bottom of the stack without being

referenced. Why should we afford a buffer for another long idle period when the block is

loaded again into the cache? The rationale behind this is the assumption tha t temporal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. GENERAL-PURPOSE REPLACEM EN T ALG O RITH M S 34

top

00-0o end
list Q

front

e

□
: LIR block (all LIR blocks are resident)

:;) : resident HIR blockbottom o: non-resident HIR block

LIRS stack S

Figure 2.1: The LIRS stack S holds LIR blocks as well as HIRS blocks with or without resident
status, and a list Q holds all the resident HIR blocks.

IRR locality holds for block references.

2 .3 .3 A D e ta ile d D e sc r ip tio n

We define an operation called “stack pruning” on LIRS stack S', which removes the HIR

blocks in the bottom of the stack until an LIR block sits in the stack bottom. This operation

serves two purposes: (1) We ensure the block in the bottom of the stack always belongs

to the LIR block set. (2) After the LIR block in the bottom is removed, those HIR blocks

contiguously located above it will not have chances to change their statuses from HIR to

LIR, because their recencies are larger than the new maximum recency of LIR blocks.

When LIR block set is not full, all the referenced blocks are given LIR status until its

size reaches Lura. After that, HIR status is given to any blocks tha t are referenced for the

first time, and to blocks that have not been referenced for a long time so that they are not

in stack S any longer.

Figure 2.1 shows a scenario where stack S holds three kinds of block: LIR block, resident

HIR block, non-resident HIR block, and a list Q holds all of the resident HIR blocks. An

HIR block may either be in the stack S or not. Figure 2.1 does not depict non-resident HIR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALGORITH M S 35

blocks tha t are not in the stack S. There are three cases with various references to these

blocks.

1. U pon accessing an LIR block X : This access is guaranteed to be a hit in the

cache. We move it to the top of the stack S. If the LIR block is originally located

at the bottom of the stack, we conduct a stack pruning. This case is illustrated in

the transition from state (a) to state (b) in Figure 2.2 based on the example shown

in Table 1.

2. U pon accessing an H IR resident block X : This is a hit in the cache. We move

it to the top of the stack S. There are two cases for block X : (1) If X is in the stack

S, we change its status to LIR. This block is also removed from list Q. The LIR block

at the bottom of S is moved to the end of list Q w ith its status changed to HIR. A

stack pruning is then conducted. This case is illustrated in the transition from state

(a) to state (c) in Figure 2.2. (2) If X is not in the stack S, we leave its status in HIR

and move it to the end of list Q.

3. U pon accessing an H IR non-resident block X : This is a miss. We remove the

HIR resident block at the front of list Q (it then becomes a non-resident block), and

evict it from the cache. Then we load the requested block X into the freed buffer and

place it at the top of stack S. There are two cases for block X: (1) If X is in the stack

S, we change its status to LIR and move the LIR block at the bottom of stack S to

the end of list Q with its status changed to HIR. A stack pruning is then conducted.

This case is illustrated in the transition from state (a) to state (d) in Figure 2.2. (2)

If X is not in the stack S, we leave its status in HIR and place it at the end of list Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLAC EM EN T ALGORITHM S 36

(a) (b)

LIRS stack S list Q

(C)

LIRS stack S list Q

(d)

©
® © ©
S (D 1 3 E 0 list Q

(D) list Q m <D H (g) ©
|b] H list Q S E CD L b J

(e)

o
LIR block (all LIR blocks are resident)

resident HIR block

non-resident HIR block

Figure 2.2: Illustration of the reference results in the example shown in Table 1 on the LIRS stack.
In this figure, (a) corresponds to the state at virtual time 9. Accessing B, E, D, or C at virtual time
10 result in (b), (c), (d) and (e), respectively.

This case is illustrated in the transition from state (a) to state (e).

2.4 Performance Evaluation

2 .4 .1 E x p e r im e n ta l S e tt in g s

To validate our LIRS algorithm and to demonstrate its strength, we use trace-driven simu

lations with various types of workloads to evaluate and compare it with other algorithms.

We have adopted many application workload traces used in previous literature aiming at ad

dressing limitations of LRU. We have also generated a synthetic trace. Among these traces,

cpp, cs, glimpse, and postgres are used in [18, 19] (cs is named as escape and postgres

is named as postgres2 there), sprite is used in [45], m uilt i l , multi2, multiZ are used in

[42], OpenMail and Cello99 are used in [76]. We briefly describe the workload traces here.

These traces represent a wide range of access patterns, sizes, sources and collecting times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. G ENERAL-PURPOSE REPLAC EM EN T ALG ORITH M S 37

1. 2-pools is a synthetic trace, which simulates application behavior of the example 3 in

Chapter 2.1.1 with 100,000 references.

2. cpp is a GNU C compiler pre-processor trace. The total size of C source programs

used as input is roughly 11 MB.

3. cs is an interactive C source program examination tool trace. The total size of the C

programs used as input is roughly 9 MB.

4. g lim pse is a text information retrieval utility trace. The total size of text files used

as input is roughly 50 MB.

5. postgres is a trace of join queries among four relations in a relational database system

from the University of California at Berkeley.

6. sprite is from the Sprite network file system, which contains requests to a file server

from client workstations for a two-day period.

7. m u l i t l is obtained by executing two workloads, cs and cpp, together.

8. m ulti2 is obtained by executing three workloads, cs, cpp, and postgres, together.

9. m ultiS is obtained by executing four workloads, cpp, gnuplot, glimpse, and postgres,

together.

10. O penM ail is a trace of a production e-mail system running the HP OpenMail appli

cation.

11. Cello99 is a trace of every disk I/O access for the month of April 1999 from an HP

9000 K570 server.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPO SE RE PLAC EM EN T ALG ORITH M S 38

Because a well-designed replacement algorithm should perform well under various access

patterns exhibited in workloads, we select traces 1-9, which are in relatively small scales, but

cover a wide range of file access patterns to compare the performance of LIRS with other

proposed algorithms. Then we use the two large scale traces, OpenM ail and Cello99, to

test the effectiveness of LIRS with applications on state-of-art, high end server systems. The

only parameter of the LIRS algorithm, Lhirs, is set as 1% of the cache size, or Lurs = 99%

of the cache size. This selection results from a sensitivity analysis to Lhirs/Lurs, which is

described in Chapter 2.5.1.

2 .4 .2 A ccess P a tte r n B a se d P er fo rm a n ce E v a lu a tio n

Through an elaborate investigation, Choi et. al. classify the file cache access patterns into

four types [18]:

• Sequential references: all blocks are accessed one after another, and never re-accessed;

• Looping references: all blocks are accessed repeatedly with a regular interval (period);

• Temporally-clustered references: blocks accessed more recently are the ones more

likely to be accessed in the future;

• Probabilistic references: each block has a stationary reference probability, and all

blocks are accessed independently with the associated probabilities.

The classification serves as a basis for their access pattern detections and for adapting

to different replacement policies. For example, MRU applies to sequential and looping

patterns, LRU applies to temporally-clustered patterns, and LFU applies to probabilistic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPOSE REPLACEM EN T ALG O RITH M S 39

patterns. Though our LIRS policy does not depend on such a classification, we would like

to use it to present and explain our experimental results. Because a sequential pattern is

a special case of looping pattern (with infinite interval), we only use the last three groups:

looping, temporally-clustered, and probabilistic patterns.

Policies LRU, LRU-2, 2Q, ARC, LRFU, and LIRS belong to the same category of

replacement policies. In other words, these policies take the same technical direction —

predicting the access possibility of a block through its own history access information. Thus,

we focus our performance comparisons between ours and these policies. As representative

policies in the category of regularity detections, we choose two schemes for comparisons:

UBM for its spatial regularity detection, and EELRU for its temporal regularity detection.

UBM simulation requires file IDs, offsets, and process IDs of a reference. However, some

traces available to us only consists of logical block numbers, which is an unique number for

each accessed block. Thus, we only include the UBM experimental results for the traces

used in paper [42], which are m ulti 1, m u ltil, m ultiS. We also include the results of OPT,

an optimal, off-line replacement algorithm [20] for comparisons.

We divide traces 1-9 into 4 groups based on their access patterns. Traces cs, postgres,

and glimpse belong to the looping type, traces cpp and 2 -pools belong to the probabilistic

type, trace sprite belongs to the temporally-clustered type, and traces m u ltil, m u lti2 , and

m ultiS belong to the mixed type.

We present performance results for each trace by a pair of figures: the time-space maps

and the hit rate curves. In a time-space map, the x axis represents virtual time, the

reference sequence of a given workload, and the y axis plots the logical block numbers of

those referenced. The hit rate curves show the hit rates as the cache size increases for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. GENERAL-PURPOSE REPLAC EM EN T ALG ORITH M S

various replacement policies on a workload trace.

40

2.4.2.1 Perform ance for the Looping T ype

Figures 2.3 to 2.5 plot four pairs of time-space maps (left figures) and the hit rate curves

(right figures) generated by the various replacement policies for traces cs, glimpse, and

postgres, respectively. The time-space maps show that all the 4 programs have looping

patterns with long intervals. As expected, LRU performs poorly for these workloads with

the lowest hit rates. Let us take cs as an example, which has a pure looping pattern. Each

block is accessed almost at the same frequency (see the left figure in Figure 2.3). Since all

blocks in a loop have the same eligibility to be kept in cache, it is desirable to keep the

same set of blocks in cache no m atter what blocks are referenced currently. That is just

what LIRS does: the same LIR blocks are fixed in the cache because HIR blocks do not

have IRRs small enough to change their statuses. In the looping pattern, recency predicts

the opposite of the future reference time of a block: the larger the recency of a block is,

the sooner the block will be referenced. The hit rate of LRU for cs is almost 0% until the

cache size approaches 1,400 blocks, which can hold all the blocks referenced in the loop. It

is interesting to see tha t the hit rate curve of LRU-2 overlaps with the LRU curve. This is

because LRU-2 chooses the same victim block as the one chosen by LRU for replacement.

When making a decision, LRU-2 compares the penultimate reference time, which is the

recency plus the recent IRG. However, the IRGs are the same for all the blocks at any

time after the first reference. Thus, LRU-2 relies only on recency to make its decision, the

same as LRU does. Generally, when recency makes a major contribution to the penultimate

reference time, LRU-2 behaves similarly to LRU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALGORITHM S 41

CS CS

O PT — i—
LIRS

LRU-2 — a -~
2Q —

LRFU ~ v ~
EELRU — x—

ARC - * • -
LRU

1200

50 -® 1000

656
i

400

200 400 600 800 1000 1200 14003000 4000 5000 6000 7000 00 1000 2000
Virtual time C ache Size (# of blocks)

Figure 2.3: The time-space map (left) of cs and the hit rate curves by various replacement policies
(right).

Except for cs, the other three workloads have mixed looping patterns with different

intervals. LRU presents a stair-step curve to increase the hit rates for those workloads.

LRU is not effective until all the blocks in its locality scope are brought into the cache. For

example, only after the cache can hold 355 blocks does the LRU hit rate of postgres have

a sharp increase from 16.3% to 48.5% (see the right figure in Figure 2.5). Because LRU-2

considers the last IRG in addition to the recency, it is easier for it to distinguish blocks in

the loops with different intervals than LRU does. However, LRU-2 lacks the capability to

deal with these blocks when varying recency is involved. My experiments show tha t the

achieved performance improvements by LRU-2 over LRU is limited, (see the right figures

in Figures 2.4 and 2.5).

It is illuminating to observe the performance difference between 2Q and LIRS, because

both employ two linear data structures following a similar principle that only re-referenced

blocks deserve to be in cache for a long period of time. We can see tha t the hit rates of 2Q

are significantly lower than those of LIRS for all the three workloads (see the right figures in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPOSE REPLAC EM EN T ALG ORITH M S 42

GLIMPSE

60

50

40

*
30

£

5
OPT — f—
LIRS

LRU-2 ~ - a -
2Q

LRFU —
EELRU ~ x ~

ARC
LRU

20

10

0

2500

u 2000

1500

500

50000 1000 2000 3000 4000 6000 7000

Virtual time C ache Size {# of blocks)

Figure 2.4: The time-space map (left) of glimpse and the hit rate curves by various replacement
policies (right).

Figures 2.3, 2.4, and 2.5). As the cache size increases, 2Q even performs worse than LRU for

workloads glimpse and postgres. Another observation for 2Q on glimpse and postgres is

a serious “Belady’s anomaly” [8]: increasing the size of cache size may increase the number

of misses. Though ARC is an adaptive algorithm without tunable parameters, it actually

shares the same problem as tha t of 2Q. The performance improvement of ARC over LRU

is very limited. Belady’s anomaly also appears in the workload glimpse for ARC. This is

mainly caused by the inconsistent quantification and comparison of locality of blocks in two

lists, which is effectively addressed in LIRS. We will provide a in-depth analysis on this

issue in Section 2.4.4.

LRFU, which combines LRU and LFU, is not effective on a workload with a looping

pattern, because reference frequencies are hard to distinguish for looping references. The

LRFU and LRU hit rate curves for workload cs are overlapped, which is shown in Figure

2.3.

My trace-driven simulation results show LIRS significantly outperforms all of the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPO SE RE PLAC EM EN T ALGORITH M S 43

PO ST G R E S POSTGRES

3000

2500

g 1500

1000

500

0 2000 4000 6000 8000 12000

80

70

60

50

40

30

OPT
LIRS

LRU-2 - 8 -
2Q — * ~

LRFU —
EELRU — k—

ARC
LRU ~ + ~

20

10

00 500 1000 1500 2000 2500 3000

Virtual tim e C ache S ize (# of blocks)

Figure 2.5: The time-space map (left) of postgres and the hit rate curves by various replacement
policies (right).

policies, and its hit rate curves are very close to tha t of OPT. LIRS can make a more

accurate prediction on the future LIR/HIR status of each block for cs and postgres than

glimpse, because the intervals of loops in cs and postgres are of less variance, thus the

consecutive IRRs are of less variance (See the performance difference among cs, postgres

in Figures 2.3, and 2.5 and glimpse in Figure 2.4. However, the LIRS algorithm is not

sensitive to the variance of IRRs, which is reflected by its good performance on workload

glimpse. We explain it as follows.

We denote the recency of the LIR block in the bottom of LIRS stack S as Rm ax. When

there are no free block buffers, R m ax is larger than the cache size in blocks. Only when

the two consecutive IRRs of references to a block vary across value Rm ax, is the status

prediction of the LIRS algorithm based on the last IRR wrong, including two cases: (1)

an IRR less than R m ax is succeeded by another IRR greater than R m ax, and (2) an IRR

greater than R m ax is succeeded by another IRR less than R m ax. All other IRR variances,

no m atter how much they are, would impose no mishandling of the LIRS replacement. Let

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALG ORITH M S 44

us take a close look at the penalty from a wrong LIR /H IR status decision: (1) Suppose a

block is labeled as LIR (due to its previous, small IRR) when it should be labeled as HIR.

The block will be evicted by LIRS after Lurs references (i.e., when the block reaches the

bottom of stack S), instead of being evicted after Lhirs references. Since Lurs is almost

as large as L, the performance penalty imposed by the LIRS mis-classification is no worse

than that imposed by LRU. (2) Suppose a block is labeled as HIR (due to its previous,

large IRR) when it should be labeled as LIR. The block will be evicted by LIRS far before

it reaches the stack bottom, instead of being hit by a reference before it reaches the stack

bottom. Thus LIRS would incur an extra miss if the block had been evicted from HIR

resident list Q. However, because the number of block buffers assigned to list Q (Lhirs)

is very small, which is only 1% of total cache size in our experiments, HIR blocks would

be replaced very soon, which reduces the chance for the replaced block to be re-referenced

shortly after its eviction. The free block buffer for the period between the early eviction

and its next reference helps to reduce the penalty from the extra misses.

2.4.2.2 Perform ance for th e Probabilistic T ype

Figures 2.6 and 2.7 plot two pairs of time-space maps (left figures) and the hit rate curves

(right figures) generated by the various replacement policies for workloads cpp and 2 -pools,

respectively. According to the detection results in [18], workload cpp exhibits probabilistic

reference patterns. The right figure in Figure 2.6 shows tha t before the cache size increases

to 100 blocks, the hit rate of LRU is much lower than tha t of LIRS for cpp. For example,

when the cache size is 50 blocks, hit rate of LRU is 9.3%, while hit rate of LIRS is 55.0%.

This is because holding a major reference locality needs about 100 blocks (see the left figure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALGORITHM S 45

C P P CPP

901400

80
1200

70

1000
60

n
E3C £ 505

6
a 40

oSI
'5io

30 OPT — ♦—
LIRS

LRU-2 - B - -
2Q —

LRFU —
EELRU — x—

ARC — * ~
LRU

400

20

200
10

0
500 600 800 9001000 MOO 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 400 7000

Virtual time C ache Size {# of blocks)

Figure 2.6: The time-space map (left) of cpp and the hit rate curves by various replacement
policies (right).

of Figure 2.6). LRU can not exploit locality until enough cache space is available to hold

all the recently referenced blocks. However, the capability for LIRS to exploit locality does

not depend on the cache size - when it is identifying the LIR set to keep them in the cache,

it always let the set size match the cache size. Workload 2-pools is generated to evaluate

the replacement policies on their abilities to recognize the long-term reference behavior.

Though the reference frequencies are largely different between the record blocks and the

index blocks, it is hard for LRU to distinguish them when the cache size is relatively small

to the number of referenced blocks, because LRU takes only recency into consideration.

LRU-2, 2Q, and LIRS algorithms take one more previous references into consideration —

the time for the penultimate reference on a block is involved. Even though the reference

events to a block are randomized (the IRRs on a block are random with a certain fixed

frequency, which is unfavorable to LIRS.), LIRS still outperforms LRU-2 and 2Q (see the

right figure in Figure 2.7). However, LRFU utilizes “deeper” history information. Thus,

the constant long-term frequency becomes more visible, and is ready to be utilized by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. G ENERAL-PURPOSE REPLACEM EN T ALG ORITHM S 46

2-POOLS 2-POOLS

65

609000

558000

50
7000

45

~ 40a
I 3=

30

5000

4000
OPT
LiflS

LRU-2 - Q -
2Q

LRFU
EELRU — x—

ARC
LRU - ■ * -

3000
25

2000

15

10
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 50 100 150 200 250 300 350 400 450

Virtual time C ache Size {# ot blocks)

Figure 2.7: The time-space map (left) of 2-pools and the hit rate curves by various replacement
policies (right).

LFU-like scheme. The performance of LRFU is slightly better than that of LIRS. It is not

surprising to see the hit rate curve of EELRU exhibits the poor performance and overlaps

with that of LRU, because EELRU relies on an analysis of a temporal recency distribution

to decide whether to conduct an early point eviction. In workload 2-pools, the blocks with

high access frequency and the blocks with low access frequency are alternatively referenced,

thus no sign of an early point eviction can be detected.

2.4 .2 .3 Perform ance for th e Tem porally-C lustered T ype

Figure 2.8 presents the time-space map (left figure) and the hit rate curves (right figure) gen

erated by the various replacement policies for workload sprite, which exhibits temporally-

clustered reference patterns. The right figure in Figure 2.8 shows tha t the LRU hit rate

curve smoothly climbs with the increase of the cache size. Although there is still a gap

between the LRU and OPT, the slope of the LRU is close to that of OPT. Sprite is a so

called LRU-friendly workload [67], which seldom accesses more blocks than the cache size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLACEM EN T ALG O RITH M S 47

SPRITE SPRITE

1008000

7000

6000

5 5000

OPT — +—
U RS -
LRU

LRU-2 - Q - - 2Q — »-■
LRFU

EELRU — x—
ARC
LRU

o 3000

1000

100 500 7000 20000 40000 60000 80000 100000 120000 140000 300 400 800 900 1000

Virtual time C ache Size {# of blocks)

Figure 2.8: The time-space map (left) of sprite and the hit rate curves by various replacement
policies (right).

over a fairly long period of time. For this type of workload, the behavior of all the other

policies should be similar to tha t of LRU, so that their hit rates could be close to tha t of

LRU. Before the cache size reaches 350 blocks, the right figure in Figure 2.8 shows that

the hit rate of LIRS is higher than th a t of LRU. After this point, the hit rates of LRU is

slightly higher. Here is the reason for the slight performance degradation of LIRS beyond

that cache size: whenever there is a locality scope shift or transition, i.e. some HIR blocks

get referenced, one more miss than would occur in LRU may be experienced by each HIR

block. Only the next reference to the block in the near future after the miss makes it switch

from HIR to LIR status and then remain in the cache. However, because of the strong

locality, there are not frequent locality scope changes. So the negative effect of the extra

misses is very limited.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLAC EM EN T ALG O RITH M S 48

MULTI1 MULTM (cs+cpp)

3000 90

2500 80

70

1500 60

i

1000 50
OPT — i—
LIRS
UBM

LRU-2 - - B -

500 40
LRFU —

E R R U — x—
ARC
LRU/ f • . l: ir .: -u h : T <'■ u r n ; / \ r! $1

/ i / i / WM/Zi r /,/ / / ^ y / / 0 j / y / / / / / / y y y / / / ?̂y. r i i i n i / j i i i u u n j i i i
2000 4000 6000 8000

300 10000 12000 60016000 200 400 800 1000 1200 1400 1600 20001800

Virtual tim e C ache Size (# of blocks)

Figure 2.9: The time-space map (left) of m u ltil and the hit rate curves by various replacement
policies (right).

2.4.2.4 Perform ance for th e M ixed T ype

Figures 2.9 to 2.11 present three pairs of time-space maps (left figures) and the hit rate

curves (right figures) generated by the various replacement policies for workloads m u ltil,

multi2, and m ultiS, respectively. The authors in [42] provide a detailed discussion why their

UBM shows the best performance among the polices they have considered - UBM, LRU-2,

2Q, and EELRU. Here we focus on performance differences between LIRS and UBM. UBM

is a typical spatial regularity detection-based replacement policy tha t makes an exhaus

tive reference pattern detections. UBM tries to identify sequential and looping patterns

and applies MRU to the detected patterns. UBM further measures looping intervals and

conducts period-based replacements. For unidentified blocks, LRU is applied. A dynamical

buffer allocation among blocks managed by different policies is employed. W ithout devoting

specific effort to specific regularities, LIRS outperforms UBM for all the three mixed type

workloads, which shows that our assumption on IRR well holds and LIRS is able to cope

with weak locality reference in the workloads with mixed type patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALG ORITHM S 49

MUITI2 MULTI2 (cs+cpp+ps)

5000

a:
<s
5>

2000 LIRS
UBM

LRU-2 ■— b-—
2Q

LRFU — r —
EELRU -■*—

ARC
LRU

1000

0 5000 10000 15000 20000 25000 30000 500 1000 1500 2000 2500 3000

Virtual time C ache Size (# ol blocks)

Figure 2.10: The time-space map (left) of multi2 and the hit rate curves by various replacement
policies (right).

2.4.3 L IR S P erfo rm a n ce w ith H ig h E nd S y ste m s

Modern high end server systems can have a couple of giga-bytes of memory. Moreover,

state-of-art high-end disk arrays typically have several giga-bytes of cache RAMs, which are

mainly used as low-latency pools of data tha t is accessed multiple times by the connected

servers. We have two issues to investigate for the high end systems: (1) whether LRU

becomes competent enough to deal with the workloads on those systems equipped with

large amount of memory? (2) whether LIRS can help in such as a system environment

once LRU under-performs? We use two large-scale workload traces for this investigation,

OpenM ail and Cello99, which have been used in [76] by Wong and Wilkes for their study

of the effective use of cache RAM in disk arrays.

OpenM ail was collected on an HP OpenMail email system for 25,700 users, 9,800 of

whom were active during the hour-long trace, containing about 5.4M I/O requests. The

system is configured by six HP 9000 K580 servers running HP-UX 10.20, each with 6 CPUs,

2GB of memory, and 7 SCSI interface cards. The original traces are collected on the six

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPOSE RE PLAC EM EN T ALGORITHM S 50

MULTI3

r
! «
o 3000

2000

MULT13 (cpp+gnu+gli+3s)

5000 10000 15000 20000

Virtual time

25000 30000 35000

80

70

60

50

40

OPT - h —
URS
UBM

LRU-2
30

LRFU
EELRU — x -

ARC
LRU

20

10
1500 2500 3000 3500 4000500 1000 2000

Cache Size {# of blocks)

Figure
policies

2.11: The time-space map (left) of multiS and the hit rate curves by various replacement
(right).

nodes separately. We aggregated the six request streams into a single stream in the order

of their request times. Trace Cello99 is a collection of recorded disk I/O accesses for the

month of April 1999 from an HP 9000 K570 server. The trace contains about 61.9M I/O

requests. The server has 4 CPUs, about 2GB of main memory, two HP AutoRAID arrays

and 18 directly connected disk drives. The system ran a general time-sharing load under

HP-UX 10.20.

OpenMail

2000 3000 4000

C ache Size (MB)

2000 3000 4000

C ache Size (MB)

Figure 2.12: The hit rate curves of workload OpenMail (left figure) and workload Cello99 (right
figure)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. G ENERAL-PURPOSE REPLACEM EN T ALG O RITH M S 51

Figure 2.12 shows the hit rates of O penM ail and Cello99 with a range of large file cache

size. For OpenM ail, LRU seriously under-performs, where significantly increasing of cache

size before cache size reaches 3GB yields little improvements on hit rates, while LIRS shows

much better performance than LRU by its steadily increasing hit rates. While examining

the trace, We found tha t 60.3% of its blocks are accessed only once, while the references to

other blocks exhibit random access characteristics. LRU allows each of those once-accessed

blocks holding a buffer space for at least L reference times, where L is the cache size in

blocks. This actually reduces the number of buffers used for caching re-use blocks, which

can contribute to the hit rates. LIRS replaces those once-accessed blocks shortly after they

are accessed, so it makes more buffers available to the re-use blocks. In general, Cello99 is

an LRU-friendly workload, where its LRU hit rates get a steady increase with the increase

of cache size. LIRS performs on the workload closely to LRU. Note that LRU becomes a

little less effective after the cache size exceeds 2GB: the contribution of increased cache sizes

to its hit rate is reduced. In comparison, LIRS produces better performance than LRU,

which implies that LIRS can effectively overcome LRU inability. The experiments on the

two large scale workload traces shows tha t the performance of LRU is susceptible to the

workload access characteristics. LRU could under-perform on various system settings when

workload access patterns are not friendly to it. They also show the effectiveness of LIRS to

overcome LRU’s inability on high end systems.

2 .4 .4 L IR S versu s O th er S ta ck -B a se d R ep la cem e n ts

To get insights of superiority of LIRS over other stack-based replacement algorithms, in

cluding LRU, 2Q, we would like to use time-IRR graph to observe their actions on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPO SE REPLACEM EN T ALG O RITH M S 52

blocks accessed at different recencies. In the graph, x axis plots virtual time, references in

the access stream, y axis plots IRR, the recency where the reference at a specific time takes

place. For the first time accessed blocks, their IRR is infinite, which we do not plot in the

graph. We select two representative workloads, a non-LRU-friendly one, postgres, and an

LRU-friendly one, sprite , for this study. Their IRRs are depicted in Figure 2.13.

PO STGRES SPRITE

3000 r—

2500 •

•c 2000 •
£

o a
| 1500 -

D
CC .j
CC
£ 1000 -

500 -

0
0 2000 4000 6000 8000 10000 12000 0 20000 40000 60000 800C0 100000 120000 140000

Virtual Time Virtual Time

Figure 2.13: The IRRs of references of the workloads postgres (left) and sprite (right)

The stack size in LRU, which is determined by the cache size in blocks, is fixed. If

the stack size is L , all the references shown in the graphs with their IRRs less than L are

hits, and those with IRRs larger than L are misses in LRU. Thus the hit rates of LRU are

directly determined by the IRR distribution. If most of IRRs are concentrated in the low

recency area such as what is shown in the graph for sprite, LRU will get a high hit rate.

For workloads with dispersed recency distributions, LRU is incompetent in achieving high

hit rates. For example, in workload postgres there are two IRR concentrations at around

IRRs 350, 1150 and 1950 in the left figure of Figure 2.13. In corresponding to the IRR

distribution, there are obvious “lift ups” in the LRU hit rate curve when the cache size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. GENERAL-PURPOSE REPLAC EM EN T ALG ORITH M S 53

reach these values, which is shown in Figure 2.5. However, if the number of blocks with

their IRRs less than L is significantly less than stack size L, a large number of blocks with

low recencies but high IRRs hold the stack spaces (residing in the cache) without being

accessed before being replaced from the stack. The occupied buffers do not contribute to

the hit rate. Thus what really matters is IRR, not recency. To improve LRU, the criterion

to determine which accessed blocks are to be cached should be the L blocks with smallest

IRRs, rather than the L blocks with their recencies less than L. Following this criterion,

LIRS algorithm uses the LIRS stack to dynamically predict the L blocks which will have

the smallest IRRs. The LIRS stack serves for two purposes: (1) holding the L blocks with

smallest IRRs, called LIR blocks; (2) providing a threshold for being a LIR block. In our

algorithm the threshold is R m a x , the recency of the LIR block in the LIRS stack bottom.

The LIRS stack contains blocks with their recencies less than R m ax. Thus the threshold

is also the LIRS stack size.

2.4.4.1 LIRS T hreshold and A ccess C haracteristics

To get the insights between the relationship of the threshold used by LIRS and workload

access characteristics, we plot the ratio of the LIRS stack size, R m ax, and the size of

the LRU stack L in Figure 2.14, when we fix the cache size at 500 blocks for the two

workloads postgres and sprite. We find that the threshold is an inherent reflection of the

LRU capability to exploit locality. If the references have a strong locality, most of the

references are to the blocks with small recencies. Thus LRU stack still hold these blocks

while they get re-accessed, and LRU achieves a high hit rate. At the same time, these

blocks are low IRR blocks, i.e. most of the references go to the LIR blocks, which would

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLAC EM EN T ALGORITHM S 54

postgres (cache size = 500) Sprite (cache size = 500)

4.5 3.5

DC3.5

* 2.5co
CC□

2.5

CD
5
o

£
0.5

0.5

2000 120004000 8000 0 20000 40000 60000 80000 100000 120000 140000

Figure 2.14: The rates of Rmax and cache size in blocks (L) for workloads postgres (left) and
sprite (right). Rmax is the size of LIES stack, which changes with virtual time. Cache size is 500.

leave only a small number of HIR blocks in the LIRS stack and cause the stack to shrink.

This is the case for workload sprite. W ith 500 buffer blocks LRU stack is able to hold most

the frequently referenced blocks (see right figure of Figure 2.13). On the other hand, LIRS

can find enough low IRR blocks within the recency range also covered by LRU stack. Thus

there is no need for LIRS to raise its stack size significantly to hold large number of blocks

with high recencies in the cache. This is evidenced in the right figure of Figure 2.14, where

the ratios of LIRS and LRU stack sizes are not far from 1 for the most of period of time.

However, once LIRS can not find enough low IRR blocks within the size of LRU stack, it

will raise its size accordingly. We observe tha t the thresholds of postgres are significantly

increased in several phases during the periods when more references went to the blocks with

high recencies than to those with low recencies (see left figure of Figure 2.14). W ith 500

buffer blocks LRU with its fixed stack size can not capture the locality distinction among

blocks with high recencies, and causes their references all missed. By increasing the stack

size according to the current access characteristics, LIRS can make the distinction among

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. GENERAL-PURPOSE REPLAC EM EN T ALG ORITHM S 55

blocks with weak locality and make a wiser decision on the replacement than LRU. The

experiments also hint tha t the threshold is a good indicator of the LRU-friendliness of a

workload.

Replacement algorithm 2Q also tries to identify blocks with small IRRs and to hold

them in cache. It relies on queue A lo u t to decide whether a block is qualified to promote

to stack A m so tha t it can be cached for a long time, or consequently to decide whether a

block in A m should be demoted out of Am . In 2Q, the size of A lo u t serves as a threshold

to identify blocks with small IRRs, and A m holds these blocks. Because the threshold is

intended to predict the blocks with L smallest IRRs among all accessed blocks, it should

be related to the access characteristics of blocks in Am . Unfortunately, it is not in 2Q. The

recommended size of A lou t in paper [37] is 50% of the cache size. So the threshold used

in 2Q is a constant 1.5L, which would be a straight horizontal line with its x axis value at

1.5L in a time-IRR graph. This threshold would be too tight to let blocks join in A m when

LIRS threshold is larger than 1.5L, and be too loose to allow blocks to stay outside of Am .

This explains why 2Q can not provide a consistently improved performance over LRU.

2.4.4.2 LR U as a Special M em ber o f th e LIRS Family

In LIRS algorithm, any HIR block with a new IRR smaller than the LIRS threshold can

change into LIR status, and may demote a LIR block into HIR status. The threshold

controls how easily a HIR block may become a LIR block, or how difficult it is for a

LIR block to become a HIR one. We would like to vary the threshold value so we will

have a family of LIRS algorithms with various thresholds in order to get insights into the

relationship of LRU and LIRS. Lowering the threshold value, we are able to strengthen the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPO SE RE PLAC EM EN T ALG ORITH M S 56

postgres Sprite

100

1

OPT - h—
LIRS 50% — x—
LIRS 75%

U R S 100% ~ e ~ -
U R S 125% — * ~
LIRS 150% — ©■-
LIRS 550%

LRU

OPT — r—
U R S 50% — x—
U R S 75%

U R S 100% — e —
U R S 125% ~ * ~
U R S 150% --©■•-

LRU

500 1000 25000 2000 3000 100 200 300 400 500 600 700 800 900 1000

C ache Size (# of blocks) C ache Size (# of blocks)

Figure 2.15: The hit rate curves of workload postgres (left figure) and workload sprite (right
figure) by varying the rates of threshold values for LIR/HIR status switching and Rmax in LIRS,
as well as curves for OPT and LRU.

stability of the LIR block set by making it more difficult for HIR blocks to switch their

status into LIR. It also prevents LIRS algorithm from responding to the relatively small

IRR variance. Increasing the threshold value, we go in the opposite direction. Then LRU

becomes a special member of the LIRS family - a LIRS algorithm with an indefinitely large

threshold, which always gives any accessed block LIR status and keeps it in cache until it

is evicted from the bottom of stack.

Figure 2.15 presents the results of a sensitivity study of the threshold value. We again

use workloads postgres and sprite to observe the effect of changing the threshold values

from 50%, 75%, 100%, 125% to 150% of Rm ax. For postgres, we include a very large

threshold value - 550% of R m ax to hightlight the relationship between LIRS and LRU.

We have two observations. First, LIRS is not sensitive to the threshold values across a

large range. In postgres, curves for the threshold values of 100%, 125%, 150% of R m ax are

overlapped, and curves for 50%, 75% of R m ax are slightly lower than tha t of the curve with

100% of Rm ax threshold. Specifically for sprite, an LRU-friendly workload, increasing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. G ENERAL-PURPOSE REPLAC EM EN T ALG O RITH M S 57

threshold value, the LIRS hit rate curves move very slowly close to tha t of LRU. Secondly,

the LIRS algorithm can simulate LRU behavior by largely increasing the threshold. As the

threshold value increases to 550% of Rm ax, LIRS curve of workload postgres is very similar

to tha t of LRU in its shape, and close to it (See the left figure of Figure 2.15). Further

increasing the threshold value, the LIRS curve overlaps with tha t of LRU.

2.5 Sensitivity and Overhead Analysis

2 .5 .1 S ize S e le c t io n o f L ist Q H o ld in g R e s id e n t H IR B lo ck s (Lhirs)

Lhirs is the only param eter in the LIRS algorithm. The blocks in the LIR block set can

stay in the cache for longer time than those in the HIR block set and experience less page

faults. An sufficiently large Lurs (the cache size for LIR blocks) ensures there are a large

number of LIR blocks. For this purpose, we set Lurs to be 99% of the cache size, Lhirs to

be 1% of the cache size in our experiments, and achieve expected performance. From the

other perspective, an increased Lhirs may be beneficial to the performance: it reduces the

first time reference misses. For a longer list Q (larger Lhirs), it is more likely that an HIR

will be re-accessed before it is evicted from the list, which can help the HIR block change

into LIR status without experiencing an extra miss. However, the benefit of large Lhirs is

very limited, because the number of such kind of misses is small.

We also use the two workloads, postgres and sprite, to observe the effect of changing the

size. We change Lhirs from 2 blocks, to 1%, 10%, 20%, and 30% of the cache size. Figure 2.16

presents the results of a sensitivity study of Lhirs for postgres (left figure) and sprite (right

figure). For each workload, we measure the hit rates of OPT, LRU, and LIRS with different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLAC EM EN T ALGORITH M S 58

postgres Sprite

80 100

70

60

50

40(2
X

30

O PT — *—
U R S 2 — x -

L IR S1%
U R S 10% — a —
U R S 20%
LIRS 30% — e™

LRU

OPT —
URS 2 — x—

LIRS 1%
LIRS 10%
U RS 20% —
U R S 30%

LRU

20

10

00 500 1000 1500 2000 2500 3000 100 200 300 400 500 600 700 900 1000800

C ache Size (# of blocks) C ache Size (# of blocks)

Figure 2.16: The hit rate curves of workload postgres (left figure) and workload sprite (right
figure) by varying the size of list Q (Lhirs, the number of cache buffers assigned to HIR block set)
of LIRS algorithm, as well as curves for OPT and LRU. “LIRS 2” means size of Q is 2, “LIRS x%”
means size of Q is x% of the cache size in blocks.

Lhirs sizes by increasing the cache size. We have following two observations. First, for both

workloads, we find tha t LIRS is not sensitive to the increase of Lhirs- Even for a very large

Lhirs that is not in favor of LIRS, the performance of LIRS with different cache sizes is still

quite acceptable. W ith the increase of Lhirs, the hit rate of LIRS approaches that of LRU.

Secondly, our experiments indicate tha t increasing Lhirs reduces the performance benefits

of LIRS to workload postgres, but slightly improves performance of workload sprite.

2 .5 .2 O verh ead A n a ly s is

LRU is known for its simplicity and efficiency. Comparing the time and space overhead

of LIRS and LRU, we show that LIRS keeps the LRU merit of low overhead. The time

overhead of LIRS algorithm is 0(1), which is almost the same as tha t of LRU with a few

additional operations such as those on the list Q for resident HIR blocks. The extended

portion of the LIRS stack S is the additional space overhead of the LIRS algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. GENERAL-PURPOSE REPLACEM EN T ALG ORITH M S 59

postgres Sprite

10080

70

60

50

I
®

40 ir(0£E
I

30

O PT —
U RS f i ~

U R S 1.5
U R S 2.0 — ©■-
U R S 2.5
U R S 3.0

LRU

O PT — ♦—
LIRS •—-q —

U R S 1,5 —
U R S 2.0 — ©■--
U R S 2.5
U R S 3 .0 - * - ■

LRU

20

10

0
600 700 800 900 10002500 3000 100 200 300 400 5000 500 1000 1500 2000

C ache Size (# of blocks) C ache Size {# of blocks)

Figure 2.17: The hit rate curves of workload postgres (left) and workload sprite (right) by
varying the LIRS stack size limits, as well as curves for OPT and LRU. Limits are represented by
rates of LIRS stack size limit in blocks and cache size in blocks (L).

The stack S contains m etadata for the blocks with their recency less than R m ax. When

there is a burst of first-time (or “fresh”) block references, the LIRS stack could be extended

to be unacceptably large. To give a size limit is a practical issue in the implementation of

the LIRS algorithm. In an updated version of LIRS, the LIRS stack has a size limit that is

larger than L, and we remove the HIR blocks close to the bottom from the stack once the

LIRS stack size exceeds the limit. We have tested a range of rather small stack size limits,

from 1.5 times to 3.0 times of L. From Figure 2.17, we can observe that even with these

strict space restrictions, LIRS retains its desired performance. The effect of limiting LIRS

stack size is equivalent to reducing the threshold values in Chapter 2.4.4.2. As expected,

the results are consistent with the ones presented in Chapter 2.4.4.2. In addition, a stack

entry only consists of several bytes, it is easily affordable to have LIRS stack size limit much

more than 3 times of LRU stack size. W ith such large limits, there is little negative effect on

LIRS performance by removing HIR block entries close to the stack bottom because of the

size limit. By moderately extending the LRU stack size, LIRS makes a large difference on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. GENERAL-PURPOSE REPLACEM EN T ALG O RITH M S 60

its performance. This is because our solution fundamentally address the critical limitations

of LRU.

2.6 Summary

We make two contributions in this work by proposing LIRS algorithm: (1) We show that

LRU limitations with weak locality workloads can be successfully addressed without rely

ing on the explicit regularity detection. By not depending on the detectable pre-defined

regularities in the reference stream of workloads, my LIRS catches more opportunities to

improve LRU performance. (2) We show earlier work on improving LRU such as LRU-K

or 2Q can be evolved into one algorithm with consistently superior performance, without

tuning or adaptation of sensitive parameters. The effort of these algorithms, which only

trace their own history information of each referenced block, is promising because it is very

likely to produce a simple and low overhead algorithm just like LRU. We have shown the

LIRS algorithm accomplishes this goal.

My LIRS algorithm can be effectively applied in the virtual memory management for

its simplicity and its LRU-like assumption on workload characteristics. In the next chapter,

we will describe my design of a LIRS approximation, called CLOCK-Pro, with its reduced

overhead comparable to that of LRU approximations, such as the CLOCK and second

chance algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Virtual M emory Replacem ent

Policies

W ith the ever-growing performance gap between memory systems and disks, and rapidly

improving CPU performance, virtual memory (VM) management becomes increasingly im

portant for overall system performance. Because of the very stringent cost requirement on

the replacement policies from VM management, almost all the general-purpose replacement

algorithms cannot be directly applied here. The research of VM replacement policies is of

special interests to operating system designers.

3.1 Background

3.1 .1 T h e R esea rch S ta tu s o f M em o r y R e p la c e m e n t P o lic ie s

Memory management has always been one of the most active research areas for decades

since it was introduced in the computer systems. On one frontier, to make the installed

memory effectively used, much work has been done on memory allocation, recycling, and the

management in various programming languages. Many breakthroughs have been made in

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. VIRTU AL M EM O RY REPLAC EM EN T POLICIES 62

both theory and practice. On another frontier, to reduce the page paging between memory

and disks, researchers and practitioners in both academia and industries are working hard

to improve the performance of page replacement to reduce I/O paging, especially to avoid

the worst performance cases. A significant advance in this regard becomes increasingly

demanding with the continuously growing gap between memory and disk access times, and

rapidly improved CPU performance. Unfortunately, an approximation of LRU, the CLOCK

replacement policy [21], which was developed at least 35 years ago, is still dominating almost

all the major operating systems including MVS, Unix, Linux and Windows1, even though it

has apparent performance problems inherited from LRU with certain commonly observed

memory access patterns.

We believe there are two factors responsible for the lack of significant improvements

of VM page replacements. First, there is a very stringent cost requirement on the policy

from VM management. It requires the cost be associated with the number of page faults

or a moderate constant. As we know, a page fault incurs a penalty worth of hundreds of

thousands of CPU cycles. This allows a replacement policy to do its job without intrusively

intervening application executions. A policy with its cost proportional to the number of

memory references would be prohibitively expensive. This causes the user program to incur

a trap to the operating system every few instructions, and the CPU would spend much more

time on the page replacement work than doing useful work for the user application even

when there are not paging requests. From the cost perspective, even LRU, a well-recognized

low-cost and simple replacement algorithm, is unaffordable, because it has to maintain the

1This generally covers many CLOCK variants, including Mach-style active/inactive list, FIFO list facili
tated with hardware reference bits. These CLOCK variants share the same performance problems plaguing
LRU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTUAL M EM O RY REPLAC EM EN T POLICIES 63

LRU ordering of pages at any time. The second factor is that most proposed replacement

algorithms attem pting to improve LRU performance turn out to be too complicated to

produce their approximation versions with their costs meeting the requirements of VM. This

is mainly because the weak cases for LRU mostly attribute to its minimal use of history

access information, which motivates other researchers to make an opposite approach by

adding more bookkeeping and access statistic analysis work to make their algorithms more

intelligent in dealing with some access patterns unfriendly to LRU.

3 .1 .2 L R U /C L O C K and th e ir P er fo rm a n ce D isa d v a n ta g es

LRU is designed based on the assumption that a page would be re-accessed soon if it has

been accessed recently. It manages a data structure conventionally called LRU stack, in

which the Most Recently Used (MRU) page is at the stack top and the Least Recently Used

(LRU) page is at the stack bottom. Other in-between pages in the stack strictly follow the

ordering of their last access times. To maintain the stack, LRU algorithm has to move an

accessed page from its current position in the stack (assume it has been in the stack) to the

stack top. The LRU block at the stack bottom is the one to be replaced if there is a page

fault and no free spaces are available. In CLOCK, the memory spaces holding the pages can

be regarded as a circular buffer and the replacement algorithm cycles through the ordering

of the pages, like the minute hand of a clock. Each page is associated with a bit, called

reference bit, which is set by hardware whenever the page is accessed. When it is necessary

to replace a page to service a page fault, the page pointed by the hand is checked. If its

reference bit is unset, the page is replaced. Otherwise, the algorithm unsets its reference

bit and continues moving the hand to the next page. Research and experience have shown

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY REPLACEM EN T POLICIES 64

tha t CLOCK is a close approximation of LRU, and its performance characteristics are very

similar to those of LRU. So all the performance disadvantages discussed about LRU in the

following are also applied to CLOCK.

The LRU assumption is valid for a significant portion of workloads, and LRU works

well for these workloads, which we call LRU-friendly workloads. The distance of a page in

the LRU stack from the stack top to its current position is called recency, which shows

the number of other distinct pages accessed after the last reference to the page. Assuming

an unlimitedly long LRU stack, the position the page is in when it is accessed is called its

re-use distance, indicating the number of other distinct pages accessed between its last

access and its current access. LRU-friendly workloads have two distinct characteristics: (1)

There are much more references with small re-use distances than those with large re-use

distances. (2) Most references have re-use distances smaller than the available memory size

in terms of the number of pages. The locality exhibited in this type of workloads is regarded

as strong, which ensures a high hit ratio and a stead increase of hit ratio with the increase

of memory size.

However, there do exist occasions tha t this assumption does not hold, where LRU per

formance could be unacceptably degraded. One example access pattern is memory scan,

which consists of a sequence of one-time page accesses. These pages actually have infinitely

large re-use distance and cause no hits. More seriously, in LRU the scan could flush all

the previously active pages out of memory. Linux, which uses a variant of CLOCK as its

replacement policy, faces a serious challenge on the memory management due to the scan

effect by accessing one-time or infrequently used file data on disks.

In Linux the memory management for process-mapped program memory and file I/O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY RE PLAC EM EN T POLICIES 65

buffer cache is unified, so tha t the memory can be flexibly allocated between them according

to their respective needs. The allocation balancing between program memory and buffer

cache poses a big problem because of the unification. Here is a quote from Rik van Riel

at Red Hat Inc.[73] to describe this problem. "... the amount of data on the file systems

tends to be several magnitudes larger than the amount of memory taken by the processes

in the system. This means that the number of accesses to pages from the file cache could

overwhelm the total number of accesses to the pages of the processes, even though the in

dividual pages of the processes get accessed more frequently than most file cache pages. In

other words, the system can end up evicting frequently accessed pages from memory in favor

of a mass o f recently but far less frequently accessed pages. ” An example scenario on this

is that after one extracts a large tarball, he/she could feel the computer gets much slower

because the previous active working set is replaced and has to be faulted in. To address

this problem in a simple way, current Linux versions have to introduce some “magic pa

rameters” to enforce the buffer cache allocation within the range of 1% and 15% of memory

size. However, this approach does not fundamentally solve the problem, because one major

factor to cause this allocation unbalancing between process memory and buffer cache is the

inefficient replacement policy to deal with infrequent accessed pages in buffer caches.

Another example access pattern defeating LRU is loop, where a set of pages are accessed

cyclically. Loop and loop-like access patterns dominate the memory access behavior of many

programs, particularly in scientific computation applications. If pages involved in the loop

along with other pages accessed in a cycle cannot completely fit in the memory, there could

be repeated page faults and no hit at all. The most cited example [30. 67] for the loop

problem is tha t even if you have a memory of 100 pages to hold 101 page data, the hit ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. VIRTUAL M EM O RY REPLACEM EN T POLICIES

would be ZERO if you loop over this data set!

66

3 .1 .3 L IR S an d its P er fo rm a n ce A d v a n ta g es

A recently proposed breakthrough replacement algorithm, namely LIRS (Low Inter-reference

Recency Set) [33], removes all the aforementioned LRU performance disadvantages while still

maintaining a low cost close to LRU. It can not only overcome the side-effects of scan and

loop accesses, but also accurately differentiate the pages based on their locality strengths

quantified by re-use distance.

The key different approach in handling history access information in LIRS from LRU

is tha t it uses re-use distance rather than recency in LRU for the replacement decision. A

page with a large re-use distance will be replaced even if it has a small recency. For instance,

when a one-time-use page is recently accessed in a memory scan, LIRS will replace it quickly

because its re-use distance is infinite, even though its recency is very small. To retain the

LRU low-cost merit, LIRS does not explicitly bookkeep and compare re-use distances of

accessed pages, but dynamically categorizes the pages into two sets, one for pages with small

re-use distance, called LIR set, and another for pages with large re-use distance, called HIR

set. In LIRS, only pages in LIR set are cached and cannot be replaced until it proves to

be ineligible to stay in the LIR set due to its large recency. On the other hand, the pages

in the HIR set will be replaced soon after they are faulted in. A HIR page must generate a

relatively small re-use distance to tu rn into LIR page and then enjoy the privilege of staying

in memory for a relatively long period of time. In contrast, LRU lacks the insights of LIRS:

all accessed pages are indiscriminately cached until they are either re-accessed when they

are in the stack or replaced at the bottom of the stack, without considering which of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. VIRTU AL M EM O RY REPLAC EM EN T POLICIES 67

two cases is more possible to happen. For the infrequently accessed pages, which are most

possible to be replaced at the stack bottom without being re-accessed in the stack, holding

them in memory (as well as in stack) certainly means a waste of the memory resources.

This explains the LRU misbehavior with the access patterns of weak locality.

The performance advantages of LIRS are impressive while it is compared with other

recently proposed replacement algorithms, including DEAR[19], AFC [18], UBM [42], 2Q

[37], LRU-2[57], SEQ [30], LRFU [45], EELRU[67] and ARC [51]. The advantages include

(1) Unlike DEAR, AFC, UBM, and SEQ, LIRS does not depend on the explicit detection

of access regularity on which LRU is possible to fail in order to improve LRU performance.

(2) Unlike LRU-2, LRFU, and EELRU, LIRS has an 0(1) overhead and its cost is actually

very close to LRU. (3) Unlike 2Q, SEQ, ARC, LIRS is able to remove LRU problems in

a broad spectrum of workloads with scan, loop and various changing access patterns. The

advantages of LIRS to effectively and intelligently replace infrequently accessed pages in

buffer caches have drawn the attention from the industry. Here is a brief comment of Rik

van Riel on LIRS [73]: the facts that LIRS would make the file cache vs process memory

balancing automatic and that LIRS would also do the right thing as a second level cache ...

make the implementation of L IR S for Linux a promising future experiments. ”

In this chapter, we will describe a VM page replacement algorithm, called CLOCK-Pro,

to take the place of CLOCK, which meets both the performance demand from application

users and the low overhead requirement from system designers. CLOCK-Pro integrate the

principle of LIRS and the way in which CLOCK works. CLOCK-Pro has the following

features: (1) CLOCK-Pro works in a similar fashion as CLOCK and its cost is easily

affordable in VM management. (2) CLOCK-Pro brings all the much-needed performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY REPLAC EM EN T POLICIES 68

advantages from LIRS into CLOCK. (3) W ithout any pre-determined parameters, CLOCK-

Pro adapts to the changing access patterns to serve a broad spectrum of workloads. (4)

Through extensive simulations on real-life I/O and VM traces, we have shown the significant

performance improvement of CLOCK-Pro over CLOCK as well as other representative VM

replacement algorithms.

3.2 Related Work

There have been a large number of new replacement algorithms proposed for many years,

especially in the last fifteen years. Almost all of them are proposed to target at the perfor

mance problems of LRU. In general there are three approaches taken in these algorithms.

(1) Requiring applications to explicitly provide future access hints, such as Application-

controlled file caching [11], and application-informed prefetching and caching [59]; (2) Ex

plicitly detecting the access patterns failing LRU and adaptively switching to other effective

replacements, such as SEQ [30], EELRU [67], AFC [18], and UBM [42]. (3) Tracing and

utilizing deeper history access information such as FBR [65], LRFU [45], LRU-2 [57], 2Q

[37], MQ [81], LIRS [33], and ARC [51]. More elaborate description and analysis on the

algorithm can be found in [33]. The algorithms taking the first two approaches usually place

too much constraint on the applications they are designed to serve to be applicable in the

VM of a general-purpose OS. For example, SEQ is designed to work in VM managements,

and it only does its job when there is a page fault. However, its performance depends on

an effective detection of long sequential address reference patterns, on which LRU could

behave poorly. Thus, the mechanism it uses makes SEQ lose the generality. For instance,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY REPLAC EM EN T POLICIES 69

SEQ is hard to detect the loop access over linked lists or the accesses to a sequence of pages

by an application but the sequence is randomly interleaved with the accesses to the pages of

other applications. Among the algorithms taking the third approach, FBR, LRU-2, LRFU

and MQ are too costly even compared with LRU. The performance of 2Q has been shown to

be very sensitive to its parameters and could be much worse than LRU. LIRS and ARC are

the two most promising candidate algorithms tha t could be applied in VM, because they

use the data structure and operations similar to LRU and their cost is also close to that

of LRU. Both have the potential to produce approximation versions for VM, while keeping

their respective performance advantages.

ARC maintains two variable-sized lists holding history access information of referenced

pages. Their combined size is two times of the memory in terms of pages. So ARC not

only records the information of cached pages, but also keeps track of the same number of

replaced pages. The first list contains pages that have been touched only once recently (cold

pages) and the second list contains pages that have been touched at least twice recently (hot

pages). The cache spaces allocated to the pages in these two lists are adaptively changed,

depending on in which list recent misses happen. More cache spaces will serve cold pages

(resp. hot pages) if there are more misses in the first list (resp. in the second list). However,

though ARC allocates memory to hot/cold pages adaptively to the ratio of cold/hot page

accesses and excludes tunable parameters, the locality of pages in the two lists, supposed to

hold cold and hot pages respectively, can not directly and consistently be compared. So hot

pages in the second list could have a weaker locality in terms of re-use distance than cold

pages in the first list. For example, a page that is regularly accessed with a re-use distance a

little more than the memory size has no hits at all in ARC while a page in the second list can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTUAL M EM O RY REPLAC EM EN T POLICIES 70

stay in memory without any accesses since it has been accepted into the list. This does not

happen in LIRS, because any pages supposed to be hot (LIR pages) or cold (HIR pages) are

placed in the same list and compared in a consistent fashion. Any LIR/HIR status changes

are responsively conducted. There is one pre-determined parameter in LIRS algorithm on

the amount of memory allocation for HIR pages. In CLOCK-Pro, the parameter is removed

and the allocation becomes fully adaptive to the current access patterns.

Compared with the research on the general replacement algorithm targeting at LRU, the

work specific to the VM replacements and targeting at CLOCK is much less and inadequate.

While Second Chance (SC) [70] as the simplest kind of CLOCK algorithm utilizing only one

reference bit to indicate recency, other CLOCK variants introduce a finer distinction be

tween page access history. In a generalized CLOCK version called GCLOCK[69], a counter

is associated with each page rather than a single bit. The counter will be incremented if the

page is hit. The circulating clock hand sweeps through the page decrementing the counter

until a page with its count of zero is found for replacement. In Linux and FreeBSD, a similar

mechanism called page aging is used. The counter is called age in Linux or act_count in

FreeBSD. When scanning through memory for pages to replace, the page age is increased

by a constant if its reference bit is set. Otherwise its age is decreased by a constant. One

problem for this kind of designs is tha t their performance improvements are not consistent,

and “can be either better or worse than LRU” [55]. The parameters for setting the maximum

value of counters or adjusting ages are mostly empirically decided. Another problem is that

they will consume too many CPU cycles and adjust to changes in the access patterns slowly,

which is evidenced in Linux kernel 2.0. Recently, Bansal and Modha provided an approxi

mation version of ARC, called CAR [6], which has a cost close to CLOCK. Their simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTUAL M EM O RY REPLACEM EN T POLICIES 71

tests on I/O traces indicate tha t CAR has a performance similar to ARC. Our simulation

experiments on I/O and VM traces both show that CLOCK-Pro has a significantly better

performance than CAR.

While the design VM replacements is difficult to take much benefit from the work on

improving LRU due to the strict VM cost requirement, it remains as a demanding challenge

in the OS design.

3.3 Description of CLOCK-Pro

3 .3 .1 M a in Id ea

CLOCK-Pro takes the same principle as tha t of LIRS - it uses the re-use distance (called

IRR in the LIRS replacement algorithm) rather than recency in its replacement decision.

When a page is accessed, the re-use distance is the period of time in terms of the number

of other distinct pages accessed since its last access. Although there is a re-use distance

between any two consecutive references to a page, only the most current distance is relevant

in the replacement decision. We use the re-use distance of a page right at the time of its

access to characterize it either as a cold page if it has a large re-use distance, or as a hot page

if it has a small re-use distance. Then we mark its status as either cold or hot. We place

all the accessed pages, either hot or cold, into the same list 2 in the order of their accesses 3

with the pages with small recency at the list head and the pages with small recency at the

list tail.

2Actually it is the directory entries that are placed in the list. However, for simplicity we say “a page in
the list” instead of explicitly “the entry of a page in the list”

3Actually we can only maintain an approximate access order because we cannot update the list with a
hit access in a VM replacement algorithm and thus lose the exact access orderings between page faults.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. VIRTU AL M EM O RY RE PLAC EM EN T POLICIES 72

To give the cold pages a chance to compete with the hot pages and ensure their cold/hot

statuses accurately reflect their current access behaviors. We grant each cold page a test

period once it is accepted into the list. If it is accessed during its test period, the cold

page turns into a hot page. If the cold page passes the test period without a re-access, it

will leave the list. It is noted tha t the cold page in its test period can be replaced out of

memory, but its page entry will remain in the list for the test purpose until the end of the

test period or being re-accessed.

The key question here is how to set the time of the test period. When a cold page is in

the list and there is still at least one hot page after it (i.e. with a larger recency), it can

turn into a hot page if it is accessed, because it has a new re-use distance smaller than the

hot page(s) after it. Accordingly, the hot page with the largest recency should turn into a

cold page. So the test period should be set as the largest recency of the hot pages. If we

make sure tha t the hot page with the largest recency is always at the list tail, and all the

cold pages tha t pass this hot page terminate their test periods, then the test period of a

cold page is equal to the time before it passes the tail of the list. So all the non-resident

cold pages can be removed from the list right after it reaches the tail of the list. In practice,

we could shorten the test period and limit the number of cold pages in the test period to

save the space cost. By implementing this test mechanism, we ensure that “cold/hot” are

defined based on relativity and constant comparison, not on a fixed threshold. This makes

CLOCK-Pro distinctive from the prior work including 2Q and ARC, which attempts to

use a constant threshold to distinguish the two types of pages, and treat them differently

in the separate lists. Unfortunately this will make these algorithms share the performance

weakness of LRU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY RE PLAC EM EN T POLICIES 73

HANDhot

HAWDUstH A N D cJd

Figure 3.1: There are three types of pages in CLOCK-Pro, hot pages marked as “H”, resident cold
pages marked as “C” and non-resident cold pages marked as shadowed block with “C” - Around the
clock, there are three hands: HAND hot pointing to the list tail (i.e. the last hot page) and searching
a hot page to turn into a cold page, H AND coid pointing to the last resident cold page and searching
for a cold page to replace out of memory, and H AND test pointing to the last cold page in the test
period, terminating test periods of cold pages, and removing non-resident cold pages passing the
test period out of the list. The attached black dots represent the reference bits of 1.

When it is necessary to generate a free space, we replace a resident cold page.

3 .3 .2 D a ta S tr u c tu r e

Let us first assume the memory allocations for hot and cold pages, and m c, respectively,

are fixed, where m/j + m c is the total memory size m (m = rrih + m c). The number of hot

pages is also rrih, so all the hot pages are cached at any time. For a hot page to be replaced,

it must first change into a cold page. Except hot pages, all the other accessed pages are

categorized as cold pages. Among the cold pages, m c pages are cached, another at most m

non-resident cold pages also have their history access information cached. So totally there

are at most 2m directory entries for page access history in the list. The same as CLOCK,

all the page entries are organized as a circular linked list, shown in Figure 3.1. For each

page, there is a cold/hot status associated with it. For each cold page, there is a flag to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTUAL M EM O RY RE PLAC EM EN T POLICIES 74

indicate if it is in the test period.

In CLOCK-Pro, there are three hands. The hand H A N D hot points to the hot page

with the largest recency. The position of this hand actually serves as a threshold being

a hot page. Any hot pages swept by the hand turn into cold pages. For the convenience

of the presentation, we call the page pointed by H A N D hot as the tail of the list, and the

page immediately before the tail page in the clockwise direction as the head of the list.

The HANDcoid points to the last resident cold page (i.e. the furthest one to the list head).

Because we always select the cold page for replacement, this is the position where we start

to look for a victim page, an equivalent to the hand in CLOCK. The hand H A N D test points

to the last cold page in the test period. This hand serves to terminate the test period of

cold pages. The non-resident cold pages swept by this hand will leave the list. All the hands

move in the clockwise direction.

3 .3 .3 O p era tio n s o n S earch ing V ic t im P a g es

Just like CLOCK, there are no operations in CLOCK-Pro for page hits, only the reference

bits of the accessed pages are set by hardware. Before we see how a victim page is generated,

le t’s examine how the three hands move around the list (clock), because the victim page is

searched by coordinating the movements of the hands.

The reason to move H A N D hot is tha t a cold page is accessed in its test period and thus

turns into a hot page. Accordingly we need to change the hot page with the largest recency

to turn into a cold page. If the reference bit of the hot page pointed by the hand is unset,

we can simply change its status and then move the hand forward. However, if the bit is set,

which indicates the page has been re-accessed, we spare this page, reset its reference bit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTUAL M EM O RY RE PLAC EM EN T POLICIES 75

and keep it as a hot page. This is because the actual access time of the hot page could be

earlier than the cold page. Then we move the hand forward to examine the next page until

it encounters a hot page with its reference bit of zero. Then the hot page with its reference

of zero turns into a cold page. Whenever it encounters a cold page, it will terminate its test

period and remove the cold page out of list if it is non-resident (the most probable case).

This actually does the work assigned to hand HANDtest- Finally the hand stops at a hot

page.

We keep track of the number of non-resident cold pages. Once the number exceeds m,

the memory size in the number of pages, we remove the cold page pointed by H A N D test

out of the list if it is non-resident. We term inate its test period. Because the cold page has

used up its test period without a re-access and has no chance to turn into a hot page with

its next access. H ANDtest will then move forward and stop at the next cold page.

HANDcohi is used to search a resident cold page for replacement. If the reference bit of

the resident cold page currently pointed by H A N D coid is unset, we replace the cold page for

a free space. Otherwise, if its bit is set and it is in its test period, we turn the cold page into

a hot page, move it to the list head, and ask H A N D ^ t for its actions, because an access

during test period indicates a competitively small re-use distance. Note that the replaced

cold page will remain in the list as non-resident cold page until it runs out of its test period.

The hand will keep moving until it encounters a cold page eligible for replacement, and

stops at the next resident cold page.

When there is a page fault, the faulted page must be a cold page. We first run H A N D coia

for a free space. If the cold page is not in the list, its re-use distance is highly possible to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTUAL M E M O RY REPLACEM EN T POLICIES 76

be larger than the recency of hot pages4. So the page is still categorized as a cold page and

is placed at the list head. It also initiates its test period. If the number of cold pages is

larger than the threshold, we run H A N D test• If the cold page is in the list5, the faulted

page turns into a hot page and is placed on the head of the list. We run H A N D hot to make

a hot page with large recency tu rn into a cold page.

3 .3 .4 M ak in g C L O C K -P ro A d a p tiv e

Until now, we have assumed tha t the memory allocations for hot and cold pages are fixed.

In LIRS, there is a pre-determined parameter, called Lhirs, to determine the percentage

of memory that are used by HIR pages. As it is shown in [33], Lhirs actually affects how

LIRS behaves differently from LRU. When Lhirs approaches 100%, LIRS’s replacement

behavior as well as its hit ratios are close to those of LRU. Although the evaluation of LIRS

algorithm indicates tha t its performance is not sensitive to Lhirs variations within a large

range between 1% and 30%, it also shows tha t the hit ratios of LIRS could be moderately

lower than LRU for LRU-friendly workloads (i.e. with strong locality) and increasing Lhirs

could eliminate the performance gap.

In CLOCK-Pro, resident cold pages are actually managed the same as CLOCK. H A N D ^ m

behaves the same as what the clock hand in CLOCK does: sweeping across the pages while

sparing the page with its reference bit of 1 and replacing the one with its reference bit of

0. So increasing m c, the size of the allocation for cold blocks, makes CLOCK-Pro behave

more like CLOCK. Let’s see the performance implication of changing memory allocation

4We cannot guarantee the largeness because there are no operations on hits in CLOCK-Pro and we limit
the number of cold pages in the list. But our experiment results show this approximation minimally affects
the performance of CLOCK-Pro.

5The cold page must be in its test period. Otherwise, it must have been removed from the list.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. VIRTU AL M EM O RY REPLACEM EN T POLICIES 77

in CLOCK-Pro. To overcome the CLOCK performance disadvantages with weak access

patterns such as scan and loop, a small m c value means a quick eviction of cold pages just

faulted in and the strong protection of hot pages from the interference of cold pages. How

ever, for strong locality accesses, almost all the accessed pages have relatively small re-use

distance. But some of the pages have to be categorized as cold pages. W ith a small mc,

these pages would have to be replaced out of memory soon after its being loaded in, then

with an additional fault access during its test period to be loaded in the memory again as a

hot page. Increasing m c would allow these cold pages to be cached for a longer time and to

be more possible to be re-accessed before being replaced. So they can save the additional

page faults.

For a given re-use distance of an accessed cold page, m c decides the probability of a

page to be re-accessed before being replaced during its test period. For a cold page with its

re-use distance larger than its test period, retaining the page in the memory with a large

m c is a waste of buffer spaces. On the other hand, for a page with a small re-use distance,

retaining the page in the memory for more time with a large m c would save an additional

page fault. In the adaptive CLOCK-Pro, we allow m c to dynamically adjust to the current

re-use distance distribution. If a cold page is accessed during its test period, we increment

m c by 1. If a cold page passes its test period without a re-access, we decrement m c by

1. Note the aforementioned cold pages include resident and non-resident cold pages. By

making the adaptation, CLOCK-Pro could take both LRU advantages with strong locality

and LIRS advantages with weak locality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY REPLAC EM EN T POLICIES 78

3.4 Performance Evaluation

To evaluate our CLOCK-Pro and to demonstrate its performance advantages, we use trace-

driven simulations on various types of workloads to compare it with other algorithms,

including CLOCK, LIRS, CAR, and OPT. CAR [6] is an approximation of ARC [51]. OPT

is an optimal, offline, but unimplementable replacement algorithm [7].

Our simulation experiments are conducted in three steps with different kinds of workload

traces. Because LIRS is originally proposed as I/O buffer cache replacement algorithm, in

the first step, we test the replacement algorithms on the I/O traces to see how well CLOCK-

Pro can retain the LIRS performance advantages, as well as its performance with typical I/O

access patterns. In the second step, we test the algorithms on the VM traces of application

program executions. Because the integrated VM management on file cache and program

memory such as what is implemented in Linux, is always desired, but has the concern of

mistreatment of file data and process pages as mentioned in Chapter 3.1.2. In the third step,

we test the algorithms on the aggregated VM and I/O traces to see how these algorithms

respond to the integration.

3 .4 .1 S im u la tio n on B uffer C ach e for F ile I /O

The I/O traces used in this section are from [33] used for the LIRS evaluation. In their

comprehensive performance evaluation, the traces are categorized into four groups based on

their access patterns, namely, loop, probabilistic, temporally-clustered and mixed patterns.

Here we selected one representative trace from each of the groups for the replacement

evaluation, and briefly describe them here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY RE PLAC EM EN T POLICIES 79

1. glim pse is a text information retrieval utility trace. The total size of text files used

as input is roughly 50 MB. The trace belongs to the loop pattern.

2. cpp is a GNU C compiler pre-processor trace. The total size of C source programs

used as input is roughly 11 MB. The trace belongs to the probabilistic pattern.

3. sprite is from the Sprite network file system, which contains requests to a file server

from client workstations for a two-day period. The trace belongs to the temporally-

clustered pattern.

4. m ulti2 is obtained by executing three workloads, cs, cpp, and postgres, together. The

trace belongs to the mixed pattern.

These are small-scale traces with clear access patterns. We use them to investigate the

implications of various access patterns on the algorithms. The hit ratios of glimpse and

m ulti2 are shown in Figure 3.2. To help readers clearly see the hit ratio difference of the

algorithms, we list the hit ratios of cpp and sprite in Tables 3.1 and 3.2, respectively. For

LIRS, the memory allocation {Lhirs) to HIR pages is set as 1% of memory size, the same

value as it is used in [33]. There are several observations we can make in the experiments.

First, even though CLOCK-Pro does not responsively deal with hit accesses to meet the

cost requirement of VM management, the hit ratio of CLOCK-Pro and LIRS are very close,

which shows tha t CLOCK-Pro effectively retains the performance advantages of LIRS. For

workloads glimpse and multi2, which contain many loop accesses, LIRS with a small L^irs

is most effective. The hit ratios of CLOCK-pro are a little lower than LIRS. However, for the

LRU-friendly workload, sprite, which consists of strong locality accesses, the performance of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY RE PLAC EM EN T POLICIES 80

GLIMPSE MULTI2

80

70

60

50

t
o

40<3CC
X

OPT — *—
aocK-Pro

LIRS
CAR

CLOCK ~ k—

30
OPT

CLOCK-Pro
URS •••*•••
CAR

CLOCK — x —

20

10

0
25002000 30001500 2500 500 1000 1500500 1000

Memory S ize (# o f blocks) Memory Size (# of Weeks)

Figure 3.2: Hit ratios of the replacement algorithms OPT, CLOCK-Pro, LIRS, CAR, and CLOCK
on workloads glimpse and multi2 .

LIRS could be lower than CLOCK (see Table 3.2). W ith its memory allocation adaptation,

CLOCK-Pro improves LIRS performance.

Figure 3.3 shows the percentage of memory allocated to the cold pages during the

execution courses of m u lti1! and sprite for a memory size of 600 pages. We can see that

for sprite the allocations for cold pages are much larger than 1% of memory used in LIRS,

and the allocation fluctulates over the time adaptively to the changing access patterns. It

sounds paradoxical tha t we need to increase cold page allocation when there are many hot

page accesses in the strong locality workload. Actually only the real cold pages with large

re-use distances should be managed in a small cold allocation for their quick replacements.

The so-called “cold” pages could also be hot pages in strong locality workloads because the

number of so called “hot” pages are limited by its allocation. So these pseudo-cold pages

should be avoided to be quickly replaced by increasing the cold page allocation. We can

see that cold page allocations for m u lti! are lower than sprite, which is consistent with the

fact that m u lti! access patterns consist of many long loop, weak locality accesses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTUAL M EM O RY REPLACEM EN T POLICIES 81

Pages OPT CLOCK-Pro LIRS CAR CLOCK
20 26.4 23.9 24.2 17.6 0.6
35 46.5 41.2 42.4 26.1 4.2
50 62.8 53.1 55.0 37.5 18.6
80 79.1 71.4 72.8 70.1 60.4
100 82.5 76.2 77.6 77.0 72.6
200 86.0 84.0 84.3 84.8 81.8
300 86.5 85.1 85.0 85.6 83.5
400 86.5 85.7 85.6 85.7 84.3
500 86.5 85.9 85.9 85.8 84.7
600 86.5 86.2 86.2 86.0 85.0
700 86.5 86.3 86.3 86.3 85.4
800 86.5 86.4 86.4 86.4 85.2
900 86.5 86.4 86.4 86.4 85.7

Table 3.1: Hit ratios of the replacement algorithms OPT, CLOCK-Pro, LIRS, CAR, and CLOCK
on workload cpp.

Pages OPT CLOCK-Pro LIRS CAR CLOCK
100 50.8 24.8 25.1 26.1 22.8
200 68.9 45.2 44.7 43.0 43.5
300 78.8 58.8 58.6 59.1 59.5
400 84.6 70.1 69.5 70.5 70.9
500 87.9 77.5 76.0 77.7 78.3
600 89.9 82.4 80.9 82.1 83.3
700 91.3 85.3 83.8 85.3 86.0
800 92.2 87.6 85.6 87.3 88.1
900 92.8 88.8 86.8 88.8 89.4
1000 93.2 89.7 87.6 89.6 90.4

Table 3.2: Hit ratios of the replacement algorithms OPT, CLOCK-Pro, LIRS, CAR, and CLOCK
on workload sprite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY REPLACEM EN T POLICIES 82

60

50

t
CB
M
0- 40
2s
a
£ »
E

O 20
c

oa
10

0
100000 2000 4000 6000 8000 12000

- - - - - - - - - - - - - - - - - - . , - - - - - - 1

, 1

1 1 1 1

1 1 ! 1 ; ! , f j f l I n1 • I

- i \ h t i J A .
i ; * 1 s i f i i ; l
| , | i / i j / j j i j j i I ' l i i L M i \ u !

M f] j ! : j r i f 1 j I N I |
- 1 1 1 h ! m i f ^ 1 / ; j 11 i o l i j i M] 11 y i M "

3 i l l !
i-: i . / S _ j -f / j J * ' j j 1 ! ; ' j j j i j •
! : i » j jnj ’ j | jf.

; f

\(1 i

1

Virtual Time (# of Pages)

0 20000 40000 60000 80000

Virtual Time {# of Pages)

100000 120000 140000

Figure 3.3: Adaptively changing the percentage of memory allocated to the cold pages in workloads
m ulti2 and sprite.

Second, regarding the performance difference of the algorithms, CLOCK-Pro and LIRS

have much higher hit ratios than ARC and CLOCK for glimpse and multi2, and are close

to the optimal ones. For strong locality accesses like sprite, there are little improvements

either for CLOCK-Pro or ARC. This is the case for CLOCK to win its popularity considering

its extremely simple implementation and low cost.

Third, even with a built-in memory allocation adaption mechanism, CAR cannot provide

consistent improvements over CLOCK, especially for weak locality accesses, on which a fix

is most needed in LRU. As we have analyzed, this is because CAR as well as ARC lack a

consistent locality strength comparison mechanism.

3 .4 .2 S im u la tio n on M em o r y for P ro g ra m E x e c u tio n s

In this section, we use the traces of memory accesses of the program executions to evaluate

the performance of the algorithms. All the traces used here are also used in [29] and many

of them are also used in [30, 67]. However, we do not include the performance results of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTUAL M EM O RY RE PLA CEM ENT POLICIES 83

Program Description Size Max. Mem. Demand (KB)
applu Solve 5 coupled parabolic/ elliptic PDE 1,068 14,524

blizzard Binary rewriting tool for software DSM 2,122 15,632
coral Deductive database evaluating query 4,327 20,284

gnuplot PostScript graph generation 4,940 62,516
ijpeg Image conversion into IJPE G format 42,951 8,260

m88ksim Microprocessor cycle-level simulator 10,020 19,352
murphi Protocol verifier 1,019 9,380

peri Interpreted scripting language 18,980 39,344
sor Successive over-relaxation on a matrix 5,838 70,930

swim Shallow water simulation 438 15,016
trygtsl Tridiagonal matrix calculation 377 69,688
wave5 plasma simulation 3,774 28,700

Table 3.3: A brief description of the benchmark programs (“Size” is in number of millions of
instructions)

SEQ and EELRU, because of the generality or cost concerns of them for VM management.

Interested readers are referred to the respective papers for a detailed performance details

of SEQ and EELRU, and make a comparison of them with CLOCK-Pro and CAR. Here

we simply say tha t CLOCK-Pro provides better or comparable performance over SEQ and

EELRU.

Table 3.3 summarizes all the program traces used in this chapter. For detailed program

descriptions, space-time memory access graphs, and trace collection methodology, readers

are referred to papers [29, 30]. These traces cover a large range of access patterns. After

observing their memory access graphs drawn from the collected traces, the authors of pa

per [30] categorized programs coral, m 8 8 ksim , and m urphi as having “no clearly visible

patterns” with all accesses temporarily clustered together, categorized programs blizzard,

peri, and sw im as having “patterns at a small scale” , and categorized the rest of programs

as having “clearly-exploitable, large-scale reference patterns” . If we examine the program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. VIRTUAL M EM O RY REPLAC EM EN T POLICIES 84

45

40

CLOCK — x ~
CAR

CLOCK-Pro - ■ « -
OPT - h —

35

c
0

c
c

25

a 20

3
a

a.
10

X ,5

0
eooo 10000 12000 14000 16000 18000

Memory Size (KB)

10

CLOCK — x—
CAR -•-a —

CLOCK-Pro
OPT — «—

8
c
o

3

6c
o

s
a

43
IS
IL

a
ID
a.

2

0 I—
2000 10000 12000 14000 16000 18000 200004000 6000 8000

S 20

CLOCK ~ 'X ~
CAR - b -

CLOCK-Pro
OPT — + ~

Memory Size (KB)

5000 6000 7000

Memory Size (I®)

8000 3000

Figure 3.4: Performance of CLOCK, CAR, CLOCK-Pro and OPT on programs with strong locality.

access behaviors in terms of re-use distance, the programs in the first category belong to

the strong locality workloads. Those in the second category belong to the moderate locality

workloads. And the rest programs in the th ird category belong to the weak locality work

loads. Figure 3.4, Figure 3.5, and Figure 3.6 show the number of page faults per million

instruction executed for each of the programs, denoted as page fault ratio, as its memory

increases up to the its maximum memory demand. We exclude the cold page faults which

occur on their first time accesses. The algorithms considered here are CLOCK, CLOCK-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY RE PLAC EM EN T POLICIES 85

BLIZZARD

7

6
CLOCK —

C A R e -
CLOCK-Pro ••••«•••

OPTc 5

c
c 4

a
« 3

0
6000 8000 10000 12000 14000 16000

Mernofy Size (KB)

PERL SWIM

CLOCK — x -
CAR - s -

CLOCK-Pro
O PT — r—

c
o

I
c
c

6
a

3
U.
0

Q.

4000010000 15000 2500020000 30000

CLOCK — x—
CAR — s —

CLOCK-Pro
O PT — 4—

120

c
o

3 100
c
c
o

®o.

3

a
o>
0.

XZi&SSi
14000 150008000 9000 10000 11000 12000

Memory Size (KB) Memory Size (KB)

Figure 3.5: Performance of CLOCK, CAR, CLOCK-Pro and OPT on programs with moderate
locality.

Pro, CAR and OPT.

The experiment results clearly show tha t CLOCK-Pro significantly outperforms CLOCK

for the programs with weak locality, including programs applu, gunplot, ijpeg, sor, trygtsl,

and wave5. For gunplot and sor, which have very large loop accesses, the page fault ratios of

CLOCK-Pro are almost equal to those of OPT. The improvements of CAR over CLOCK are

far from being consistent and significant. In many cases, it performs worse than CLOCK.

The most inability of CAR appears on traces gunplot and sor - it cannot correct the LRU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pa
ge

Fa

ul
ts

pe

r
M

ill
io

n
In

du
ct

io
ns

Pa

ge

Fa
ul

ts

pe
r

M
ill

io
n

In
du

ct
io

ns

Pa
ge

Fa

ul
ts

pe

r
M

ill
io

n
In

tr
u

ct
io

n
s

CHAPTER 3. VIRTU AL M EM O RY REPLACEM EN T POLICIES 86

CLOCK — x—
CAR ---a —

CLGCK-Pro —
O PT — i—

100

-e—

CLOCK — x -
CAR ~ f l -

CLOCK-Pro
O PT — • -

50000 6000020000 3000014000 100008000 10000 12000

Memory Size (KB)

IJPEG

Memory S z e (KB)

SOR

8

7

CLOCK — x—
CAR — Q—

CLOCK-Pro
OPT — (—

6

5

4

3

CLOCK —)
CAR - {

CLOCK-Pio - h
O PT —

2

1

0
50000 60000 7000010000 20000 300006000 7000 00004000 50002000

Memory Size (KB)

TRYGTSL

Memory Size (KB)

WAVE5

CLOCK — x—
CAR -o —

CLOCK-Pro
O PT — r—100

40000 50000 60000 7000020000 3000010000

CLOCK — x—
C A R e ~

CLOCK-Pro — "
O p t - 4 —

10 !k.
c
o

3
C
C
C

2

3
U.

CT

2500020000150005000 10000

Memory Size (KB) Memory Size (KB)

Figure 3.6: Performance of CLOCK, CAR, CLOCK-Pro and OPT on programs with weak locality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTU AL M EM O RY REPLACEM EN T POLICIES 87

problems with loop accesses and its page fault ratios are almost as high as those of CLOCK.

For the programs with strong locality accesses, including coral, m 8 8 ksim and murphi,

there is little room for other replacement algorithms to do a better job than CLOCK/LRU.

The good things are that both CLOCK-Pro and ARC retain the LRU performance advan

tages for the type of programs, and CLOCK-Pro even does a little bit better than CLOCK.

For the programs with moderate locality accesses, including blizzard, peri and swim,

the results are mixed. Though we see the improvements of CLOCK-Pro and CAR over

CLOCK in the most cases, there does exist a case in sw im with small memory sizes where

CLOCK performs better than CLICK-Pro and CAR. Though in most cases CLOCK-Pro

performs better than CAR, for peri and sw im with small memory sizes, CAR performs

moderately better.

To summarize, we found tha t CLOCK-Pro can effectively remove the performance dis

advantages of CLOCK with weak locality accesses, retains its performance advantages with

strong locality. It exhibits apparently more impressive performance than CAR which was

proposed to have the same objectives as CLOCK-Pro.

3 .4 .3 S im u la tio n o n P ro g r a m E x e c u tio n s w ith In ter feren ce o f F ile I /O

In an unified memory management system, file buffer cache and process memory are man

aged with a common replacement policy. As we have stated in Chapter 3.1.2, the memory

competition from a large number of file data accesses in the shared space could interfere

with the program execution. Because of the file data is far less frequently accessed than

process VM, a process should be more competitive in keeping its memory from being taken

away as file cache buffer. However recency-based replacement algorithms like CLOCK allow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. VIRTU AL M EM O RY REPLACEM EN T POLICIES 88

Memory(KB) CLOCK-Pro CLOCK-Pro w/IO CAR CAR w/IO CLOCK CLOCK w/IO
2000 9.6 9.94 9.7 10.1 9.7 11.23
3600 8.2 8.83 8.3 9.0 8.3 11.12
5200 6.7 7.63 6.9 7.8 6.9 11.02
6800 5.3 6.47 5.5 6.8 5.5 10.91
8400 3.9 5.22 4.1 5.8 4.1 10.81
10000 2.4 3.92 2.8 4.9 2.8 10.71
11600 0.9 2.37 1.4 4.2 1.4 10.61
13200 0.2 0.75 0.7 3.9 0.7 10.51
14800 0.1 0.52 0.7 3.6 0.7 10.41
16400 0.1 0.32 0.6 3.3 0.7 10.31
18000 0.0 0.22 0.6 3.1 0.6 10.22
19360 0.0 0.19 0.0 2.9 0.0 10.14

Table 3.4: The performance (number of page faults in one million of instructions) of algorithms
CLOCK-Pro, CAR and CLOCK on program m 88ksim with and without the interference of I/O file
data accesses.

these file pages to replace the process memory even if they are not frequently used, and to

pollute the memory. To provide a preliminary study on the effect, we select an I/O trace

[22] (WebSearchl) from a popular search engine and use its first 900 second accesses as

a sample I/O accesses to co-occur with the process memory accesses in a shared memory

space. This segment of I/O trace contains extremely weak locality - among the total 1.12

millions page accesses, there are 1.00 million unique pages accessed. We first scale the I/O

trace onto the execution time of a program and then aggregate the I/O trace with the

program VM trace in the ordering of access times. We select a program with strong locality

accesses, m 8 8 ksim , and a program with weak locality accesses, sor, for the study.

Tables 3.4 and 3.5 show the number of page faults per million of instructions (only

the instructions for m 8 8 ksim or sor are counted) for m 8 8 ksim and sor, respectively, with

various memory sizes. We am not interested in the performance of I/O accesses. There

would be few page hits even for a very large dedicated memory because there is almost no

locality in the accesses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. VIRTUAL M EM O RY REPLAC EM EN T POLICIES 89

Memory(KB) CLOCK-Pro CLOCK-Pro w /IO CAR CAR w/IO CLOCK CLOCK w/IO
4000 11.4 11.9 12.1 12.2 12.1 12.2
12000 10.0 10.7 12.1 12.2 12.1 12.2
20000 8.7 9.6 12.1 12.2 12.1 12.2
28000 7.3 8.6 12.1 12.2 12.1 12.2
36000 5.9 7.5 12.1 12.2 12.1 12.2
44000 4.6 6.5 12.1 12.2 12.1 12.2
52000 3.2 5.4 12.1 12.2 12.1 12.2
60000 1.9 4.4 12.1 12.2 12.1 12.2
68000 0.5 3.4 12.1 12.2 12.1 12.2
70600 0.0 3.0 0.0 12.2 0.0 12.2
74000 0.0 2.6 0.0 12.2 0.0 12.2

Table 3.5: The performance (number of page faults in one million of instructions) of algorithms
CLOCK-Pro, CAR and CLOCK on program sor with and without the interference of I/O file data
accesses.

From the simulation results shown in the tables, we found that:

(1) For the strong locality program, m 88ksim , both CLOCK-Pro and ARC can effec

tively protect the program execution from the I/O access interference, while CLOCK is not

able to reduce its page faults with the increase of memory.

(2) For the weak locality program, sor, only CLOCK-Pro can protect the program

execution from the interference, though its page faults are moderately increased compared

with its dedicated execution on the same size of memory. However, CAR and CLOCK

cannot reduce its faults even when the memory size exceeds the program memory demand,

and the number of faults on the dedicated executions has been zero.

We did not see a devastating influence on the program executions with the co-existence

of intensive file data accesses. This is because even the weak accesses of m 88ksim , are strong

enough to fend off the memory competition from file accesses with their page re-accesses, and

actually there are almost no page re-uses in the file accesses. However, if there are quiet

periods during program active executions, such as waiting for the user interactions, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. VIRTUAL M EM O RY REPLACEM EN T POLICIES 90

program working set would be flushed by the file accesses under recency-based replacement

algorithms. However, re-use distance based algorithms such as CLOCK-Pro will not have

the problems, because the file accesses have to generate small re-use distances to qualify

the file data a long-term memory stay, and to replace the program memory.

3.5 Summary

In this chapter, we proposed a new VM replacement policy, CLOCK-Pro, which is intended

to take the place of CLOCK currently dominating various OS designs. We believe it is

a promising replacement policy in future OS designs because (1) It has a low cost that

can be easily accepted by current systems. Though it could move up to three pointers

(hands) during one victim page search, the total number of the hand moves is comparable

to tha t of CLOCK. Keeping track of the replaced pages in CLOCK-Pro doubles the size

of the linked list used in CLOCK. However considering the marginal memory consumption

of the list in CLOCK, the additional cost is well acceptable. (2) CLOCK-pro provides

a systematic solution to the CLOCK problems. It is not just a quick and experience-

based fix to a problem of CLOCK in a specific situation, but is designed based on a more

accurate locality definition - re-use distance and addresses the source of the LRU problem.

(3) It is fully adaptive to the strong or weak access patterns without any pre-determined

parameters. (4) Extensive simulation experiments on real-life I/O and VM traces show

significant and consistent performance improvements. We believe tha t CLOCK-Pro would

be very attractive to the VM system designers in industry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Thrashing in M ultiprogramming

Environments

Improvement of CPU and memory utilizations has been a fundamental consideration in the

design of operating systems. The interaction of memory management and CPU utilization is

much more involved in the multiprogramming environments than in a dedicated execution

environment. Studies of page replacement policies have a direct impact on memory and

CPU utilization, which have continued for several decades (e.g. a representative and early

work in [1], and recent work in [30, 67]).

4.1 Background

4 .1 .1 M P L v ersu s S y s te m T h ra sh in g

Multiprogramming level, simplified as MPL, is defined as the number of active processes in

a system. We refer to these active processes in an multiprogramming environment as inter

acting processes, because they are competing for CPU and memory resources interactively.

How to dynamically maintain an optimal MPL to keep a high CPU utilization has been a

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAM M ING ENVIRONM ENTS 92

fundamental issue in the design of operating systems [60]. Operating system designers aim

at providing an optimal solution to the problem of using the CPU and memory resources

effectively in multiprogramming, while avoiding the thrashing that multiprogramming can

cause. CPU utilization can be increased by increasing MPL — running more processes.

However, as MPL increases to a certain degree, the competition for memory pages among

processes becomes serious, which can eventually cause system thrashing, and CPU utiliza

tion will then be significantly lowered. Considering large variations of memory demands

from multiple processes and dynamical memory requirements in their lifetimes of the pro

cesses, it is not practically possible to set a pre-defined optimal MPL in order to avoid

thrashing while allowing a sufficient number of processes in the system. Existing operating

systems, such as BSD and Solaris, provide load control facility to swap out and in processes,

if necessary, for thrashing protection. This facility allows the systems to adaptively lower

MPL, but process swapping can be quite expensive for both systems and user programs.

4 .1 .2 T h ra sh in g an d P a g e R ep la cem e n t

Thrashing events can be directly affected by how page replacement is conducted. Most

operating systems adopt global LRU replacement to allocate the limited memory pages

among competing processes according to their memory reference patterns. W ith an increase

in MPL, memory allocation requests become more demanding. To keep more processes

active, limited memory space should be fully utilized. The global LRU page replacement

policy follows this principle. However, the effort to improve memory utilization could cause

low CPU utilization.

In a multiprogrammed environment, global LRU replacement selects an LRU page for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 93

replacement throughout the entire user memory space of the computer system. The risk of

low CPU utilization increases if the memory page shortage happens all over the interacting

processes. For example, a process is not able to access its resident memory pages when

the process is resolving page faults. These already obtained pages may soon become LRU

pages when memory space is being demanded by other processes. When the process is

ready to use these pages in its execution turn, these LRU pages may have already been

replaced to satisfy memory requests of other processes. The process then has to request

the virtual memory system to retrieve these pages by replacing LRU pages of others. The

page replacement may become chaotic, and could cascade among the interacting processes,

eventually causing system thrashing. Once all interacting processes are in the waiting queue

due to page faults, the CPU is doing little useful work.

4 .1 .3 Effectiveness o f a d a p tiv e p a g e rep la cem en t

Existing operating system protects thrashing at the process scheduling level by load con

trols. A commonly used mechanism is to suspend/reactivate or swapping ou t/in programs

to free more memory space after the thrashing is detected. For example, the 4.4 BSD

operating system [50] initially suspends a program after thrashing. If the thrashing con

tinues, additional programs are suspended until enough memory become available. Our

experiments and analysis show tha t there are several system performance advantages for

conducting adaptive page replacement over process scheduling to eliminate thrashing. First,

since improper page replacement during process interactions is a major and internal source

of system thrashing, a solution to adaptively adjust page replacement behavior to current

system needs can be fundamentally effective to address the problem. Second, the alter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. THRASHING IN MULTIPROGRAMMING ENVIRON M ENTS 94

natives of load controls are limited to suspend or remove existing processes. Since this

approach is expensive and can dramatically degrade user program interactivity, it is only

used when the system is seriously thrashing. Finally, using the adaptive page replacement

in the first place, we are able to eliminate the thrashing in its early stage, or significantly

delay the usage of load controls. W ith adaptive page replacement and load controls guard

ing at two different levels and two different stages, the system performance will become

more stable and cost-effective.

4.1.4 Our work

The objective of our study is to provide highly responsive and cost-effective thrashing pro

tection by dynamically detecting and adaptively taking necessary actions at the kernel level

of page replacement. It can also be regarded as page replacement adaptive to the system

situation. We have designed a dynamic system Thrashing Protection Facility (TPF) in the

system kernel considering the trade-off between CPU and memory utilizations. Once TPF

detects system thrashing, one of the interacting processes will be identified for protection.

The identified process will have a short period of privilege during which it does not con

tribute its LRU pages for removal. This allows the process to quickly establish its working

set. W ith the support of TPF, early thrashing can be eliminated at the level of page re

placement, so that process swapping will be avoided or delayed until it is truly necessary.

T PF also improves the system stability when memory is dynamically and competitively

demanded by interacting processes. We take the Linux kernel as a case study to illustrate

why TPF is needed and how it works.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRO N M ENTS 95

4.2 Evolution o f Page Replacement in Linux Kernel

Linux, like most other systems, uses an approximate LRU scheme to keep the working set

of a process in the system, and to contribute already allocated pages which may not be

used in the near future to other interacting ones. A clock algorithm [70] is used, because it

provides acceptable approximation of LRU, and it is cheap to implement, where NRU (Not

Recently Used) pages are selected for replacement.

Current page replacement implementation in Linux is based on the following frame

work. The interacting processes are arranged in an order to be searched for NRU pages

when few free pages are available in the user space, and/or they are demanded by interact

ing processes. The system examines each possible process to see if it is a candidate from

which NRU pages can be found for replacement. The kernel will then check through all

of the virtual memory pages in the selected process. In a moderately loaded system, we

could hardly observe execution performance differences due to the different page replace

ment implementations. However, when processes are competitively demanding memory

allocations, interacting processes may chaotically replace pages among themselves, leading

to the thrashing. We take the three recent Kernel versions to illustrate how the thrashing

potential is introduced and why a non-adaptive replacement policy is hard to deal with it.

4 .2 .1 K ern el 2 .0

In Kernel 2.0, the NRU page contributions are proportionally distributed among interacting

processes. There is a “swap_cnt” variable for each process, which is initialized with a

quantity (RSS/1MB) proportional to its resident set size (RSS). Once an NRU page is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 96

taken away from the process, its “swap_cnt” will be decreased by one. Only when its

“swap_cnt” becomes zero, or the searching for an NRU page fails in resident space of the

process, is the next process in the process list examined. W hen a process with “swap_cnt”

of zero is encountered, it will be re-initialized using the same proportion rule. This strategy

effectively balances memory usage by making all the processes provide proportional NRU

pages. However, a major disadvantage of this approach is its high potential for thrashing,

resulting low CPU utilization. This is because when all the memory-intensive processes

are struggling to build its working set under heavy memory loads, all are requesting more

pages through page faults, and no one will be given a priority for the purpose of thrashing

protection.

4 .2 .2 K e rn e l 2 .2

In order to address the limit, Kernel 2.2 makes each identified process continuously con

tribute its NRU pages until no NRU pages are available in the process. Attempting to

increase CPU utilization, this strategy allows the rest of the interacting processes to build

up their working sets more easily by penalizing the memory usage of one process at a time.

Here is the major section of code to select a process for page replacement in the kernel

function “swap_out” in mm/vmscan.c [47].

for (; counter >= 0; counter—) {

max_cnt = 0;

pbest = NULL;

select:

read_lock(&tasklist_lock);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAM M ING ENVIRONM ENTS

p = init_task.next_task;

for (; p != &init_task;

p = p->next_task) {

if (!p->swappable)

continue;

if (p->mm->rss <= 0)

continue;

/* Refresh swap_cnt? */

if (assign == 1)

p->mm->swap_cnt = p->mm->rss;

if (p->mm->swap_cnt > max_cnt) {

max_cnt = p->mm->swap_cnt;

pbest = p;

}

>

read_unlock(&tasklist_lock);

if (assign == 1)

assign = 2;

if (Ipbest) {

if (!assign) {

assign = 1;

goto select;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 98

goto o u t ;

}

i f (sw ap_ou t_p rocess(pbest, gfp_m ask))

r e tu rn 1;

>

o u t :

r e tu r n 0;

In this section of code, the “swap_cnt” variable for a process’s data structure can be

thought as a “shadow RSS”, which becomes zero when a swap-out operation of a process

fails. The “swap_cnt” s of all the swappable processes will be re-assigned with the respective

RSS in the second pass through the process list in the inner loop when they all become

zeros. This inner loop will select the swappable process with the maximal RSS tha t has

not yet been swapped out. Variable “counter” is used to control how many processes are

searched before finding an NRU page. We can see tha t once a process provides an NRU

page, which means it is the one with the maximum “swap_cnt” currently, the process will

be selected for swapping upon the next request. This allows its NRU pages continuously to

be replaced until a failure on finding an NRU page in the process occurs. Compared with

previous kernel version, in addition to the changes in the selection of processes for NRU

pages, there has been another major change in this kernel. In kernel 2.0, there is an “age”

associated with each page, which is increased by 3 when it is referenced called page aging

and decreased by 3 each time the page is examined. Once the “age” decreases to zero, it

will become an NRU page and be ready to be replaced. The Kernel 2.2 greatly simplifies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 99

the structure by eliminating the “age” and only making use of the reference bit of each page

in the PTE (Page Table E ntry). The bit is set when the page is referenced and reset when

the page is examined. The pages with reference bits of Os are NRU pages and ready to be

replaced. This implementation will produce NRU pages more quickly for a process with a

high page fault rate. These changes in kernel 2.2 take a much more aggressive approach to

make an examined process contribute its NRU pages, attem pting to help other interacting

processes to establish their working sets to fully utilize the CPU.

We have noted the effort made in Kernel 2.2 to retain CPU utilization by avoiding widely

spreading page faults among all the interacting processes. However, such an effort increases

the possibility of replacing fresh NRU pages in the process being examined, while some

NRU pages in other interacting processes tha t have not been used for long time continue

to be kept in the memory. This approach benefits CPU utilization at the cost of lowering

memory utilization. Fortunately, in our experiments, we find that each interacting process

is still examined periodically with a reasonable time interval. Although the average time

interval in kernel 2.2 is longer than tha t in kernel 2.0.38, it seems to be sufficiently short to

let most interacting processes have a chance to be examined. Thus memory utilization is

not a major concern. However, the risk of system instability caused by low CPU utilization

remains.

4 .2 .3 K ern el 2 .4

The latest Linux kernel is version 2.4, which makes considerable changes in the paging

strategy. Many of these changes target at addressing concerns on memory performance

arising in Kernel 2.2. For example, without page aging, NRU replacement in kernel 2.2 can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. THRASHING IN M ULTIPROGRAMMING ENVIRO N M ENTS 100

not accurately distinguish the working set from incidentally accessed pages. Thus Kernel

2.4 has to reintroduce page aging, just as Kernel 2.0 and FreeBSD do. However the page

aging could help processes with high page fault rates to keep their working sets, thus cause

other processes to have serious page fault rate, and trigger thrashing.

Kernel 2.4 distinguishes the pages with age of zero and those with positive ages by

separating them into non-active and active lists, respectively to prevent bad interactions

between page aging and page flushing [72]. This change does not help protect the system

against thrashing, because the system still has no knowledge on which working sets of

particular processes should be protected when frequent page replacement takes place under

heavy memory workload. Similar argument can be applied in BSD and FreeBSD, where a

system-wide list of pages forces all processes to compete for memory on an equal basis.

To make memory more efficiently utilized, Kernel 2.4 reintroduces the method used in

Kernel 2.0 for selecting processes to contribute NRU pages. Going through a process list

each time, it walks about 6% of the address space in each process to search NRU pages.

Compared with Kernel 2.2, this method increases its possibility of thrashing.

4 .2 .4 T h e Im p a c t p f P a g e R ep la cem e n t on C P U a n d M em o r y U tiliz a t io n s

From the evolution of recent LINUX kernel, we can see tha t in VM designs and imple

mentations, finding an optimal MPL concerning to thrashing has been translated into con

siderations of the tradeoff between the CPU and memory utilizations. For the purpose of

high CPU utilization, we require tha t CPU be not idle when there are computing demands

from “cycle-demanding” processes. For the purpose of high memory utilization, we require

that no idle pages be kept unaccessed when there are memory demands from “memory-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. THRASHING IN M ULTIPROGRAM M ING ENVIRO NM ENTS 101

demanding” processes. Our analysis has shown tha t the conflicting interests between the

requirements on CPU and memory utilizations are inherent in a multiprogramming system.

Regarding CPU utilization, the page replacement policy should keep at least one process

active in the process queue. Regarding memory utilization, the page replacement policy

should apply the LRU principle consistently to all the interacting processes. No process

should hide its old NRU pages from swapping while other processes contribute their fresh

NRU pages. It is difficult for a policy in favor of both CPU and memory utilizations con

stantly to eliminate the risk of system instability leading to thrashing. The difficulty in the

design of the page replacement in multiprogramming environment is general in operating

systems. Current systems lack effective mechanisms to integrate the two requirements for

the purpose of thrashing protection.

From the perspective of thrashing prevention, page replacement implementations in

Kernel 2.2 is more effective than Kernel 2.0 and Kernel 2.4. However, we will show that the

critical weakness resulted from the conflicting interests between the requirements on CPU

and memory utilizations is inherent in the Kernel 2.2. Our experimental results shown in

the next section reveal its serious thrashing . Thus, we implement our TPF in Kernel 2.2

to show its effectiveness, which is not in favor of our performance evaluation.

4.3 Evaluation of Page Replacem ent in Linux Kernels 2.2

4 .3 .1 E x p e r im e n ta l en v iro n m en t

Our performance evaluation is experimental measurement based. The machine we have

used for all experiments is a Pentium II of 400 MHz with physical memory space of 384

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAM M ING ENVIRONM ENTS 102

MBytes. The operating system is Redhat Linux release 6.1 with the kernel 2.2.14. Program

memory space is allocated in units of 4KByte pages. The disk is an IBM Hercules with

capacity of 8,450 MBytes.

When memory related activities in program execution occur, such as memory accesses

and page faults, the system kernel is heavily involved. To gain insight into VM behavior

of application programs, we have monitored program execution at the kernel level and

carefully added some simple instrumentation to the system. Our monitor program has two

functions: user memory space adjustment and system data collection. In order to flexibly

adjust available memory space for user programs in experiments, the monitor program can

serve as a memory-adjustment process requesting a memory space of a fixed size, which is

excluded from page replacement. The available user memory space can be flexibly adjusted

by running the memory-adjustment process with different fixed sizes of memory demand.

The difference between the physical memory space for users and the memory demand size

of the memory-adjustment process is the available user space in our experiments.

In addition, the monitoring program dynamically collects the following memory system

status quanta periodically for every second during execution of programs:

• Memory Allocation Demand (MAD): is the total amount of requested memory space

reflected in the page table of a process in pages. The memory allocation demand

quantum is dynamically recorded in the kernel data structure of tasEstruct, and can

be accurately collected without intrusive effect on program execution.

• Resident Set Size (RSS): is the total amount of physical memory used by a process in

pages, and can be obtained from the kernel data structure of tasEstruct.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN MULTIPROGRAMM ING ENVIRONM ENTS 103

• Number of Page Faults (NPF): is the number of page faults of a process, and can be

obtained from taskstruct of the kernel. There are two types of page faults for each

process: minor page faults and major page faults. A minor page fault will cause an

operation to relink the page table to the requested page in physical memory. The

timing cost of a minor page fault is trivial in the memory system. A major page fault

happens when the requested page is not in memory and has to be fetched from disk.

We only consider major page fault events for each process, which can also be obtained

from task-struct.

• Number of Accessed Pages (NAP):1 is the number of pages accessed by a process within

a time interval of one second. This is collected by a simple system instrumentation.

During program execution, a system routine is periodically called to examine all the

reference bits in the page table of a specified process.

We have selected three memory-intensive application programs from SPEC 2000: gcc,

gzip, and vortex. Using the system facilities described above, we first run each of the

three programs in a dedicated environment to observe the memory access behavior without

major page faults and page replacement (the demanded memory space is smaller than

the available user space). Table 4.1 presents the basic experimental results of the three

programs, where the “description” column gives the application nature of each program,

the “input file” column is the input file names from SPEC2000 benchmarks, the “memory

requirement” column gives the maximum memory demand during the execution, and the

“lifetime” column is the execution time of each program. The “lifetime” of each program

xThis quantum is only collected for dedicated executions of benchmark programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASH ING IN M ULTIPROGRAMM ING ENVIRONM ENTS 104

is measured without memory status quanta collection involved. These numbers for each

program represent the mean of 5 runs. The variation coefficients calculated by the ratio of

the standard deviation to the mean is less than 0.01.

Programs description input file memory requirement (MB) lifetime (s)
gcc optimized C compiler 166.i 145.0 218.7
gzip data compression input, graphic 197.4 248.7

vortex database lendianl.raw 115.0 342.3
vortex database lendian3.raw 131.2 398.0

Table 4.1: Execution performance and memory related data of the 3 benchmark programs.

4 .3 .2 P a g e R e p la c e m e n t B eh a v io r o f K e rn e l 2 .2 .1 4

The memory usage patterns of the three programs are plotted by memory-time graphs. In

the memory-time graph, the x axis represents the execution time sequence, and the y axis

represents three memory usage curves: the memory allocation demand (MAD), the resident

set size (RSS), and the number of accessed pages (NAP). The memory usage curves of the 3

benchmark programs measured by MAD, RSS, and NAP are presented in Figures 4.1 (gcc),

4.2 (gzip), and 4.3 (vortexl, which is vortex with input file of “lendianl.raw”). However,

we find that Linux kernel 2.2.14 still provides a high potential for interacting processes

to chaotically replace pages among themselves, significantly lowering CPU utilization and

causing thrashing if the page replacement continues under heavy load. To show this, we have

monitored executions and memory performance of several groups of multiple interacting

programs. To make the presentation easily understandable on how memory pages are

allocated among processes and their effects on CPU utilization, we only present the results of

running two benchmark programs together as a group. We present three program interaction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 105

groups: gzip+vortex3 (vortexS is vortex with input file of “lendian3.raw”), gcc+vortex3, and

vortexl+vortex3. The available user memory space was adjusted by the monitoring program

accordingly so tha t each interacting program had considerable performance degradation due

to 27% to 42% memory shortage. (The shortage ratios are calculated based on the maximum

memory requirements. In practice, the realistic memory shortage ratios are smaller due to

dynamically changing memory requirements of interacting programs.)

SPEC200G gcc

45000
MAD — *—
R S S — x—
NAP - O - - .40000

30000

25000

o 20000

= 15000

10000

150 200 2500 50

Execution time (second)

Figure 4.1: The memory performance of gcc in a dedicated environment.

® 40000

0.

I
| 30000

SPEC2000 gzip

100 1 50 200

Execution time (second)

MAD -
RS S -
NAP •

Figure 4.2: The memory performance of gzip in a dedicated environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 106

SPEC2000 vortex

35000
MAD — t-
RS S — x-
NAP - 0 -

30000

£ 20000

15000

5000

30050 100 150 200 250 4000
Execution time (second)

Figure 4.3: The memory performance of vortexl in a dedicated environment.

Figure 4.4 presents the memory usage behavior measured by MAD and RSS of interact

ing programs gzip (left figure) and vortex3 (right figure). After we added gzip to interact

with vortex3 at the 250th second, we observed tha t both their RSS curves are up and down

in most of the times. CPU utilization is lower than 50% during the interaction because both

processes were held in waiting list by page faults for the most time. Adding more processes

would worsen the case due to lack of free memory in the system. We found that at around

620th and around 780th second, gzip did get its working set and ran with a small number

of page faults. Unfortunately, it went back to chaotic competition after that period. The

measurement shows that the slowdown of gzip is 5.23, and is 3.85 for vortexS.

Figure 4.5 presents the memory usage behavior measured by MAD and RSS of inter

acting programs gcc (left figure) and vortex3 (right figure). For program vortex3, the RSS

curve suddenly dropped to about 14,000 pages after it reached to 26,870 pages, which was

caused by the memory competition of the partner program gcc. After that, the RSS curve

entered a fluctuating stage, causing a large number of page faults in each process to extend

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN MULTIPROGRAMM ING ENVIRO NM ENTS 107

gzip (input.graphic) in the interaction vortex (tendian3.raw) in the interaction

6 000)60000
MAD — t—
RS S — x—

MAD —
RSS — x ~

5000050000

«sfflo>
0.£•o
E

E
o

| 40000

30000 30000

£| 20000= 20000

1000010000

1000 1200 1400 16000 200 400 600 800 1000 1200 0 200 400 800

Execution time (second) Execution time (second)

Figure 4.4: The memory performance of gzip (left figure) and vortex3 (right figure) during the
interactions.

the first spike of gcc in the MAD and RSS curves to 865 seconds, and to extend a RSS stair

in vortex to 563 seconds. In this case the slowdown of program gcc is 5.61, and is 3.37 for

vortex.

gcc (166. i) in the interaction vortex (Iendian3.raw) in the interaction

50000
MAD — *—
R S S — 'x ~

45000

40000

35000

30000

25000

20000

10000

5000

0
14000 200 400 600 1000 1200

50000
MAD — *
RSS ~ >

45000

40000

35000

5>
30000C

i
| 25000

o

® 20000
E
3

Z
15000

10000

5000

0 200 400 600 800 1200 14001000

Execution time (second) Execution time (second)

Figure 4.5: The memory performance of gcc (left figure) and vortexS (right figure) during the
interactions.

Figure 4.6 presents the memory usage behavior measured by MAD and RSS of interact

ing programs vortex 1 (left figure) and vortex3 (right figure). Although the input files are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRO NM ENTS 108

vortex (lendianl.raw) in the in teracton vortex (iendianS.raw) in the interaction

40000 40000
MAD —
R S S — x—

MAD
RSS

35000 35000

30000 30000

25000 £ 25000

20000 20000

15000 15000

10000 10000

5000 5000

00 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Execution time (second) Execution time (second)

Figure 4.6: The memory performance of vortexl (left figure) and vortex3 (right figure) during the
interactions.

different, the memory access patterns of the two programs are the same. Our experiments

show that the RSS curves of both vortex programs changed similarly during the interac

tions. To favor memory utilization, NRU pages were allocated between the two processes

back and forth, causing low CPU utilization and poor system performance. After the RSS

curves of both programs reached about 22,000 pages, their MADs could not be reached due

to memory shortage. Our experiments again show that the execution times of both pro

grams were significantly increased due to the page faults in the interaction. The slowdown

for vortexl is 3.58, and is 3.33 for vortexS.

Our experiments indicate tha t although thrashing could be triggered by a brief, random

peak in memory demand of a workload, the system may continue thrashing for an unac-

ceptably prolonged time. To make a system more resilient against dynamically changing

virtual memory load, a dynamical protection mechanism is desirable instead of a brute-force

process stop, such as process suspension or even process removal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 109

4.4 The Design and Im plem entation of T PF

We propose to implement T PF as part of the page replacement for thrashing protection in

order to improve the system stability under a heavy load. The main idea of TPF is simple

and intuitive. Once the system detects high page fault rates and low CPU utilization caused

by multiple processes, T PF will identify a process and help it to quickly establish its working

set by temporarily granting a privilege to the process for its page replacement. W ith this

action, the CPU utilization quickly increases because at least one process is able to do

useful work. In addition, the memory space is expected to be released soon by the process

after its completion, so tha t the memory demands of other processes can be satisfied. We

have implemented T PF in the Linux kernel 2.2.14, which consists of two kernel utilities:

detection and protection routines.

The detection routine is used to dynamically monitor the page fault rate of each process

and the CPU utilization of the system. The protection routine will be awakened to con

duct priority-based page replacement when CPU utilization is lower than a predetermined

threshold, and when the page fault rates of more than one interacting process exceed a

threshold. The protection routine then grants a privilege to an identified process that will

only contribute a limited number of NRU pages. The identified process is the one that

has the smallest difference between its MAD and its RSS (the least memory demanding

process). The detection routine also monitors whether the identified process has lowered

its page fault rate to a certain degree. If so, its privilege will be disabled. This action will

retain memory utilization by treating each process equally.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 110

4 .4 .1 T h e d e te c t io n ro u tin e

There are four predetermined parameters in TPF:

1. CPU_Low: is the lowest CPU utilization the system can tolerate.

2. CPU_High: is the targeted CPU utilization for T PF to achieve.

3. PFJLow: is the targeted page fault rate 2 of the identified process for TPF to achieve.

4. PFJHigh: is the page fault rate threshold of a process to potentially cause thrashing.

We add one global linked list, highJPF_proc, in the kernel to record interacting processes

with high page fault rates. Once we find the current page fault of a process exceeds PF_High,

we will enter it in the linked list.

We have also added three new fields in taskstruct data structure for each process:

1. num_pf: the number of page faults detected recently;

2. start_time: the system time for the first page fault in the above “num-pf” page faults;

and

3. privilege: the process is granted the privilege (=1) or not (=0).

Here are the kernel operations to determine and manage the processes exceeding the

threshold page fault rates.

if (process p encounters page faults) {

if (p->num_pf == 0)

2In our experiments only those page faults that are revolved by loading pages from the swap files in
disk are counted, because they are the most appropriate factors to reflect the effect of memory shortage on
processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. THRASHING IN MULTIPROGRAMM ING ENVIRONM ENTS 111

p->start_time = current system time;

p->num_pf++;

if (p is not in the "high_PF_proc" list)

if (p->num_pf > high_PF) {

if (current system time -

p->start_time <= 1 second)

place p in high_PF_proc;

p->num_pf = 0;

}

}

We check the page fault rate of each process in the high_PF_proc list every second. If

a process’s page fault rate is lower than lowJPF, we will dynamically remove the process

from the list by the following operations:

if (length(high_PF_proc) >= 1) {

for each p in the list do {

if (current system time -

p->start_time >= 1 second) {

if (p->num_pf/(current system time

- p->start_time) < low_PF) {

if (p->privilege == 1)

p->privilege = 0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. THRASHING IN MULTIPROGRAMM ING ENVIRO NM ENTS 112

remove p from the list;

}

p->num_pf = 0;

p->start_time = current system time;

>

>

>

The CPU utilization is measured every second, based on the CPU idle time. Specifically,

we use (1— idle ratio) to represent the current CPU utilization, where the idle ratio is the

CPU time portion used for the idle processes in the last second. The current CPU utilization

is compared with CPU-Low to determine if the the system is experiencing an unacceptably

low CPU utilization. The protection routine is triggered when the following three conditions

are all true.

if ((CPU utilization < CPU_Low) &&

(length(high_PF_proc) >= 2) kk

(no process has been protected)) {

for all processes in high_PF_proc

select the least memory hungry p;

p->privilege = 1;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN MULTIPROGRAMMING ENVIRO N M ENTS 113

4.4.2 T h e p r o te c t io n ro u tin e

The privilege granting is implemented in a simple way in the kernel routine “swap_out”

presented in Section Chapter 4.3. The function swap_out.process(pbest, gfpjnask) will

reset its “swap_cnt” to 0 if, and only if, the system fails to get an NRU page from process

“pbest” , as we have showed in Chapter 4.3. A small modification in swap_out-process() will

make the privilege effective; tha t is, we reset its “swap_cnt” to 0 even if an NRU page is

obtained in the protected process. This will cause the protected process to provide at most

one NRU page in each examination loop on all swappable processes. Considering that a

large number of of NRU pages exist in the rest of the interacting processes, such a change

will effectively help the protected process build up its working set and reduce its page fault

rate. Once its page fault rate is lowered satisfactorily, the protected process will be removed

from the “highJPF_proc” list and loose its privilege.

4.4.3 S ta te transitions in th e system

The kernel memory management has the following three states with dynamic transitions:

1. normal state: In this state, no monitoring activities are conducted. The system deals

with page faults exactly as the original Linux kernel does. The system keeps track

of the number of page faults for each process and places the process with high page

fault rates in “highJPF_proc” .

2. monitoring state: In this state, the detection routine is awakened to start monitoring

the CPU utilization and the page fault rates of processes in the linked list. If the

protection condition is satisfied, the detection routine will select a qualified process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 114

CPU utilization < CPU_Low &&

CPU utilization> CPU_High

Figure 4.7: Dynamic transitions among normal, monitoring, and protection states in the improved
kernel system.

for protection and go to the protection state. The system returns to the normal state

when no more than one process’s page fault rate is as high as the predetermined

threshold.

3. protection state: The protection routine will make the selected process quickly estab

lish its working set. In the protection state, the detection routine keeps monitoring

the CPU utilization and the page fault rate of each process in the list. The detection

routine is deactivated and the protection state transfers to the monitoring state as

soon as the protected process becomes stable and/or the CPU utilization has been

sufficiently improved.

Figure 4.7 describes the dynamic transitions among the three states, which gives a complete

description of T PF facility. When the system is normal (no page faults occur), detection

and protection routines are not involved. As we have described in the implementation, the

algorithm only adds limited operations for each page fault and checks several system pa

rameters with the interval of one second. So, overhead involved for detection and protection

is trivial compared with the CPU overhead to deal with page faults.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAM M ING ENVIRONM ENTS 115

4.5 Performance M easurements and Analysis

4 .5 .1 O b serv a tio n and m ea su rem en ts o f T P F fa c ility

350000

j II without protection El with protection!' ̂ w ith o u t protection E3 with p ro tection |

300000

250000

g> 200000

O 150000

£ 100000

50000

gzip/vortex3 vo rtex3/gcc vortex1/vortex3 gzip/vortex3 vortex3/gcc vortex1/vortex3

Figure 4.8: The execution time comparisons (left figure) and comparisons of numbers of page faults
(right figure) for the three group of program interactions in the Linux without TPF and with TPF.

The predetermined threshold values are set as follows: CPU_Low = 40%, CPU-High =

80%, PF_High = 10 page faults/second, PF_Low = 1 page fault/ second. The performance

of T PF is experimentally evaluated by the three groups of the interacting programs. Each

of the experiments has the exactly same setting as its counterpart conducted in Chapter

4.3, except tha t the T PF is implemented in the kernel.

Figure 4.9 presents the memory usage measured by MAD and RSS of interacting pro

grams gzip (left figure) and vortexS (right figure) in the Linux with TPF. Figure 4.4 shows

that thrashing between processes started as soon as gzip joined the execution at the 250th

second without TPF. In contrast, Figure 4.9 shows that T PF quickly detected the problem

and went into the protection state. Because the RSS of vortexS is close to its MAD, it

was selected for protection. After the protection, its page fault rate was lowered with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 116

establishment of its working set. Then the protection was disabled to allow the NRU pages

of vortexS to be fully utilized. This is confirmed by the small gap between MAD and RSS,

which does not exist in the dedicated execution (see Figure 4.3). In the experiment we

observed tha t TPF had to come back and forth during the program interaction over 10

times to help vortexS establish working sets. This is because program vortex is not strong

enough to keep its established working set with the competition of gzip. Even for this type

of program, TPF demonstrates its effectiveness. The numbers of page faults and execution

time of vortex3 are reduced by 72% and 92%, respectively (see Figure 4.8).

gzip (input graphic) in th e interaction vortex (Iendian3.raw) in the interaction

6000060000
MAD
RSS

MAD — »
RSS — >

5000050000

t 40000 40000

3000030000

= 200005 20000

1000010000

700 800100 300 400 500 600100 200 300 400 500 600 800 00

Figure 4.9: The memory performance of gzip (left figure) and vortexS (right figure) during the
interactions in the Linux with TPF.

The performance improvement for gzip is also significant. Its number of page faults

and execution time are reduced by 72% and 64%, respectively. Intuitively, its performance

should have been degraded because it contributed more memory space to vortexS for build

ing up its working set enforced by TPF. But this is not the case for two reasons. First,

under the protection of TPF, vortexS had an early completion. Then gzip could run with

out memory competition and use CPU cycles solely. Second, under the protection of TPF,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMMING ENVIRO N M ENTS 117

vortexS could greatly reduce its page fault rate, which made gzip utilize most of the I/O

bandwidth and reduced page fault penalty.

Figure 4.10 presents the memory usage measured by MAD and RSS of interacting pro

grams gcc (left figure) and vortexS (right figure) in the Linux with TPF. At the 397th

second, memory demand from gcc rapidly rose, both programs started page faults due to

memory shortage. The thrashing significantly lowered CPU utilization, which triggered

TPF to take actions. Because gcc demanded memory gradually, and kept the gap between

MAD and RSS small, gcc was selected for protection on its rising slope of the first MAD

spike by TPF. The memory is dynamically allocated between two processes to ensure a

reasonable level of CPU utilization. The period for the system to stay in the protection

state is very limited, thus memory utilization is maintained. T PF successfully smoothed

out the peak in memory load th a t might otherwise have caused the system to thrash. Com

pared with the same run in the original Linux kernel, the execution times of programs gcc

and vortex3 are reduced by 69%, and 57% respectively; and the numbers of page faults of

programs gcc and vortexS are reduced by 99% and 87% respectively, (see Figure 4.8).

Figure 4.11 presents the memory usage measured by MAD and RSS of interacting pro

grams vortexl (left figure) and vortexS (right figure) in the Linux with TPF. During the

interactions at the execution time of 433th second, both programs started page faults due

to memory shortage. The program vortexl was then protected by TPF. We observed that

vortexl easily held its working set thereafter and only a small amount times of T PF in

volvement were needed. This is because vortexl and vortexS have similar memory access

rates and patterns. Thus once vortexl was given privilege to establish its working set, it

would keep the working set by frequently using it. In contrast to the performance seen in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRON M ENTS 118

gcc (166J) in th e interaction vortex (iendian3.raw) in the interaction

50000 50000
MAD
RS S

MAD — t
RS S — »

45000 45000

40000

35000K(DCT
?; 30000
c
0
e
| 25000

•5
® 20000 £

30000

25000

® 20000

3
Z

15000

10000

5000 5000

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Execution time (second) Execution time (second)

Figure 4.10: The memory performance of gcc (left figure) and vortexS (right figure) during the
interactions in the Linux with TPF.

Figure 4.6, a small correction from T PF could make a big difference in multiprogramming.

Compared with the same execution in the original Linux kernel, the execution times of

programs vortexl and vortexS are reduced by 46% and 42%, respectively; and the numbers

of page faults are reduced by 99% and 80% respectively, (see Figure 4.8).

vortex (lendianl.raw) in the interaction vortex (iendian3.raw) in the interaction

40000 40000
MAD
RSS

MAD
RSS

35000 35000

30000 30000

§
o
a£ 25000 25000

I£
(D£5

20000 £
o

SiI■g 15000
3
z

15000

Z

10000

5000

0 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900

Execution time (second) Execution time (second)

Figure 4.11: The memory performance of vortexl (left figure) and vortexS (right figure) in the
Linux with TPF.

Figure 4.12 compares the total execution times for the three groups of interacting pro

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAM M ING ENVIRONM ENTS 119

grams in Linux with and without TPF. We define the execution times of each pair programs

under the same multiprogramming condition with sufficient memory space as the the ideal

interaction execution time. Figure 4.12 shows tha t the total interacting execution times in

the Linux with TPF for the three groups are significantly smaller than those in the Linux

without TPF, and very close to the ideal execution times. These experiments also indicate

that T PF has little runtime overhead.

| a without protection 1 with protection □ ideal

gzip/vortex3 vortex3/gcc vortexl/vortex3

Figure 4.12: Comparison of total interaction execution times for the three group of program
interactions in the Linux with TPF, without TPF and the ideal interaction times.

4 .5 .2 E x p e r ie n c e s w ith T P F in th e m u ltip ro g r a m m in g en v iron m en t

1. Under what conditions, does thrashing happen in a multiprogramming environment?

Our experiments show that VMs in Linux can normally keep a reasonable CPU uti

lization even under an heavy workload, adapting the variance of memory demands,

access patterns and access rates of different processes. A process that can frequently

access its working set in execution interactions has a strong position for memory

space competitions during interactions. However, under the following three condi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 120

tions, thrashing can be triggered.

• The memory demands of one interacting program have unexpected “spikes” .

Case studies in Figure 4.4 and Figure 4.5 show such examples.

• The variance of memory demands, access patterns, and access rates of interacting

processes are similar. Case studies in Figure 4.6 show such examples.

• Serious memory shortage happens in the system.

2. For what cases is TPF most effective?

TPF is most effective in the first two cases discussed above. In other words, TPF

is able to quickly resolve the thrashing for interacting programs having dynamically

changing memory demands. We have shown that TPF is highly responsive to increase

the CPU utilization and to stop thrashing by adapting page replacement to memory

allocations. In addition, the scheduling action from TPF has little intervention to

the system and multiprogramming environment because the protection period is very

short, bu t is effective to lead the system back to normal.

3. For what cases is TPF ineffective ?

If the memory shortage problem is too serious in a multiprogramming environment,

the selected process may build up and hold its working set in memory at the cost

of obtaining most of the memory space of other processes. Although T PF can still

cause CPU cycles to be effectively utilized, the CPU overhead serving page faults

of other processes will significantly increase, and I/O channels may become heavily

loaded due to a large amount of page faults. As a result, the protected process will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 121

not run smoothly. Under such conditions, the load control has to be used to swap a

process for releasing memory space. W ith the support of TPF, load control facility

will be used only when it is truly necessary.

4. How do the threshold parameters affect the performance of TPF?

We summarize the relationships between the four threshold parameters (see Chapter

4.3.1) and effectiveness of TPF, and the memory performance of interacting programs.

Smaller values of parameters CPUJLow and PF_high will make TPF more responsive

to system thrashing. On the other hand, larger values of CPUJHigh and PF_Low

will make the identified process stay longer in the protection state after it enters the

state. Thus, adjusting these parameters is equivalent to changing the extent of T PF

intervention to the system. The parameters are set only based on system requirements,

not dependent on application program natures. For example, for systems with high

I/O bandwidths (e.g. parallel disk arrays), values of PF_High and PF_Low can be set

larger, because page faults can be resolved quickly. In our experiments we found that

the performance of TPF was quite stable within a large range of parameter values.

4.6 Related Work

Improvement of CPU and memory utilizations has been a fundamental consideration in the

design of operating systems. Extensive research on thrashing had been conducted in the

1960s and 1870s. Among the proposed policies the most influential one, which was able

to thoroughly protect against thrashing while keeping high CPU utilization, is working set

policy. Working set policy provides a solution at the page replacement level, similar to our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 122

policy.

4 .6 .1 T h e W ork in g S e t M o d e l an d its Im p le m e n ta tio n Issu es

Denning proposes a working set model [24], [26], and [27] to estimate the current memory

demand of a running program in the system. A working set of a program is a set of its

recently used pages. Specifically, at virtual time t, the program’s working set Wt(0), is

the subset of all pages of the program, which has been referenced in the previous 6 virtual

time units (working set window). The task’s virtual time is a measure of the duration the

program has control of the processor and is executing instructions. The working set model

ensures that the same program with the same input data would have the same locality

measurements, which is independent of the memory size, the multiprogramming level, and

the scheduler policy used. A working set policy is used to ensure no pages in the working set

of a running program will be replaced. Assume that priorities among the processes exist.

Once there is a request for free pages, but they are not available, the processes with the

lowest priority has to produce a victim page for replacement. This implies that an active

process with the lowest priority may not fully allocate its working set. Since the I/O time

caused by page faults is excluded in the working set model, the working set replacement

algorithm can theoretically eliminate the thrashing caused by chaotic memory competition.

Comparatively, other global policies like LRU approximations (two-handed clock, FIFO

with second chance) used in the currently popular UNIX-like operating system, are highly

susceptible to thrashing, because a program’s resident set depends on many factors besides

its own locality. Our experimental observations are consistent with the conclusions in the

cited work on working set models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 123

A major difficulty to implement the working set model in a modern computer system is

its implementation overhead scaling with the capacity of CPU and memory. The working set

model can be implemented by either hardware or software. The hardware approach requires

tha t each page frame be associated with a counter and an identifier register indicating

which process it belongs to. A broadcast clock pulse periodically increments the counter

of each page frame whose identifier register matches the memory domain of a running

process. When the running process refers to a page, the counter of that page frame is

automatically reset. When a counter is incremented over a pre-determined threshold value,

the corresponding page frame is no longer a member of the working set.

Compared with the approach of only associating a page-reference bit with each page

frame to support LRU related page replacement policies in Linux and Unix systems, an

implementation of the working set detector is more expensive. W ith the increase of CPU

speed and memory capacity, and with an increasing amount of memory-intensive workloads

in applications, the number of active pages owned by a process has dramatically increased,

which has become a major reason to limit such an implementation. In addition, since system

thrashing is considered as an exceptional event, it may be difficult to convince computer

vendors to provide a hardware support for the working set model. Instead, the computer

architects prefer to adopt some brute-force methods as exceptional handlers, such as to

release memory space by urgently removing some processes.

Implementing the working set detector by system software, we need routinely update a

software counter associated with each page frame. Since monitoring huge amount of page

frames is routine operations in memory management, it would affect the system performance

when the system functions normally.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN MULTIPROGRAMMING ENVIRO N M ENTS 124

Although there exist a number of good approximations, its implementation cost of the

working policy model may limit its direct usage in modem computer systems. However,

this model has given us several im portant motivations in memory system designs and im

plementations. First, being a local memory policy, working set policy has inherent load

control and need no special, additional mechanism to deal with thrashing. This certainly

save the cost of additional mechanism to stabilize global LRU policy. While built on global

replacement policy, TFP can protect the working set of a process, like temporarily under a

local memory policy to eliminate the thrashing. Second, working set policy employs “feed

forward control” , rather than “feedback control” , which means working set does not have to

react to thrashing, but avoid thrashing in advance. The instability resulted from feedback

of load control is greatly reduced by the TPF responsive action on the global policy.

implementations in existing system kernels, and guided by the principle of the working

set model, we propose the TPF, which is not part of the routine operations in memory

management, but is only triggered in an early stage of thrashing to effectively stop the

thrashing or significantly delay the load controls.

4 .6 .2 O th er R e la te d W ork

Studies of page replacement policies have a direct impact on memory utilization, which

have continued for several decades (e.g. a representative and early work in [1], and recent

work in [30, 67]). The goal of an optimal page replacement is to achieve efficient memory

usage by only replacing those pages not used in the near future when available memory is

not sufficient, reducing the number of page faults. In a single-programming environment,

these proposed methods address both concerns of CPU and memory utilization since any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRON M ENTS 125

extra page faults due to low memory utilization will make the CPU stall. However system

thrashing issue in a multiprogramming environment can not be fully addressed by the cited

work due to the conflicting interests between CPU and memory utilization.

In the multiprogramming context, existing systems mainly apply two methods to elim

inate thrashing. One is local replacement, another is load control. A local replacement

requires tha t the paging system select pages for a program only from its allocated memory

space when no free pages can be found in their memory allotments. Unlike a global replace

ment policy, a local policy needs a memory allocation scheme to satisfy the need of each

program. Two commonly used policies are equal and proportional allocations, which can

not capture dynamical changing memory demand of each program [38]. As a result, mem

ory space may not be well utilized. On the other hand, an allocation policy dynamically

adapting to the demand of individual programs will shift the scheme to global replacement.

VMS [41] is a representative operating system using a local replacement policy. Memory

is partitioned into multiple independent areas, each of which is localized to a collection of

processes tha t compete with one another for memory. Unfortunately, this scheme can be

difficult to administer [44]. Researchers and system practitioners seem to have agreed that

a local policy is not an effective solution for virtual memory management. Our TPF is built

on a global replacement policy.

The objective of load control is to lower the MPL by physically reducing the number of

interacting processes. A commonly used load control mechanism is to suspend/ reactivate

processes, even swapping ou t/in processes to free more memory space, when thrashing

is detected. The 4.4 BSD operating system[50], AIX system in the IBM RS/6000[32],

HP-UX 10.0 in HP 9000 [31] are examples that adopt this method. In addition, HP-UX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 126

system provides a “serializeQ” command to run the processes one at a time when thrashing

is detected. In contrast, TPF protects system from thrashing at the page replacement

level. Memory allocation scheduling at this level allows us to carefully consider the tradeoff

between CPU and memory utilizations.

In [35], we proposed another thrashing prevention mechanism called Token-ordered LRU,

which attem pts to prevent the occurrence of thrashing by eliminating false LR U pages. False

LRU pages are produced because of I/O penalties of page faults, rather than because of the

program access delays. Using a token to set a memory allocation priority, Token-ordered

LRU can effectively prevent thrashing and achieve a performance improvement similar to

the TPF.

4.7 Summary

We have investigated the risk of system thrashing in page replacement implementations

by examining the Linux kernel code of versions 2.0, 2.2, and 2.4, and running interacting

SPEC2000 benchmark programs in a Linux system. Our study indicates that this risk

is rooted in conflicting interests of requirements on CPU and memory utilizations in a

multiprogramming environment. We have experimentally observed several system thrashing

cases when processes dynamically and competitively demand memory allocations, which

causes low CPU utilization and long execution time delays, and eventually threatens system

stability.

We have proposed T PF and implemented it in the Linux kernel to prevent the system

from thrashing among interacting processes, and to improve the CPU utilization under

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. THRASHING IN M ULTIPROGRAMM ING ENVIRONM ENTS 127

heavy load. T PF will be awakened when the CPU utilization is lower than a predetermined

threshold, and when the page fault rates of more than one interacting processes exceed a

threshold. T PF then grants privilege to an identified process to limit its contributions of

NRU pages. We create a simple kernel monitoring routine in TPF to dynamically identify

an interacting process which highly deserves temporary protection. The routine also mon

itors whether the identified process has satisfactorily lowered its page fault rate after the

protection. If so, its privilege will be disabled to let it equally participate in contributing

NRU pages with other processes.

Conducting experiments and performance evaluation, we show that the T PF facility

can effectively provide thrashing protection without negative effects to overall system per

formance for three reasons: (1) the privilege is granted only when a thrashing problem is

detected; (2) although the protected process could lower the memory usage of the rest of

the interacting processes for a short period of time, the system will soon become stable by

the protection; and (3) TPF is simple to implement with little overhead in the Linux kernel.

Because the conflicting interests between CPU and memory utilization are inherent in global

page replacement, and our solution is targeted at regulating the conflicts through tuning

page replacement, we believe that the T PF idea is applicable to VMs of other UNIX-like

systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

M ulti-Level Buffer Cache

M anagement

In a large client/server cluster system, file blocks are cached in a multi-level storage hierar

chy: client buffer caches, multiple server buffer caches, and built-in caches of disks at the

bottom level. More and more applications rely on the hierarchy for their file accesses, so

the caching effectiveness of the hierarchy is im portant to the application performance.

5.1 Background

5 .1 .1 H ierarch ica l C ach in g an d i t s C h a llen g es

W ith the ever-widening gap between the speeds of processors and hard disks, practitioners

try to make a full use of the available buffer caches along a file block retrieving route for the

purpose of satisfying the requests before they reach disk surfaces. Besides the buffer caches

at clients, the requested blocks can also be cached at server buffer caches and disk built-in

caches, which form a multi-level buffer cache hierarchy (see Figure 5.1). For example, mod

ern high-end disk arrays typically have several gigabytes of cache RAM. Though multiple

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. M ULTI-LEVEL BUFFER CACHE M AN AG EM EN T 129

Client
Front -T ier Server End -T ier Server

Network

Client

H
Disk Array

Figure 5.1: Multi-level buffer cache hierarchy. Caches are distributed along the clients, intermediate
servers, and disk array, where accessed blocks can be buffered.

buffer resources are lined up and their aggregate size is increasingly large, the issue of how

to make them work together effectively to deliver the expected performance commensurate

to the aggregate size of the distributed buffer caches is still not well addressed. There are

two challenges related to this issue.

The first challenge comes from the weakened locality in the low level buffer caches1.

Caching works because of the existence of locality, which is an inherent property of applica

tion workloads. Only the first level buffer cache is exposed with the original locality and has

the highest potential to exploit it. Low level caches hold the misses from their upper level

buffer caches. In other words, the stream of access requests from applications is filtered by

the high level caches before it arrives at the low level ones. Thus the access stream seen

by low level caches has weaker locality than those available to the first level cache. The

performance of widely used recency-based replacements such as LRU can be significantly

degraded once these replacements are employed in the low level buffer caches. Muntz and

Honeyman [54] as well as Zhou et al [82] have observed the serious performance degradation

in their file server buffer cache studies. In a work to investigate the cost-effectiveness of

1By low level buffer caches, we customarily refer to the caches not close to the workload running clients.
Similarly, high levels of buffer caches are those close to the clients. Thus, the first level buffer cache is the
client buffer cache with the highest level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 5. MULTI-LEVEL BUFFER CACHE M AN AG EM EN T 130

disk built-in caches for desktop PCs, Zhu and Hu found that the built-in caches contribute

little more to the average response time reduction when its size exceeds 512KB with a client

cache size of 16MB [84]. The above cited work indicates applying a replacement indepen

dently at a low level buffer cache could lose its chance to exploit the original locality. This

motivates us to make replacement decisions based on the original access stream, which is

only available at the first level cache.

The second challenge comes from the undiscerning redundancy among levels of the buffer

caches. Redundancy means a block is cached and duplicated along its retrieving route in

more than one caches. W ithout a proper coordination among the levels, blocks could reside

undiscerningly in multiple buffer caches for a long period of time before they become cold

enough to be replaced by a local replacement algorithm. The redundancy can cause the

buffer cache hierarchy seriously under-utilized. Even if the aggregate size of the multi-level

buffer caches could hold the working set, the hierarchy would behave as if it were as big as

the single level of cache with the largest size under some access patterns. We propose to

use an unified replacement scheme for a multi-level cache hierarchy, which can determine

an appropriate place for a block to be cached (if it needs being cached). Thus undiscerning

redundancy can be eliminated. The hierarchy can perform as an unified cache with the size

equivalent to the aggregate size, so that all the cache spaces are fully utilized.

5 .1 .2 P o ss ib le S o lu tion s: C u sto m iz ed S eco n d -L ev e l R ep la cem e n t and th e

U n ified L R U

We have seen recent work on each of the two issues. Most of the work attacks the afore

mentioned challenges separately. Multi-Queue [82, 81] and unified LRU [76] are two repre

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 131

sentative work among them.

Multi-Queue(MQ) is a customized second-level replacement algorithm. To overcome

LRU’s inability with weak locality at the second level cache, MQ resorts to the frequency,

the number of access times of a block, to differentiate the locality of the accessed blocks.

For this purpose, they sets up multiple queues and uses access frequencies to determine

which queue a block should be in. Whenever the access frequency of a block accumulates

to a certain threshold, it moves up to a queue for high frequency blocks. Periodically,

blocks tha t are not accessed for a period of time are demoted into a queue for low frequency

blocks until they are finally replaced. By tracking and utilizing a deep access history,

MQ can achieve a higher hit ratio than LRU in a second-level cache. However, there are

two weakness in MQ when it is used to address the challenges in the multi-level caching

hierarchy. First, it inherits the disadvantages of frequency-based replacement algorithms

such as Least Frequency Used (LFU), which respond to the access pattern changes slowly,

and carry a high overhead. Second, because the clients own the original locality information

the lack of hints from clients greatly limits its potential of exploiting locality for high hit

ratio greatly limited.

Another solution was proposed by Wong and Wilkes [76] to eliminate the redundancy

simply apply an unified LRU scheme in a two-level buffer cache: client and disk array

built-in buffer caches. As it shows in Figure 5.2, there is an unified LRU stack. The first

portion of the LRU stack corresponds to the client cache, and the second portion of the

LRU stack corresponds to the disk array cache. Any blocks moving from the first portion

into the second portion due to the increased recency would incur a demotion, an operation

that transfers a block from the current level to its next low level cache. Since any recently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 132

N1

LI Hit

Demotion

N 2
L2 H it

Cache Miss

N1 LI Cache

L2 Cache

| U i S i s
"L"->

Unified LRU Stack Cache Hierarchy

Figure 5.2: In the two-level unified LRU scheme, there is an unified LRU stack corresponding to
the two level of caches. The size of each individual LRU stack, N 1 or N2 is equal to its respective
cache size in terms of blocks, there are three type of accesses: (1) a hit in the LI cache. (2) a hit
in the LI cache. (3) a miss in the two caches. If all the three cases, the accessed blocks are moved
to the top of the stack. Except the first case, the block at the bottom of LI LRU stack is demoted
onto the top of the L2 stack.

referenced blocks are brought into the top of LRU stack, all newly referenced blocks are

cached in the first level cache and slipped to the low level caches through demotions if

they are re-accessed. Though their scheme has an significant advantage over independent

replacements by eliminating redundancy, there are two critical weakness of the unified LRU

schemes. First, there is no explicit block placement arrangement adapting to their access

pattern. For a block requested by a client, it has be transfered to the client for its use.

However, this block is not necessarily to be cached there. For example, the block which is

not possible to be re-accessed soon should be quickly evicted from the client cache after its

use and may be cached at a low level cache or even not cached. By indiscriminately storing

all the accessed blocks, high level caches cannot serve the blocks with strong locality well.

Second, it could generate a large number of demotions because any access tha t is not a

hit in clients accompanied with a demotion. It has been shown that the benefits of cache

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. M ULTI-LEVEL BUFFER CACHE M ANAG EM ENT 133

coordinations can be nullified by the demotion cost once the I/O bandwidth is below a

certain threshold [14].

5 .1 .3 Our P r in c ip le s to A d d ress th e C h a llen g es

Our general approach to address the challenges includes two steps. At first, we propose

a new method to quantify locality strength of accessed blocks. Then we develop a mech

anism to layout the cached blocks along the cache hierarchy according their quantified

locality strength. To serve the purpose of block placement and replacement in multi-level

buffer caches, we have two requirements on the locality strength quantification method:

(1) distinction of locality strengths; and (2) stability of the distinction, which are also our

two principles to address the challenges. Regarding the distinction, if the algorithm can

accurately and responsively distinguish blocks with strong locality from those with weak

locality2, then the stronger the locality of blocks is, the higher level of cache they should

be placed in. The distinction of this hierarchical locality will make high levels of caches

contribute more to the hit ratios, which reduces the average access time because of their

low hit times. Since the arrangement of block caching positions is based on the distinction

of locality strengths, we need to re-arrange the blocks once the locality strengths change,

which means to transfer blocks among levels. This incurs a communication cost. Thus the

stability of the distinctions is critical to keep a low communication cost introduced by an

unified caching scheme.

Following these two principles, we propose a client-directed file block placement and

2By a block with strong locality, we mean it is highly likely to be referenced soon, and it contributes more
to the hit ratio by being cached than the one with weak locality. The strengths of locality are quantified
differently in different replacements, which we will discuss in the next section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. M ULTI-LEVEL BUFFER CACHE M AN AG EM EN T 134

replacement protocol, where non-uniform strengths of locality are dynamically identified at

the client level to direct file blocks being placed or replaced at different levels of buffer caches

accordingly. The effectiveness of our proposed protocol comes from achieving the following

three goals. (1) The multi-level cache retains the same hit ratio as that of a single level

cache whose size equals to the aggregate size of multi-level caches. (2) The non-uniform

locality strengths of blocks are fully exploited and ranked to fit into the physical multi-level

caches. (3) The communication overheads between caches are reduced.

5.2 Quantifying Non-uniform Locality Strengths in Hierar

chical Buffer Caching

5 .2 .1 M e th o d s to D is t in g u ish L o ca lity S tr e n g th s

Caching works because of the existence of locality. While spatial locality is mostly exploited

in increasing block sizes and prefetching, replacement algorithms usually depend on the

temporal locality to make re-accessed blocks hit in the cache. Belady first introduced the

concept of locality and recognized its importance in the context of memory systems [7].

W ith a temporal locality, if a block is referenced, it will tend to be referenced again soon.

Although there exists a clear description and an agreed intuitive understanding on the

notion, a common quantitative definition on locality is rarely seen in literature. However,

for the replacement purpose, each replacement algorithm has its own defined method to

quantify locality strengths and to make distinctions among them.

Suppose the block reference stream is {R t , t = 0,1, 2,...}, the block accessed at time t

is block(Rt), as is shown in Figure 5.3. The distance between two references Hi and Rj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M AN AG EM EN T 135

is the number of other distinct blocks accessed between time i and time j . Specifically,

if block (R^ — block (Rj) , the distance is called re-use distance of block(R. For example,

in a segment of reference stream denoted as blocks accessed, {...a, 6, c, 6, a...}, the re-use

distance of blocks a is 2 because there are two other distinct in-between blocks b and c. The

distance is also the distance between the positions of two accessed blocks in the LRU stack

[20], which is a list in which all accessed blocks are stored in the order of their references,

and any newly accessed block is moved to the top of stack. Though LRU stack was initially

used for the LRU replacement algorithm, it has been widely used to describe and study

various replacement algorithms, such as [37, 33, 67].

LRD- CRB-
- R D - — j—

Ri Rj Rk R1
Access Stream . . • I . . . I . . . | . . I

Accessed Block b b b

Figure 5.3: In access stream {R t,t = 0,1,2,...}, Ri, Rj, and Ri are three immediately consecutive
references to block b. The current time is k. With these timing points, there are various measure
ments that can be used to quantify the locality strength of block b at time k, including the distance
from R). to Ri), called OPT Distance (OD), the distance from Rj to Rk), called Recency Distance
(RD), the distance from Rj to Ri, called Current Re-use Distance (CRD), and the distance from
Ri to Rj, called Last Re-use Distance (LRD).

Here we do not consider the methods using frequency to estimate locality, because it

becomes irrelevant to the current locality when an access took place much earlier than the

recent accesses.

As an off-line optimal replacement, OPT, uses the distance between the current time

and the next reference to a block, to quantify the locality strength of the block. We call

the distance OPT distance (OD). Considering tha t the O PT replacement maximizes the

hit ratio for a given cache by selecting a block with the largest OD for replacement, OD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 136

provides the most accurate distinction of locality strengths among accessed blocks. The

LRU replacement takes the assumption tha t a block accessed recently will be accessed

again soon. Using the time of the last reference to a block to predict the time of its next

reference, the LRU algorithm uses Recency Distance (RD), which is the distance between

its last reference and the current time, to simulate the O PT Distance (OD). Both OD and

R are measured based on the current time, so they change with every reference to any block.

The quantified locality strengths with OD or R could be very dynamic. When the stability

of quantified locality strengths is of concern, it is unclear where a block should be cached

to reduce the communication cost.

In the unified LRU replacement [76], when a block slips down in the LRU stack with

the ongoing references, it may incur demotions once its recencies reach the its local LRU

stack size. Had it been known at what recency a block would be re-accessed when the

block was requested, we would have cached it directly on the level of cache corresponding

to tha t recency, thus the demotions could be avoided. This motivates us to use the distance

between last reference and next reference to a block, called Current Re-use Distance (CRD)

to quantify locality strengths. CRD is also the recency at which the block will be referenced

next time. After a block is accessed, its CRD will not change until its next reference. This

helps to stabilize the distinction of locality strengths. Because CRD represents a future

access timing, it is not collectible on-line. To simulate CRD in an on-line algorithm, we use

Last Re-use Distance (LRD), to simulate CRD (see Figure 5.3). LRD is also the recency

at which a block was accessed last time.

However, LRD could miss some most recent access information. The LRD of a block

does not count the recent references after the last reference to the block, which is reflected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 137

Current Block_
Position

Last Acceess _
Position

Next Acceess _
Position

RD

OD

LRD LR D -R D

CRD

LRU Stack

(a)

Last Acceess
Position -

Current Block.
Position

Next Acceess -
Position

T "RD
RD LRD-RD

CRD

OD

LRU Stack

(b)

Figure 5.4: In the LRU stack, for a given block, the position for the last access to the block
corresponds to its LRD, its current position in the stack corresponds to its RD, and the position for
its next access corresponds to its CRD. Before its current position exceeds its last access position
(see left figure (a)), LRD-RD is LRD; after that (see right figure (b)), LRD-RD becomes RD. This
allows LRD-RD to more accurately simulate CRD. The illustration also shows that RD and OD
change with every reference.

in its recency. To responsively capture the changes of locality scope (a hot block becomes

cold, or vice versa), we use the recency distance to take place of LRD once recency exceeds

LRD. That is, we use the larger of LRD and R to simulate CRD, called LRD-RD. All of

aforementioned locality strength measurements can be illustrated in the LRU stack shown

in Figure 5.4. We will develop of our caching protocol based on a data structure using the

LRU stack as a basis.

5 .2 .2 C om p arison s o f L o ca lity S tr e n g th Q u a n tifica tio n M e th o d s

Each of the four measures, OD, RD, CRD, and LRD-RD, is associated with a replacement

algorithm. A replacement algorithm works in the way that it has its accessed blocks ranked

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. M ULTI-LEVEL BUFFER CACHE M ANAG EM ENT 138

according to a certain measure, and selects the one with the least ranking for replacement

once a victim block is needed. For example, the measure used by OPT is OD and the

measure used by LRU is RD. How well a measure satisfies the two requirements on its ability

— distinction of locality strengths and the stability of the distinction, determines how well

the corresponding replacement algorithm serves as an unified replacement algorithm for a

multi-level cache hierarchy.

To understand and compare the two abilities of the measures, we use six small-scale

workload traces (cs, glim pse, z ip f, random, sprite, and m ulti) with representative access

patterns for the evaluation. The traces are briefly described in the following..

1. cs is an interactive C source program examination tool trace, which was collected

with about 9MB kernel sources as input.

2. glim pse is a text information retrieval utility trace. The search was conducted on

the text files of about 50MB and their index files of about 5MB.

3. zipf is a synthetic trace, in which only a few blocks are frequently accessed. Formally,

the probability of a reference to the ith block proportional to 1/i. The data set it

accessed is 39MB.

4. random is a synthetic trace with a spatially uniform distribution of references across

all the accessed blocks. The data set it accessed is 39MB.

5. sprite consists of requests to a file server from client workstations for a two-day period

in the Sprite network file system [4], which covers 28MB data set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. M ULTI-LEVEL BUFFER CACHE M AN AG EM EN T 139

6. m u lti is obtained by executing four workloads, cpp, gnuplot, glimpse, and postgres,

together, which covers up 29MB data set.

Among these traces, cs, glimpse are used in [18, 19, 33], sprite is used in [45, 33], m ulti

traces are used in [42, 33], and z ip f , random are used in [76] to evaluate the performance

of replacement algorithms. These traces represent the major access patterns common to

the I/O requests. Traces cs and glimpse have a looping access pattern, where all blocks are

regularly and repeatedly accessed. Trace sprite has a temporally-clustered access pattern,

where blocks accessed more recently are the ones more likely to be accessed soon. It is

an LRU-friendly pattern. The access pattern of trace random is common in database

applications. Zipf-like access patterns exhibited in trace z ip f are typical for file references

in Web servers. Trace m ulti has an access pattern mixed with sequential, looping and

probabilistic references.

For a given measure, each accessed block has a changing value. When there is a reference

to a block, the value of the block, and possibly the values of other blocks are changed. For

each measure we maintain an ascendingly ordered block list by their measure values. The

list is dynamically updated with each new block reference to maintain the order. In the

process there are block movements in the list. We divide the full length of each list into

ten segments of equal size. We collect the number of references to each segment to observe

the locality strength distinction. We also collect the block movements across each of the

segment boundaries to observe the stability of the distinctions when the list is updated

with references. For example, if the given measure is RD, the list is actually an LRU stack

with its size unbounded. Each of the ten segments represents a range of stack positions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 140

4?
CS GLIMPSE ZIPF RANDOM SPRITE

5
MULTI

□Segm ent
10

□Segm ent
9

@ Segment
8

B Segment
7

B Segment
6

B Segment
5

S3 Segment
4

■ Segm ent
3

B Segment
2

■ Segment
1

Figure 5.5: Reference ratios to each of the segments (the ratios between the number of references to
a segment and the number of all references in a workload). It also shows the accumulative reference
ratios for the first N segments in each workload, where N is 1 through 10.

with certain recencies. W hat we want to investigate is tha t positions of the stack where

references take place and the block movements in the stack for a given workload trace.

Figure 5.5 shows the reference ratio distributions in the list for each measure. Each of

the measures orders accessed blocks in its list and places the blocks with small values at

the head of the list (in the case of measure RD, it is the top of an LRU stack). A good

distinction of locality strengths should generate a reference ratio distribution with more hits

appearing in the head portion of the list than those in its tail portion. Assuming each of

the segments corresponds to a level of cache, we can observe the hit ratio on each level of

cache. From the figure we have the following observations:

(1) OD provides the best reference ratio distribution. The higher (closer to the list

head, and with a smaller segment number in Figure 5.5) a segment is, the higher reference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 141

ratio the segment achieves for OD. This reflects the strong ability of OD to accurately

make the distinction of locality strengths. Actually, the distribution generated by OD is

optimal considering optimality of the OPT algorithm. While high segments are mapped on

the high levels of caches, which have small hit times, such a distribution helps reduce the

average access time. In contrast, RD provides the worst distribution, though it attem pts

to simulate (predict) ND. This is specially apparent for the workload with a looping access

pattern: cs and glimpse. Most of their references go to the low segments (after Segment 9 in

cs, and after Segment 3 for glimpse). This indicates that even an unified LRU replacement

can hardly achieve high hit ratios until the aggregate cache size can hold all the accessed

blocks. RD only performs well on the workloads with an LRU-friendly access pattern, such

as sprite.

(2) CRD performs well for all the workloads with various access patterns. This reflects

its ability to make consistently accurate distinction. Except for trace random, LRD-RD

performs very closely to CRD, though it does not depend on the future knowledge. W ithout

looking ahead, all the on-line algorithms could perform the same as RANDOM replacement

for trace random at best, which randomly selects a block for replacement and has a hit

ratio proportional to the cache size. Both LRD-RD and RD obtain such a distribution for

the trace.

(3) For the two on-line measures, LRD-RD produces significantly better locality dis

tinctions than RD for workloads cs, glimpse, z ip f, and m ulti. For LRU-friendly workload

sprite, both R and LLD-R perform very well, and RD performs a little better than LRD-RD.

Figure 5.6 shows block movement ratios between the number of block movements across

each of the segment boundaries and the number of all references for each of the four mea-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M AN AG EM EN T 142

OD —s
CRD —■x-

LRD-RD

600 800 1000
List Position {# o f blocks)

ZIPF

40

35

_30

15 25H
S= 20
0)§̂

 15
O
o

“ 10

5

0

A

, \
\

X

RD - e -
OD

CRD —x—
LRD-RD

\ \

'a..

— . _______ b

-•X - - - - - _

_______ -X— \ ‘

...............— --*•................................* " — \
, > 1 1 i , ,

3000 4000 5000 6000 7000 8000 9000 10000
List Position (# of blocks)

SPRITE

RD -~e-
OD - a -

CRD - x -
LRD-RD

V .

2000 3000 4000 5000
List Position (# of blocks)

100

RD - a - OD
CRD - -x -

LRD-RD ~ * ~

a>
ca

I E

c
o
E
o
>
o5
o
o

CD

500 1500 2000 25001000
List Position (# o f blocks)

RANDOM

OD

LRD-RD

1000 2000 3000 4000 500 0 6000 7000 8000 9000 10000
List Position (# o f blocks)

MULT!

CRD
LRD-RD

§ 3 0

70001000 400 0 5000 60002000 3000
List Position (# of blocks)

Figure 5.6: Movement ratio curves showing the ratios between the number of block movements
across a segment boundary of the ordered lists and the number of total references for the four
measures: OD, RD, CRD, and LRD-RD on various workloads. It shows that there are two groups
of curves: OD and RD with high movement ratios, NRD and LRD-RD with low movement ratios.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 143

sures. For example, the first point from the left on a curve represents the ratio between the

number of times tha t the blocks cross the boundary between the first and second segments

and the number of all references. A small movement ratio means a high stability for the

distinction of locality strengths. When the segments are mapped to the levels of caches

and a boundary corresponds to the interface of two adjacent levels of caches, a movement

ratio determines the communication overhead in an unified caching. We have the following

observations in the figure:

(1) OD and RD have the highest movement ratios, which have been expected because

of their volatility. Comparatively, CRD and LRD-RD have much lower movement ratios.

(2) The ratio gaps between CRD (resp. LRD-RD) and OD (resp. RD) are especially

pronounced with the looping pattern trace glimpse. However, even for the LRU-friendly

workloads like sprite and z ip f , the gaps are still considerably large. This demonstrates

that an on-line unified caching based on LRD-RD promises a much smaller additional

communication cost than tha t based on RD.

(3) The ratios of LRD-RD are smaller than those of NLD in most cases.

OD RD CRD LRD-RD
Ability to distinguish

locality strengths strong weak strong strong
Stability of distinctions weak weak strong strong

On-line measures no yes no yes

Table 5.1: Comparisons of the four measures on locality strengths by comparing their abilities
to distinguish locality strengths, the stabilities of the distinctions, and if on-line measurements are
possible.

Table 5.1 summarizes the four measures distinguishing locality strengths, showing that

using LRD-RD is a desired basis to building an unified caching protocol.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 144

5.3 The Unified and Level-aware Caching (ULC) Protocol

5 .3 .1 A n E x e c u tiv e S u m m a ry

We have shown tha t the position of a block in the list ordered by LRD-RD provides a

strong hint for caching the block on a level corresponding to its list position, or not caching

it at all3. This also assures us tha t the block would still stay there with a high probability

when the block is accessed next time. Effectively using the hint, we propose a multi-level

buffer placement and replacement protocol, called Unified and Level-aware Caching (ULC)

protocol to exploit hierarchical locality. Based on the access patterns and available cache

sizes on each level, ULC running at the first level client dynamically ranks the accessed

blocks into levels Iq , L 2 , ..., and L out according to their LRD-RD positions, thus directing

them to be placed (cached) at level L \ cache, level L 2 cache, ..., or not cached at any levels at

the time of the retrieval, respectively. The size of the first level cache determines the number

of L i blocks, those with the smallest LRD-RD values, and the same correlation holds for

other levels of caches. Low level buffer caches are not responsible for extracting locality

from the filtered request stream presented to them any more. Every block request from the

high level buffer cache carries a level tag, so the low level caches only take their actions

accordingly. If the attached level tag matches its level number, this level will cache the

retrieved block. Otherwise, the block is discarded after the block is sent to its next upper

level cache. When the block positions need adjusting, the client sends block demotion

instructions to low level caches, which demand a block originally residing in a cache be

3 Those requested blocks that should not be cached in the first level cache are still brought into the client
for its use, but will not be cached there, i.e. these blocks will be quickly replaced from the client after the
reference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 145

demoted into its next low level cache. Our client-directed protocol attem pts to answer

the following questions in designing hierarchy caching algorithms: (1) how to exploit the

locality in the entire buffer cache hierarchy thoroughly and consistently; (2) how to make

the exploited locality usable by all buffer caches in the hierarchy; and (3) how to minimize

the overhead of the protocol.

5 .3 .2 A D e ta ile d D e sc r ip tio n

In Chapter 5.2.2 we have shown the LRD-RD measure is a promising basis on which to

build a multi-level caching protocol. However, an implementation of an algorithm exactly

based on LRD-RD ranking criterion will take at least O(logn) time, where n is the number

of distinct accessed blocks. This is the cost of block ordering. In order to develop an

efficient algorithm with the time complexity 0 (1), we transform the process to determine

the position of a block in an LRD-RD ordered list into two separate steps: (1) When a

block is accessed, its recency is 0, so its LRD-RD is LRD, which is the recency at which it

was just accessed. We use the LRD to determine in which segment the block will be cached

at the time of retrieval. (2) Once a block is assigned into a specific segment, we use RD to

determine its position in the segment. Each segment corresponds to a level of cache, and

the size of the segment is the same as tha t of the cache.

As is shown in Figure 5.7, the recently accessed blocks are maintained in an unified

LRU stack, simplified as uniLRU stack. These blocks could be cached in any level of buffer

caches, or even not cached4. For each level of buffer cache there is a yardstick block in

4In a protocol implementation, only some metadata, such as a block identifier and two statuses used in
the ULC protocol, are stored in the stack for each block, not the block itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. M ULTI-LEVEL BUFFER CACHE M ANAG EM ENT 146

uniLRUstack LRU3

Yardstick

Y1 ----1

Y2 •

Y3 -

10

©

©
(6)

H i

© ©
© © €1
© CP

©

o
□

L I block

L2 block

L3 block

Lout block

Figure 5.7: An example to show the data structure of ULC for a 3-level hierarchy. The blocks with
their recencies less than that of yardstick F3 are kept in uniLRUstack. The level status (Li, £ 2 or
£ 3) of a block is determined by its position between two yardsticks where it was accessed last time.
Its recency status (R\, R% or R$) is determined by its position between two yardsticks where it sits
currently. To decide which block should be replaced in each level, the blocks in the same level can
be viewed to be organized in a separate LRU stack (LRUi, LRU2 , or LRU3), and the bottom block
is for replacement.

uniLRU stack, which is the block cached in tha t level of cache and has the maximal recency

among blocks cached there. We call them Y\, Y2 , ...,Yn for level L \, L 2 , ..., Ln cache,

respectively. The size of uniLR U stack actually is determined by the position of Yn, the

last yardstick, which always sits in the bottom of uniLR U stack. Any blocks with recencies

larger than that of Yn will be removed from uniL R U stack and become L out blocks, which

are not cached in any level of caches. Only when a block gets accessed with the recency

between the recencies of Y - 1 and Yi does the block become Li block, which means it will

be cached in the level Li cache. All of blocks cached on the same level can be viewed as

a local LRU stack, called LRUi, where the order of blocks is determined by their recencies

in uniLRU stack and its size does not exceed the size of tha t level of cache. The block to

be replaced on level Li is the bottom block of stack LRUi. For the requested blocks tha t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. M ULTI-LEVEL BUFFER CACHE M AN AG EM EN T 147

are neither cached in L \ cache nor going to be cached there because their LRDs are larger

than the recency of Yi, we set up a small LRU stack called tem pLR U to temporarily store

these blocks, so tha t they can be quickly replaced from the L \ cache.

There are two structures for the buffer cache hierarchy. One is the single-client structure,

in which there is only one client connected to one server5, and another is the multi-client

structure, in which more than one clients share the same server, and blocks requested by

different clients are shared in the server. There are two additional challenges for the multi

client ULC protocol: (1) How to cache shared blocks in server buffer caches, which could

carry different level tags set by different clients. (2) How to allocate server cache buffers to

different clients.

5.3.2.1 T he Single-client ULC P rotocol

The single-client ULC algorithm runs at a client, which holds the first level cache. It has

the knowledge of the size of the buffer cache on each level. For each block in uniLR U stack ,

there are two associated statuses: level status and recency status. Level status indicates at

which level the block is cached, such as L \ 1 L 2 , ..., L n, or L out . When a block gets accessed,

we need to know its recency to determine its level status. The recency is actually its LRD.

It takes at least O (N) time to maintain the exact recency information for all blocks, where

N is the aggregate size of the buffer caches. Actually we only need to know the recencies

of whatever two yardsticks the recency lies in. Thus we maintain a recency status R4 for

each block, which means its recency is between the recencies of yardsticks Y ^ i and Yi (or

5Here we call the high level buffer cache, client, and low buffer cache, server, when we discuss two adjacent
levels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M AN AG EM EN T 148

just less than Yi if * is 1). The cost to maintain recency statuses is 0(1), which will be

explained.

Initially, if level Li is not full and the levels tha t are higher than it are full, any requested

Lout blocks get level status Li and reside in level Li. If all the caches are full, any blocks

accessed when they are not in uniLRU stack are given level status L out. There are two

circumstances for a block to be outside uniLR U stack. One is tha t the block is accessed

for the first time, another is that block has not been accessed for a long period of time so

tha t it leaves un iL R U stack from the bottom. For these blocks their level status is L out,

and recency status is R out-

We define an operation for yardsticks in uniL R U stack called Y ardStick Adjustm ent,

which moves a yardstick from the current yardstick block with level status Li in the direction

towards the stack top to the next block with level status L{. All the blocks it passes including

the current yardstick block change their recency status from Ri to Ri+\. When a yardstick

block changes its position in uniLRU stack, we need to conduct yardstick adjustment to

ensure the yardstick is on the block with correct recency status and with the largest recency

among the blocks on the level. Demoting a block into a low level cache is equivalent to

moving the bottom block of local stack LRUi into LRUi+\ , which is sorted on their recencies

in uniLRU stack. To place the block at the correct recency position in LRUi+i, we define

another operation for a demoted block called D em otionSearching, which searches in the

direction towards the stack bottom in uniLRU stack for next block with a higher level

status.

There are two types of requests in ULC, which are sent from the client to the low level

caches to coordinate various levels of caches to work under an unified caching algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 149

1. Retrieve(h ,i,j) (i > j)■ retrieve block b from level Li, and cache it on level L j when

it passes level Lj on its way to level L\.

2. Demote(fr,*, j) (i < j): demote block b from level Li into level Lj.

If there is a reference to block b w ith level status Li and recency status Rj, there are

only two cases we need to deal with: i = j and i > j . The case i < j is not possible because

block b is demoted to level Lj+i before j is larger than i. When block b is referenced, it is

moved to the top of uniLR U stack and its recency status becomes R i. This also makes it

stay in the top of stack LRUi. If i > 1, block b goes to stack tem pLRU in the client and is

going to be replaced soon from the client cache. Then for each of the two cases, we act as

follows: (1) i = j . Block b remains in its current level of cache with the same level status

(Retrieve(6, i, i)). (2) i > j . Because block b will be moved from level Li and cached at level

Lj (Retrieve(6, i , j)) , a space needs to be freed at level Lj. We demote the yardstick block

Yj to its next low level cache, whose yardstick block may have to be demoted in turn if its

status level is higher than L*. Yardstick adjustment and demotion searching are conducted

here.

5.3.2.2 T he M ulti-client ULC P rotoco l

When there are multiple clients sharing one server, the cache buffers in the server are no

longer solely used by one client. In the single client ULC protocol, the number of the

blocks with level status Li (also called Li blocks), or the size of stack LRUi, is determined

by the size of level L, cache. If the buffers at level Li are shared by multiple clients,

an allocation policy is needed on level Li for the performance of the entire system. To

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAGEM ENT 150

r~9~
v
eT

8

cd
©
CD

11

g >
18

ClS

LRUI LRU2\

uniLRUstack

oo

□ Lout block gLRU ^

&
CD
CD
CD
LRUI

uniLRUstack

CD
C D

:i9,
(is)
Jt7,

>

<E> C2)
<S>
“CD <ClD>
CD Server <22>
<D CD
CD CD

CD

(a)

gLRU

(b)

Figure 5.8: An example to explain how a requested block is cached in the server cache, and how
the allocation scheme adjusts the size of the server cache used by various clients in a multi-client
two-level caching structure. Originally in (a) server stack gLRU holds all the L2 blocks from clients
1 and 2, which are also in their LRU2 stacks, respectively. Then block 9 is accessed in client 1.
Because block 9 is between yardstick Tj and Y2 in its uniLRUstack, it turns into L2 block and
needs to be cached in the server. Because the server cache is full, the bottom block of gLRU, block
14, is replaced, which will be notified to its owner, client 2, through a piggyback on the next retrieved
block going to client 2 (delayed notification). After the server buffers re-allocation (b), the size of
server cache for client 1 is increased by 1 and that for client 2 is decreased by 1. So the clients and
the server cooperate to make the server cache efficiently allocated with the aim of high performance
for the entire system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. M ULTI-LEVEL BUFFER CACHE M AN AG EM EN T 151

obtain best performance, it is known that allocation should follow the dynamic partition

principle: each client should be allocated a number of cache blocks that varies dynamically

in accordance with its working set size. Experience has shown tha t global LRU performs

well by approximating the dynamic partition principle [11]. Thus we use a global LRU stack

called gLRU in the server to facilitate the allocation operation. The block order in gLRU

is determined by the block recencies, which are determined by the timings of requests from

clients requiring a block be cached in the server. The bottom block of gLRU is the one to

be replaced when a free buffer is needed. For each block in gLRU we record its owner —

the client most recently requesting the block be cached in this server. A block is cached

on the highest level among all the clients’ direction. If there is only one client, the bottom

block of gLRU is always the yardstick block Yi in uniLRU stack, and also is the bottom

block of stack LRUi in the client. Because the server cache buffer is shared among the

clients, the bottom block of LRUi could have been replaced in the server. If this is the case,

it is equivalent to shrinking the cache size of the server dedicated to the client. So when

a block is replaced from gLRU, a message is sent to its owner client so tha t a yardstick

adjustment can occur there. Correspondingly, the size of LRUi is decreased by one. The

owner notifications of block replacements can be delayed until the next requested block is

sent to its owner client without affecting its correctness. Then they are piggybacked on the

next retrieved block, thus saving extra messages. Figure 5.8 shows an example to illustrate

the multi-client case. By dynamically adjusting yardsticks of affected clients based on the

information provided by the allocation policy, we have a ULC algorithm in clients allowing

low level caches to change their sizes dynamically. The changing sizes are the results of the

allocation policy with the aim of high performance for the entire system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. M ULTI-LEVEL BUFFER CACHE M AN A G EM E N T 152

5.4 Performance Evaluation

This section presents our trace-driven simulation results. We compare ULC with two other

multi-client caching schemes: independent LRU, simplified as indLRU , which is a com

monly used scheme, and unified LRU, simplified as uniLR U , an LRU-based unified caching

protocol[76].

5 .4 .1 P er fo rm a n ce M etr ic

We use average block access time, Tave, to evaluate the performance of various protocols.

This metric measures the average time required to access a block perceived by applications.

The access time is determined by the hit ratios and miss penalties at different levels of the

caching hierarchy, as well as other communication costs. Generally, we can estimate Tave

for an n-level cache hierarchy as follows. T^ue — ^ —-j hjT^ T hmiss'Fm + Tdemotion where

hi is the hit ratio at level Li cache, T{ is the time it takes to access the cache at level Li,

hmiss is the miss ratio for the cache hierarchy (equivalent to 1 — X^=i)) Tm is the cost

for the miss, and Tdemotion is the demotion cost for block placements required by an unified

replacement protocol. If we assume the demotion cost for a block from level Li to Li+i is

Tdi, and the demotion rate between level Li and Lj+i is hdi, then Tdemotion = Tdihdi-

We do not consider the situation where demotions are delayed, thus their costs could be

hidden from applications, for two reasons: (1) Demotions are highly possible to occur in a

bursting fashion, especially for an LRU-based unified replacement, where 50%, even around

90% of the references incur demotions. A small number of dedicated buffers have difficulty

in buffering the delayed blocks, thus its performance is unpredictable. (2) Reserving a large

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 153

number of buffers for delayed demotions actually reduces the cache size and would hurt the

hit ratios.

Specifically, for a two-level client-server cache hierarchy, the average access time is as

follows: Tave — hcTc + hsTs + (1 — hc — hs)Tm + hc_ sTc_s where hc and hs are the hit ratios

for the client and server respectively, Tc and Ts are the costs for a hit in the client and

server respectively, and Tm is the cost for a miss in the server. If the disk access time for

a block is Tm can be regarded as Ts + hc- s is the demotion rate between the client

and the server. Tc_s is the cost for a demotion. We assume Tc « 0, the demotion cost Tc_s

is approximated as the server hit time Ts. Then Tave « hsTs -f- (1 — hc — hs)T j + hc- sTs.

5 .4 .2 S im u la tio n E n v iro n m en t

We use trace-driven simulation for the evaluation. Our simulator tracks the statuses of all

accessed blocks, monitors the requests and hits seen at each cache level, and the demotions

at each level boundary. We assume 8 KB cache block. We use seven large-scale traces to

drive the simulator, including two synthetic traces: random and z ip f and five other real-

life workload traces. We have described the two synthetic traces in Chapter 5.2. Here we

significantly increase the scale of these two traces: random accesses 65536 unique blocks

with a 512MB data set. It contains about 65M block references, z ip f accesses 98304 unique

blocks with a 768MB data set. It contains about 98M block references. The three real-life

traces used for the single-client simulation are described as follows:

1. h ttpd was collected on a 7-node parallel web-server for 24 hours. [71], The size of

the data set served was 524 MB which is stored in 13,457 files. A total of about 1.5M

HTTP requests are served, delivering over 36 GB of data. We aggregate the seven

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 154

request streams into a single stream in the order of the request times for the single

client structure study.

2. d e v l is an I/O trace collected over 15 consecutive days on a Redhat Linux 6.2 desktop

[13]. It contains text editor, compiler, IDE, browser, email, and desktop environment

usage. It has around 100K references. The size of the data set it accessed is around

600M.

3. tp c c l is also an I/O trace collected while running the TPC-C database benchmark

with 20 warehouses on Postgres 7.1.2 with Redhat Linux 7.1 [13]. It has around 3.9M

references. The data set size is around 256M.

We also select three traces for multi-client simulation. One of them is the original httpd

trace with seven access streams, each for one client. The other two multi-client traces are

as follows:

1. o p en m ail was collected on a production e-mail system running the HP OpenMail

application for 25,700 users, 9,800 of whom were active during the hour-long trace

[76]. The system has 6 HP 9000 K580 servers running HP-UX 10.20. The size of the

data set accessed by all six clients is 18.6G.

2. db2 was collected by an 8 node IBM SP2 system running an IBM DB2 database that

performed join, set and aggregation operations for 7,688 seconds [71]. The total data

set size is 5.2GB and it is stored in 831 files.

For all the simulation experiments, we use the first one tenth of block references in the

traces to warm the system before the measurements were collected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 155

5 .4 .3 C om p ar ison s o f M u lt i- le v e l S ch em es in a T h r e e -le v e l S tru ctu re

To demonstrate the ability of multi-level caching schemes (ULC, indLRU, and uniLRU) to

make distinctions of locality strengths as well as the ability to keep their stability, we test

them in a three-level caching hierarchy for the five single client traces, simulating a scenario

where the block transfer route consists of a client, a server and its disk array containing a

large RAM cache. For a common local network environment, we assume the cost to transfer

an 8KB block between the client and the server through LAN is lm s, the cost between the

server and the RAM cache in the disk array through SAN is 0.2ms, and the cost of a block

from a disk into its cache is 10ms [76]. We assume the cache sizes of the client, the server,

and the disk array are 100MB each for traces random, z ipf , httpd, and dev 1, and the cache

sizes are 50MB each for trace tpccl due to its comparatively small data set. We report the

hit ratios in each of the three levels, demotion rates on each boundary, and average access

time for each workload with the three multi-level caching schemes in Figure 5.9.

Confirming the experimental results in [76], we observe tha t there are significant per

formance improvements of uniLRU over indLRU for all the five traces, from 17% to 80%

reduction on average access time (see the third graph). Actually these are the results of two

combined effects of uniLRU: (1) increasing the cache hit ratios; (2) generating additional

demotion cost. UniLRU eliminates the redundancy in the hierarchy, making the low levels

of caches contribute to the hit ratio just as if they stayed in the first level. For example, in

a random access pattern, the contribution of a cache to the hit ratio should be proportional

to its size. However, the second and third levels of caches gain much lower hit ratios (1.7%

and 0.3% respectively) than tha t of first level cache (19.5%) for trace random in indLRU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. M ULTI-LEVEL BUFFER CACHE M ANAG EM ENT 156

Hit Ratio Breakdown
for Each Multi-Level Caching Scheme

100
90
80

5? 70
0 60
to 50
Ql 40
I 30

20
10
0

^ ^ Ci ^ ^ C i ^ C i $ $ Ci $ $ Ci//V //V //V /> v ,//&G
RANDOM TPCC1

Demotion Ratios
at Each Boundary for the Unified Caching Schemes

0 L1-L2 Demotion (uniLRU)
S L2-L3 Demotion (uniLRU)
■L1-L2 Demotion (ULC)
012-13 Demotion (ULC)

r
|1 0
h« 0 (0 0
®0
0 c
< 6
x0
0 4
a

1 0

Average Access Time Breakdown
for Each Multi-Level Caching Scheme

0 Demotion Cost

iMiss Penalty

■ L3 Hit Time

0 L2 Hit Time

/ / £
RANDOM ZIPF

/ /V ̂ ^ 0 f / f
HTTPD DEVI

/ /
TPCC1

Figure 5.9: hit ratios in each of the three levels, demotion rates at each of two boundaries (between
LI and L2, and between L2 and L3 cache), and average access time for each workload with the multi
level caching schemes indLRU, uniLRU and ULC.

(see the first graph). The unified replacement scheme uniLRU makes the low levels of caches

much better utilized. Their hit ratios (19.6% and 19.5% respectively) are almost the same

as that of first level cache (19.5%). However this improvement comes with a considerably

high price: high demotion rates. For example, in trace random uniLRU has a first bound

ary demotion rate 80.5%, which means 80.5% of block references accompany “write-backs”

to the server. Furthermore, it has a 60.9% demotion rate at the second boundary (see the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. M ULTI-LEVEL BUFFER CACHE M ANAG EM ENT 157

second graph). The worst case for the demotion rates of uniLRU is trace tpccl, which has a

looping access pattern. Its first boundary demotion rate is 100%! This is because uniLRU

has little power to predict the level where an accessed block will be accessed. For a looping

access pattern, blocks are accessed at a large recency equal to the loop distance, which

implies almost all the blocks of tpccl are accessed after they are demoted into the second

level of cache. So the hit ratio of the second level cache is very high (92.5%) and 44.7%

of the average access time is spent on the demotion. According to the requirement on the

ability of distinguishing locality strengths for a multi-level caching scheme, the distribution

that the level L \ hit ratio (0.03%) is much less than the L 2 hit ratio (92.5%) under uniLRU

shows a bad case.

Compared with uniLRU, ULC protocol has an access-time-aware hit ratio distribution

along the levels of caches: more hits appearing on upper levels. For example, the hit ratios

of the level L 2 , and L3 are 50.3%, 45.1%, and 3.4%, respectively for trace tpccl. And

such a distribution is achieved without paying high costs of demotions. For example, the two

boundary demotion rates of tpccl are 1.4% and 1.3%, respectively (see the second graph).

It is also shown tha t ULC has significant demotion rate reductions over uniLRU for all 5

traces. This explains why the proportion of demotion cost in the average access time for

ULC is much smaller (from 1% to 8.3% with an average of 4.1%) than tha t for uniLRU

(from 12.6% to 44.7% with an average of 21.5%) (see the third graph).

The access time breakdowns also show that ULC still performs significantly better than

uniLRU except for trace random, even if we assume the demotions could be moved off the

critical path for response time. Actually this is an unrealistic assumption. The experiments

on the client-server system running a TPC-C benchmark show that demotions can signif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 158

icantly delay the network and lower the system throughput [14]. In summary, our ULC

achieves from 11% to 71% reduction on average access time with an average of 34.6% over

that of uniLRU.

5 .4 .4 T h e P erfo rm a n ce Im p lic a tio n o f S y s te m P a ra m e ters

To be widely applicable, a caching scheme should consistently deliver improved performance

over existing schemes with a large range of system parameters such as cache size and network

bandwidth. For the convenience of observing and comparing performance differences of the

schemes in this study, we choose the client-server structure, a two-level cache hierarchy to

present our results. For the two-level hierarchy evaluation, we include Multi-Queue (MQ).

In a client-server caching hierarchy, the environment that MQ is designed for, we use MQ

in the server and use LRU in the client independently. There is a parameter in the MQ

replacement, called lifeT im e , which determines the speed to decay the frequency of an

in-accessed block. Because this param eter is workload dependent, we run each trace for

multiple sample li fe T im e values in the range suggested in [79], and report the best results

of these runs. For this client-server structure, we set the time to retrieve an 8K block from

the server, Ts, as 0.4 ms, and the average disk access time, T^, for an 8K block is 10 ms.

Due to the space constraints we only report the results for one synthetic trace, z ip f , and

two real-life traces, httpd and dev 1. The results for other traces are consistent with those

presented here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 159

ZIPF
2

ULC
uniLRU

MQ
indLRU

1.5

1

0.5

0
500200 300

Server Cache Size (MB)
4000 100

HTTPD DEV1

uniLRl
M(

indLRl

£ X x .

£y-
uj
W

8<
gi
2<5
I

0.5

250 300100 150
Server Cache Size (MB)

200

10

S 6

 ■*.
-a,

x . 'X, ULC -
uniLRU -

MQ -
indLRU -

0 50 100 150 200 250 300 350 400 450
Server Cache Size (MB)

Figure 5.10: The average access times for schemes ULC, uniLRU, MQ and indLRU with various
server cache sizes. The client cache size is fixed. It is 256MB for z i p f , and 128MB for httpd and
dev 1.

5.4.4.1 The Im pact o f Server Cache Size

Figure 5.10 shows the average access time for each workload as the server cache size changes

for all the four caching schemes: ULC, uniLRU, MQ, and indLRU. An observation for the

indLRU hit ratio curves is tha t there is a segment of flat curve for each workload with

small server cache sizes. These curves start to drop when the server cache sizes approach

the client cache size. This demonstrates the serious under-utilization of the server cache

under indLRU due to the redundancy and locality filtering effect. T hat is, under indLRU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M AN AG EM EN T 160

a relatively small server cache unfortunately has little contribution to the reduction of the

average access time in a system with a large client cache size. This is consistent with

the study in [84], which suggests increasingly large built-in disk cache help little with a

comparatively large file system buffer cache under two independent LRU replacements.

However, such an observation does not exist for all the other three schemes, which achieve

better performance than indLRU for all the workloads.

It is shown tha t for most of the cases, the performance of uniLRU is better than tha t of

MQ, though MQ does not have demotion costs. This reflects the merit of unified caching

scheme - elimination of data redundancy. It is also shown that the performance gains of

uniLRU over MQ are increased with the increase of server cache size. Our study shows that

this is because MQ relies more on the reference frequencies to make replacement decision

when the cache size becomes large. Thus MQ becomes less responsive to react to the

changing access patterns, and less effective than LRU-based schemes with large server cache

sizes. For all the traces ULC achieves the best performance, steadily decreasing the access

time with the increase of server cache sizes. Its high hit ratios and low demotion rates are

the two major contribution factors.

5.4.4.2 T he Im pact o f C lient Cache Size

Figure 5.11 shows the average access time for each workload as the client cache size changes.

It is shown that uniLRU benefits much more from the added client cache size than indLRU

and MQ. This is because increasing client size has negative effects for indLRU and MQ:

more data redundancies in indLRU and weaker locality available for MQ in the server. An

unified caching scheme is immune from these effects. However, the performance of uniLRU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 161

ZiPF

0.5

200
Server Cache Size (MB)

250 300 350100 150

DEV1HTTPD

0.5

300200 250250 100 150150 200100

ULC -
uniLRU e -

MQ
indLRU

ULC
uniLRU - e -

MQ - x -
indLRU -•••*-

ULC
uniLRU —b—

MQ —x—
indLRU

Client Cache Size (MB) Server Cache Size (MB)

Figure 5.11: The average access times for schemes ULC, uniLRU, MQ and indLRU with various
client cache sizes. The server cache size is fixed. It is 200MB for z ip f and dev 1, and 150MB for
httpd.

is worse than th a t of MQ with small client cache sizes for z ip f and dev 1. Here is the

explanation. The smaller the client cache size is, the more requested blocks are retrieved

from outside of the client. In uniLRU every block brought from outside of the client incurs a

demotion. Small client caches cause large demotion costs, which increase the access time in

uniLRU. Though ULC is also an unified caching scheme, it maintains its best performance

in the whole range of client cache sizes because of its accurate block placement decisions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MULTI-LEVEL BUFFER CACHE M ANAGEM ENT 162

ZIPF

4r
3 . 5 ■

3 •

e 2 . 5 1
F

<
3:1 1 c Io 1 .5 •
2

 ̂ 1

0 . 5 ■

0 •

ULC -
uniLRU -

MQ -
indLRU -

 x------

...-a-'

0 . 5 1 . 5 2
Server Cache Size (MB)

2 . 5

DEV1

3 -

2 . 5 •

a 2 -

1 .5 -

0 . 5 -

ULC
uniLRU --a—

MQ - x -
indLRU

 X-----

0 . 5 1 1 .5 2
Transfer Time for a Blxk (ms)

2 . 5

ULC —i
uniLRU —t

MQ -)
indLRU —12 ■

£f-
o
o<
05
2d)
I

3 . 50 . 5 2 . 5
Server Cache Size (MB)

Figure 5.12: The average access times for schemes ULC, uniLRU, MQ and indLRU with various
block transfer times. The client and server cache sizes are fixed, and are 100MB each for all the
workloads.

5.4.4.3 T he Im pact o f N etw ork B andw idth

Figure 5.12 shows the average access time for each workload as we change the 8KB block

transfer time. It is expected that the increase of transfer time has a more seriously nega

tive effect for unified schemes than for independent schemes, because the former have the

additional demotion costs determined by the transfer time. We see the average access time

of uniLRU does increase more quickly than those of indLRU and MQ. However, with low

demotion rates, ULC have the similar impact from the increase of transfer time as indLRU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. M ULTI-LEVEL BUFFER CACHE M ANAG EM ENT 163

and MQ do, even less impact for trace z ip f because of the contribution of transfer time to

the miss penalty and its much reduced miss ratios.

5 .4 .5 C om p ar ison s o f C ach in g S ch em es for M u lt i-c lie n t W ork loads

HTTPD
4.5

ULC - » -
uniLRU ••• * -

MQ - x -
indLRU

3.5

£ ' 'a . . .
©
£i-
©o

©
qj
(6©
I

0.5

100 120 140
Server Cache Size (MB)

OPENMAIL DB2
9

ULC ™*~
uniLRU ~ a ~ -

MQ - x -
indLRU -

8

7
In

©E
 ̂ 5to©

o

3 4
©

09

I
2

0
70002000 3000 4000

Server Cache Size (MB)
5000 60000 1000

<
©
3 4

— u ------- -e——
* *

~"-e.
"-X -.

ULC -
uniLRU —a—

MQ —x—
indLRU -* -•

500 1000 1500 2000 2500 3000 3500
Server Cache Size (MB)

Figure 5.13: The average access times of multi-client traces httpd, openmail, and db2 with various
server cache sizes. Among them httpd is with 7 clients, openmail is with 6 clients, and db2 is with
8 clients. Each client contains 8MB, 1 G B , or 256MB respectively.

Because the performance of uniLRU scheme can significantly deteriorate due to buffer

competition and data sharing among clients for the multi-client structure, Wong and Wilkes

also proposed two adaptive cache insertion policies to supplement their primitive scheme

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. M ULTI-LEVEL BUFFER CACHE M AN A G EM E N T 164

[76]. Among their three multi-client traces httpd, openmail, and dh2, httpd is the one with

data sharing. While they did not state which version of their unified LRU schemes should

be used for a specific workload, we ran all the versions and report the best results for

comparisons.

Figure 5.13 shows tha t for all the workloads ULC achieves the best performance. For

most of the time, indLRU has the worst performance. However, there are two cases where

indLRU beats uniLRU or MQ. One case is MQ with large server cache sizes for trace httpd.

When server cache sizes become large enough, LRU’s inability of dealing with weak locality

becomes less destructive. However, as a frequency-based replacement, MQ’s shortcoming

of slowness to respond to pattern changes becomes obtrusive. Another case is uniLRU

with small cache sizes for trace db2. This is because db2 contains looping access patterns.

LRU is not effective on a workload with this pattern until all blocks in the looping scopes

can be held in the cache. Carefully examining detailed experiment reports indicates that

both indLRU and uniLRU achieve very low hit ratios (6.9% and 7.9%, respectively for the

two levels of caches, compared with tha t of MQ (12.3%) and tha t of ULC (35.1%). Thus

it is the large demotion cost of uniLRU (with an average demotion rate 88.6% for the 8

clients, compared with tha t of ULC (7.2%)) that makes the difference. W ith the increase

of the cache size, some looping scopes are covered by the combined two-level caches, but

not by a single level, which explains why the performance of uniLRU starts exceeding that

of indLRU when the server cache size reaches 1GB. However, the performance of uniLRU

is worse than tha t of MQ because of its looping access pattern. For the traces httpd and

openmail, uniLRU beats MQ by eliminating data redundancy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. M ULTI-LEVEL BUFFER CACHE M AN AG EM EN T

5.5 Related Work and Discussions

165

Addressing the challenges of replacements in buffer caching hierarchy, researchers have

mainly tried these two approaches: (1) re-designing low level cache replacement; (2) ex

tending existing replacement into an unified hierarchy replacement through coordination.

The MQ algorithm [82] is a representative of the first approach. However, without the

coordination with clients, the performance potential of MQ is significantly constrained.

Since LRU is commonly used in software managed buffer caches due to their simplicity and

adaptability, Wong and Wilkes [76] propose a protocol to integrate two-level buffer cache

hierarchy into a single, large unified cache based on “demotion” operations, and manage it

using LRU. Their goal is to effectively utilize the built-in cache in RAID, so the network

they assumed is high speed SAN. To reduce the possible network bottleneck caused by

demotions in a database client and storage server system, Chen et al [14] even proposed to

re-load evicted blocks from disks rather than from clients. Our technique deals with the

reduction of demotions by effectively utilizing history access patterns.

Jiang and Zhang [33] propose the LIRS replacement algorithm to address the perfor

mance degradation of LRU on workloads with weak localities. They use a LIRS stack to

track the recencies of accessed blocks. The blocks with small recencies at which they get

accessed, are kept in the cache. This single-level cache replacement motivates us to investi

gate if the last locality distance, LLD, can be effectively used to exploit hierarchical locality,

so that blocks with different locality strengths can be arranged into correct cache levels.

The work on cooperative caching [23, 66, 74] is to coordinate the buffer caches of many

client machines distributed on a LAN to form a fourth level in the network file system’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 166

cache hierarchy. Besides local cache, server cache, server disk, data can also be cached

in another client’s cache. Some associated issues include idle cache availability, consistent

sharing. Our ULC protocol is intended for the conventional file buffer cache hierarchy, while

the characterization of non-uniform locality is expected to enhance the effectiveness of data

placements in the cooperative caching.

As far as the cache hierarchy between processor and memory is considered, the in

teraction of replacements at various levels and its performance implication do not pose a

problem. Multi-level inclusivity between L \, L 2 , --Ln cache could be accepted as a principle

to simplify the cache coherence protocol [3]. This is because a lower level cache is more than

ten times larger than its upper level cache. W ith this large difference, the size reductions

of useful caches due to data redundancy have only limited negative performance impact on

the low level caches. In contrast, the sizes of buffer caches in the hierarchy do not follow

this regularity: a client buffer cache could even be larger than the second level cache.

We assume ULC works in a trusted environment. Though it is a client-directed protocol,

ULC does not increase the vulnerability of servers. This is because even with independent

caching schemes, a client still has the opportunity to abuse server buffers by sending extra

requests to servers to keep its blocks in the server.

The underlying algorithms on almost all the existing file systems are LRU or its variants.

ULC basically inherits their data structure - LRU stack. The operation costs associated

with the stacks are 0(1) time with each reference request. Regarding space cost used for the

stacks, we need 17 bytes (8 bytes for file identifier and block offset, 8 bytes for two pointers

in a double linked list, and 1 byte for statuses) for a block in the client, which only represents

0.2% of an 8 Kbytes block. The m etadata in the shared server cache needs additional one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MULTI-LEVEL BUFFER CACHE M ANAG EM ENT 167

or two bytes for recording block owner. The stack sizes on other levels except the first one

are determined by their cache sizes. Thus a server with a 1GB cache only uses 2.2MB for its

metadata. The first level cache has to hold uniLR U stack, whose actual size is determined

by the working set size of applications running on the client. The relatively cold blocks

(with low level statuses) can be trimmed from the stack without compromising the ULC

locality distinction ability if needed to save space cost. For example, an 8.5MB m etadata

in the client can support a workload working set up to 4GB. This is highly affordable in a

system endeavoring for improved file I/O performance through large caches.

5.6 S um m ary

An effective caching scheme for multi-level cache hierarchy is important to the performance

of applications because increasingly more applications rely on the hierarchy for their file ac

cesses. After carefully investigating the non-uniform locality strength quantifications in the

representative file access patterns, we propose the ULC caching protocol. Compared with

the commonly used independent LRU scheme and the other recently proposed schemes, the

ULC protocol shows its distinguished performance merits: (1) It consistently and signifi

cantly reduce average block access time perceived by applications; (2) It can be implemented

efficiently with 0 (1) time complexity with only a few stack operations associated with a

reference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

This dissertation has provided solutions to address several im portant memory management

issues aiming a t reducing disk accesses: general-purpose replacement algorithms, virtual

memory replacement policies, thrashing prevention, and multi-level buffer cache manage

ment. The proposed solutions are based on the extensive application behavior characteriza

tion and accurate access locality quantification. These solutions cover both process virtual

memory accesses and file data accesses in program execution, both page replacement for

a single program and for multiple running programs, and both buffer cache in a single

computer and multi-level buffer caches in a distributed system. Each proposed algorithm

or scheme has been extensively evaluated using either driven-driven simulations or system

implementations to demonstrate its effectiveness and practical value. Using the techniques

together will comprehensively enhance the system performance with memory-intensive and

I/O-intensive applications, and make the system more robust in face of dynamical memory

accesses.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. CONCLUSIONS AND FUTURE W O RK 169

6.1 General-Purpose Replacement Algorithm s

LRU replacement algorithm has been commonly used in file systems, data base systems,

storage systems and in numerous other applications. It has been successful in general due

to its good performance in most cases and its low cost. However, it is also well known

for LRU to be incapable with the access patterns of weak locality such as scan and loop

accesses. Because of its im portant role in today’s computing, the negative implication of

LRU’s performance inability cases would be high. Thus, it is understandable that there are

so much research work still focusing on improving LRU performance.

Motivated by the limitations of previous studies, we propose the Low Inter-reference

Recency Set (LIRS) replacement policy. LIRS effectively addresses the limitations of LRU

by using recency to evaluate Inter-Reference Recency (IRR) for making a replacement deci

sion. This is in contrast to what LRU does: directly using recency to predict next reference

timing. LIRS dynamically and responsively distinguishes low IRR (LIR) blocks from high

IRR (HIR) blocks, and keep LIR blocks in cache. Compared with LRU, LIRS does not

directly use recency to make a replacement decision, but uses it to determine LIR or HIR

status of a block. At the same time, LIRS almost retains the same simple assumption of

LRU to predict future access behavior of blocks. The only additional assumption of LIRS

is there is correlation between consecutive IRRs of a block. It also does not rely on any

detectable regularities.

Performance evaluations with a variety of traces and a wide range of cache sizes show

that LIRS effectively addresses the limitations of LRU, retains the low-cost merit of LRU,

and outperforms those replacement policies relying on the access regularity detections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. CONCLUSIONS AND FU TURE W O RK 170

In the dissertation, we follow the convention of the replacement algorithm study to use

only hit ratio as a performance metric. However, in practical systems the correlation be

tween the hit ratio increase and application performance improvement is more complicated

than being linear. For example, a number of misses on a set of pages consecutively residing

on the disk would cause a penalty of almost the same of a single miss because of the property

of hard disks. On the other hand, the same number of misses on a set of pages scattered

on the disk will cost much more than the sequential case. Taking the ultimate application

performance into consideration could significantly affect the design and evaluation of re

placement algorithms. As a future work, we will use the more performance-relevant metrics

such as average block access time in our replacement algorithm study. We expect this will

make the research in the area play a more im portant role in the system design.

6.2 Low Cost Virtual M emory Replacem ent Algorithms

The low cost requirement of virtual memory (VM) management make the research of low-

cost approximations of general-purpose replacement algorithms a necessity. However, this

is not easy considering that only very limited history access information can be used to

maintain a low cost. This explains why the CLOCK, a replacement policy developed at

least 35 years ago. still dominates almost all the today’s systems.

While pure LRU has an unaffordable cost in VM, CLOCK simulates LRU replacement

algorithm with a low cost acceptable in VM management. Over the last three decades,

the inability of LRU as well as CLOCK to handle weak locality accesses is getting serious,

and an effective fix on it becomes increasingly demanding. However, almost all the major

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. CONCLUSIONS AND FUTURE W O RK 171

improved replacement algorithms are built on LRU and have a cost at least equivalent to

the LRU cost.

Inspired by the general-purpose replacement algorithm, LIRS [33], we propose an en

hanced CLOCK replacement policy, called CLOCK-Pro. By additionally keeping track of a

limited number of replaced pages, CLOCK-Pro works in a similar fashion as CLOCK with

a VM-affordable cost. In the meanwhile, it brings all the much-needed performance advan

tages from LIRS into CLOCK. CLOCK-Pro also eliminates the only tunable parameter in

LIRS and makes itself a policy adapting to the changing access locality to serve a broad

spectrum of workloads. Extensive simulation experiments on real-life I/O and VM traces

show significant and consistent performance improvements. We believe that CLOCK-Pro

would be very attractive to the VM system designers in industry.

The potential performance advantages of CLOCK-Pro can only be fully demonstrated

through real system implementation. As a future work, we plan to continue our efforts to

make CLOCK-Pro practically and efficiently run on Linux systems, where some system-

specific issues will arise, such as how to keep track of the replaced pages in memory, how

to coordinate replacement decisions with individual process access behaviors in a global

memory replacement policy. Because the memory management is a complicated portion

in an operating system and the replacement codes are heavily coupled with other parts

of the memory management in Linux, there will be a number of technical challenges to

be addressed. Our objective is to make CLOCK-Pro be widely used in the main stream

operating systems in both commercial and open source communities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. CONCLUSIONS AND FU TURE W ORK 172

6.3 Thrashing Prevention

Operating system designers attem pt to keep high CPU utilization by maintaining an optimal

multiprogramming level (MPL). Although running more processes makes it less likely to

leave the CPU idle, too many processes adversely incur serious memory competition, and

even introduce thrashing, which eventually lowers CPU utilization. A common practice to

address the problem is to lower the MPL with the aid of process swapping ou t/in operations.

This approach is expensive and is only used when the system begins serious thrashing. The

objective of our study is to provide highly responsive and cost-effective thrashing protection

by adaptively conducting priority page replacement in a timely manner.

We have designed a dynamic system Thrashing Protection Facility (TPF) in the system

kernel. Once T PF detects system thrashing, one of the active processes will be identified for

protection. The identified process will have a short period of privilege in which it does not

contribute its LRU pages for removal so tha t the process can quickly establish its working

set, improving the CPU utilization. W ith the support of TPF, thrashing can be eliminated

in its early stage by adaptive page replacement, so that process swapping will be avoided

or delayed until it is truly necessary.

We have implemented T P F in a Linux kernel. Compared with the original Linux page

replacement, We show tha t T PF consistently and significantly reduces page faults and the

execution time of each individual job in several groups of interacting SPEC2000 programs.

We also show tha t TPF introduces little additional overhead to program executions, and

its implementation in Linux (or Unix) systems is easy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. CONCLUSIONS AND FUTURE W O RK 173

6.4 M ulti-Level Buffer Cache M anagement

In a large client/ server cluster system, file blocks are cached in a multi-level storage hi

erarchy: client buffer caches, multiple server buffer caches, and built-in caches of disks at

the bottom level. Existing file block placement and replacement are either conducted at

each level of the hierarchy independently, or by applying an LRU policy on more than one

levels. One major limitation of these schemes is tha t hierarchical locality of file blocks

with non-uniform strengths is ignored, resulting in many unnecessary block misses, or ad

ditional communication overhead, even when the aggregate size of multi-level buffer caches

is sufficiently large to hold the working set. To address this limitation, we propose a client-

directed, coordinated file block placement and replacement protocol, where the non-uniform

strengths of locality are dynamically identified on the client level to direct servers on placing

or replacing file blocks accordingly on different levels of the buffer caches. In other words,

the locality of block accesses dynamically matches the caching layout of the blocks in the

hierarchy. The effectiveness of our proposed protocol comes from achieving the following

three goals: (1) The multi-level cache retains the same hit rate as tha t of a single level cache

whose size equals to the aggregate size of multi-level caches. (2) The non-uniform locality

strengths of blocks are fully exploited and ranked to fit into the physical multi-level caches.

(3) The communication overheads between caches are also reduced.

Conducting simulations with a variety of synthetic and real-life traces, and with a wide

range of system parameters, we show our caching protocol significantly and consistently

outperforms existing multi-level caching schemes.

In the work of cooperative caching [23, 66, 74], there are schemes to coordinate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. CONCLUSIONS AND FU TURE W O RK 174

buffer caches of many client machines distributed on a LAN to form a fourth level in the

network file system’s cache hierarchy. Because of the heterogeneity of the working sets of

applications running on each client, possibly as well as the memory at each client, If we

allow memory space sharing at the level of clients, we can reduce the workloads on servers

and further increase the performance of applications with large working sets. One of the

challenges with the design is that how to set the priority of memory allocations on a client

to local applications and to applications running on other clients. We plan to look into

these technical issues on cooperative caching in distributed environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A . V . A h o , P . J . D e n n in g , a n d J . D . U l lm a n . P rincip les o f optim al page replace
m ent. Journal of ACM, 18(1):80—93, 1971.

[2] G . A lm s i, C. C a s c a v a l , a n d D. A. P a d u a . Calculating stack distances efficiently.
In Proceedings of the workshop on Memory system performance, pages 37-43, 2004.

[3] J.-L . BAER AND W .-H. W ang. On the inclusion properties for multi-level cache hier
archies. In Proceedings of Annual International Symposium on Computer Architecture,
pages 73-80, 1988.

[4] M. G. B a k e r , J . H. H a r tm a n , M. D. K u p f e r , K.W . S h i r r i f f , a n d J . K.
OUSTERHOUT. Measurements of a distributed file system. In Proceedings of Symposium
on Operating System Principles, pages 198-212, 1991.

[5] R. B a la s u b r a m o n ia n , D. A lb o n e s i , A. B u y u k t o s , a n d S. D w a r k a d a s . Dy
namic memory hierarchy performance and energy optimization. In Proceedings of A n
nual International Symposium on Computer Architecture, pages 245-257, 2000.

[6] S. B a n s a l a n d D. M o d h a . CAR: Clock with adaptive replacement. In Proceedings
of the 3nd USENIX Symposium on File and Storage Technologies, 2004.

[7] L . A . B e l a d y . A stu d y o f replacem ent algorithm s for v irtual storage. IB M System
Journal, 5(2):78-101 , 1966.

[8] L. A. B e l a d y , R . A. N e l s o n , a n d G . S . S h e d l e r . An anomaly in space-time
characteristics of certain programs running in a paging machine. Communication of
the ACM, 12(6):349-353, 1969.

[9] B. T. B e n n e t t a n d V . J. K r u s k a l . Lru stack processing. IB M Journal of Research
and Development, pages 353-357, 1975.

[10] K . B e y l s a n d E . H . D ’H o l l a n d e r . R euse d istance-based cache hint selection . In
Proceedings of IN TERNATIO NAL CONFERENCE ON PARALLEL PROCESSING,
pages 265-274 , 2002.

[11] P . C a o , E . W. F e l t e n , a n d K. Li. Application-controlled file caching policies. In
Proceedings of USENIX Summer Technical Conference, pages 171-182, 1994.

[12] R. W . C a r r . Virtual Memory Management. UMI Research Press, 1984.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIO G RAPH Y 176

[13] T r a c e D i s t r i b u t i o n C e n t e r , http://tds.cs.byu.edu. B righam Young University.

[14] Z. C h e n , Y . Z h o u , a n d K. Li. E viction-based p lacem ent for storage caches. In
Proceedings o f Annual USENIX Technical Conference, 2003.

[15] T . M . C h ilim b i. E fficient representations and ab straction s for quantifying and ex
p lo iting d a ta reference locality . In Proceedings of the AC M SIG PLAN conference on
Programming language design and implementation (PLDI), pages 191-202 , 2001.

[16] T . M . C h ilim b i. O n th e sta b ility o f tem poral data reference profiles. In Proceedings of
International Conference on Parallel Architectures and Compilation Techniques, 2001.

[17] T . M . C h ilim b i a n d M . H ir z e l . D ynam ic hot d a ta stream prefetching for general-
purpose program s. In Proceedings of the AC M SIG PLAN conference on Programming
language design and implementation (PLDI), pages 199-209 , 2002.

[18] J . CHOI, S . N o h , S . M in , AND Y . C h o . Towards ap p lica tion /file -leve l characteriza
tion o f block references: A case for fine-grained buffer m anagem ent. In Proceedings of
Annual USENIX Technical Conference, pages 286-295 , 2000.

[19] J . C h o i, S . M in S. N o h , a n d Y . C h o . A n im p lem en tation stu d y o f a detection-
based adaptive b lock replacem ent schem e. In Proceedings of Annual USENIX Technical
Conference, pages 2 3 9 -2 5 2 , 1999.

[20] E. G. C o f f m a n a n d P . J . D e n n in g . Operating Systems Theory. Prentice-Hall, 1973.

[21] F . J . C o r b a t o J . A p agin g experim ent w ith the M ultics system . In In Honor of Philip
Morse, H. Feschbach, and U. Ingard, pages 217-228. M IT P ress, 1969.

[22] S t o r a g e P e r f o r m a n c e C o u n c i l . I /O Traces from a Popular Search Engine.
h t tp : / / w w w .storageperform an ce. org.

[23] M . D . D a h l in , R. Y . W a n g , T . E . A n d e r s o n , a n d D . A . P a t t e r s o n . C oop
erative caching: U sin g rem ote client m em ory to im prove file sy stem perform ance. In
Symposium on Operating System Design and Implementation, p ages 267-280 , 1994.

[24] P . J . DENNING. T h e w orking set m od el for program behavior. Communications of the
ACM, 11 (5) :323—333, 1968.

[25] P . J . D e n n in g . V irtu a l m em ory. Computer Survey, 2(3): 153—189, 1970.

[26] P . J. DENNING. W orking sets past and present. IEEE Transactions Software Engi
neering, 6 (l):6 4 -8 4 , 1980.

[27] P . J . DENNING. Before m em ory was v irtual. In The Beginning: Personal Recollections
of Software Pioneers. IE E E P ress, 1997.

[28] C . DlNG AND Y . Z h o n g . P red ictin g w hole-program loca lity through reuse d istan ce
analysis. In Proceedings of the AC M SIG PLAN conference on Programming language
design and implementation (PLDI), pages 245-257 , 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://tds.cs.byu.edu
http://www.storageperformance

BIBLIO G RAPH Y 177

[29] G . G la s s . Adaptive page replacement. Master’s thesis, University of Wisconsin, 1997.

[30] G. G la s s a n d P. G a o . Adaptive page replacement based on memory reference be
havior. In Proceedings of A C M SIG M ETRICS Conference on Measuring and Modeling
of Computer Systems, pages 115-126, 1997.

[31] HP Corporation. HP-UX 10.0 Memory Management White Paper, 1995.

[32] IBM Corporation. A IX Versions 3.2 and 4 Performance Tuning Guide, 1996.

[33] S. J ia n g a n d X . Z h a n g . LIRS: An efficient low inter-reference recency set replace
ment policy to improve buffer cache performance. In Proceedings of ACM SIGM ET
RICS Conference on Measuring and Modeling of Computer Systems, pages 31-42, 2002.

[34] S. J ia n g a n d X . Z h a n g . TPF: a system thrashing protection facility. Software -
Practice and Experience, 32(3):295—318, 2002.

[35] S. J ia n g a n d X . Z h a n g . Token-ordered LRU: An efficient page replacement pol
icy and implementation for program interactions. In Special Issue on Performance
Modeling and Evaluation of High-Performance Parallel and Distributed Systems in
Performance Evaluation: An International Journal, 2004.

[36] S. J ia n g a n d X . Z h a n g . ULC: A file block placement and replacement protocol to
effectively exploit hierarchical locality in multi-level buffer caches. In Proceedings of
International Conference on Distributed Computing Systems (ICDCS), pages 168-177,
2004.

[37] T . J o h n s o n a n d D. S h a s h a . 2Q: A low overhead h igh perform ance buffer m anage
m ent replacem ent algorithm . In Proceedings of the International Conference on VLDB
Surveys, pages 439 -450 , 1994.

[38] E. G. C o f f m a n J r . a n d T. A. R y a n . A study of storage partitioning using a
mathematical model of locality. Communications of the ACM, 15(3):185-190, 1972.

[39] S . F . K a p la n , L. A . M c G e o c h , a n d M . F . C o l e . A d ap tive caching for dem and
prepaging. In Proceedings of the third Internation Symposium on Memory Management,
pages 114-126, 2002.

[40] S. F. K a p la n , Y. S m a r a g d a k is , a n d P. R. W ils o n . Trace reduction for virtual
memory simulations. In Proceedings of AC M SIG M ETRICS Conference on Measuring
and Modeling of Computer Systems, pages 47-58, 1999.

[41] L. J. K e n a h a n d S. F. B a t e . VA X /V M S Internals and Data Structures. Digital
Press, 1984.

[42] J. Kim , J. C h o i, J. K im , S. N o h , S. M in , Y. C h o , a n d C. K im . A low-overhead,
high-performance unified buffer management scheme tha t exploits sequential and loop
ing references. In Symposium on Operating System Design and Implementation, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B IBLIO G RAPH Y 178

[43] Y. H . K im , M. D. H i l l , a n d D. A. WOOD. Implementing stack simulation for
highly-associative memories. In Proceedings o f AC M SIGM ETRICS Conference on
Measuring and Modeling of Computer Systems, pages 212-213, 1991.

[44] E. D. L a z o w s k a a n d J. M. K e l s e y . Notes on tuning VAX/VMS. Technical report,
Univ. of Washington, Dept, of Computer Science, 1978.

[45] D . L e e , J . C h o i, J . K im , S. N o n , S. M in , Y . C h o , a n d C . K im . On the existence
of a spectrum of policies that subsumes the least recently used (lru) and least frequently
used (lfu) policies. In Proceedings of AC M SIG M ETRICS Conference on Measuring
and Modeling of Computer Systems, pages 134-143 , 1999.

[46] R. L. M a t t s o n , J . G e c s e i , D. R. S l u t z , a n d I. L. T r a i g e r . Evaluation techniques
for storage hierarchies. IBM System Journal, 9(2):78—117, 1970.

[47] S. M a x w e l l . Linux Core Kernel Commentary. CoriolisOpen Press, 1999.

[48] S. McFARLING. Cache replacement with dynamic exclusion. In Proceedings of Annual
International Symposium on Computer Architecture, pages 191-200, 1992.

[49] K. S. M c K in le y a n d O. T em am . Quantifying loop nest locality using spee’95 and
the perfect benchmarks. In AC M Transactions on Computer Systems, pages 288-336,
1999.

[50] M. K. M c K u s ic k , K. B o s t i c , M. J. K a r e l s , a n d J . S. Q u a r t e r m a n . The Design
and Implementation of the 4-4 BSD Operating System. Addison Wesley, 1996.

[51] N . MEGIDDO AND D . M o d h a . ARC: a self-tun ing, low overhead replacem ent cache.
In Proceedings of the 3nd USENIX Symposium on File and Storage Technologies, 2003.

[52] R . T . M i l l s , A. S t a t h o p o u l o s , a n d D . N i k o l o p o u l o s . Adapting to memory
pressure from within scientific applications on multiprogrammed COWs. In Proceedings
of International Parallel and Distributed Processing Symposium, 2004.

[53] T . C. M o w r y , A. K. D e m k e , a n d O .K r ie g e r . Automatic compiler-inserted i/o
prefetching for out-of-core application. In Symposium on Operating System Design and
Implementation, pages 297-306, 1993.

[54] D. M u n t z AND P. HONEYMAN. Multi-level caching in distributed file system - or -
your caching ain’t nuthin’ but trash. In Proceeding of the USENIX Winter Technical
Conference, 1992.

[55] V . F . N i c o l a , A. D a n , a n d D . M . D ia s . Analysis of the generalized Clock buffer
replacement scheme for database transaction processing. In Proceedings of A CM SIG
M ETRIC S Conference on Measuring and Modeling of Computer Systems, pages 35-46,
1992.

[56] D. NIKOLOPOULOS. Malleable memory mapping: User-level control of memory bounds
for effective program adaptation, dimitrios s.nikolopoulos. In Proceedings of Interna
tional Parallel and Distributed Processing Symposium, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIO G RAPH Y 179

[57] E . J . O ’N e i l , P . E . O ’N e i l , a n d G . W e ik u m . T h e lru-k page replacem ent algorithm
for database disk buffering. In Proceedings of AC M SIGMOD Conference, pages 2 9 7 -
306, 1993.

[58] C. N . PARKINSON. Parkinson’s Law or the Pursuit of Progress. World Scientific
Publishing Co, 1994.

[59] R. H. P a t t e r s o n , G. A. G ib s o n , E. G in t in g , D. S t o d o l s k y , a n d J. Z e le n k a .
Informed prefetching and caching. In Proceedings of Symposium on Operating System
Principles, pages 1-16, 1995.

[60] J . L. P e t e r s o n AND A. S i l b e r s c h a t z . Operating System Concepts. Addison Wesley,
1985.

[61] F. PETRINI, D. K e r b y s o n , AND S. PAKIN. The case of the missing supercomputer
performance: Achieving optimal performance on the 8,192 processors of asci q. In
Proceedings of international Supercomputing 2003 Conference, 2003.

[62] V. P h a l k e a n d B. G o p in a th . An inter-reference gap model for temporal locality in
program behavior. In Proceedings of AC M SIG M ETRICS Conference on Measuring
and Modeling of Computer Systems, pages 291-300, 1995.

[63] B. G. P r i e v e a n d R.S. F a b r y . Min - an optimal variable-space page replacement
algorithm. AC M Press, 19(5):295-297, 1976.

[64] J . A. R iv e r s , E. S. T am , G. S. T y s o n , E. S. D a v id s o n , a n d M. F a r r e n s .
Utilizing reuse information in data cache management. In Proceedings of the ACM
International Conference on Supercomputing, 1998.

[65] J. T. R o b in s o n a n d N. V. D e v a r a k o n d a . D ata cache management using frequency-
based replacement, pages 134-142. Proceedings of ACM SIGMETRICS Conference on
Measuring and Modeling of Computer Systems, 1990.

[66] P . S a r k a r a n d J. H a r tm a n . Efficient cooperative caching using hints. In Symposium
on Operating System Design and Implementation, 1996.

[67] Y. S m a r a g d a k is , S. K a p la n , a n d P. W ils o n . EELRU: simple and effective adap
tive page replacement. In Proceedings of AC M S I GME TRICS Conference on Measuring
and Modeling of Computer Systems, pages 122-133, 1999.

[68] E. S m ir n i a n d D. A. R e e d . Lessons from characterizing the input/output behavior
of parallel scientific applications performance evaluation. In Performance Evaluation,
pages 27-44, 1998.

[69] A. J. S m ith . Sequentiality and prefetching in database systems. AC M Trans, on
Database Systems, 3(3):223-247, 1978.

[70] A. S. TANENBAUM AND A. S. WOODHULL. Operating Systems, Design and Imple
mentation. Prentice Hall, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIO G RAPH Y 180

[71] M. U y s a l , A. A c h a r y a , a n d J. S a l t s . Requirements of I/O systems for parallel
machines: An application-driven study. CS-TR-3802, Dept, of Computer Science, 1997.

[72] R . VAN R i e l . P age replacem ent in lin u x 2 .4 m em ory m anagem ent. In Proceeding of
USENIX Annual Technical Conference (FREENIX track), 2001.

[73] R. VAN R ie l. Towards an 0(1) VM: Making linux virtual memory management scale
towards large amounts of physical memory. In Proceedings of the Linux Symposium,
2003.

[74] G. V o e l k e r , E. A n d e r s o n , T . K im b r e l , M. F e e l e y , J. C h a s e , A. K a r l i n , a n d
H. L e v y . Implementing cooperative prefetching and caching in a globally managed
memory system. In Proceedings of AC M SIG M ETRICS Conference on Measuring and
Modeling of Computer Systems, 1998.

[75] P . R. W i l s o n , S. F. K a p l a n , a n d Y. S m a r a g d a k is . The case for compressed
caching in virtual memory systems. In Proceedings of Annual USENIX Technical Con
ference, 1999.

[76] T. M. W o n g a n d J . W i l k e s . My cache or yours? making storage more exclusive.
In Proceedings of Annual USENIX Technical Conference, 2002.

[77] Y . Z h o n g , C . D in g , a n d K . K e n n e d y . Reuse distance analysis for scientific pro
grams. In Proceedings of 6th Workshop on Languages, Compilers, and Run-Time Sys
tems for Scalable Computers, 2000.

[78] Y. Z h o n g , M. O r l o v i c h , X. S h e n , a n d C. D in g . Array regrouping and structure
splitting using whole-program reference affinity. In Proceedings of the A C M SIG PLAN
conference on Programming language design and implementation (PLDI), 2004.

[79] Y. Z h o u . Memory management for networked servers. In Ph.D Dissertation, Computer
Science Department, Princeton University, 2000.

[80] Y . Z h o u , A . B i l a s , S. J a g a n n a t h a n , C . D u b n ic k i, J . F . P h i lb in , a n d K . Li.
Experiences with vi communication for database storage. In Proceedings of Annual
International Symposium on Computer Architecture, pages 257-268 , 2002.

[81] Y . Z h o u , Z. C h e n , a n d K . L i. Second-level buffer cache m anagem ent. IEEE Trans
actions on Parallel and Distributed Systems, 15(6):505—519, 2004.

[82] Y. ZHOU, J . F. PH ILBIN , AND K. Li. The multi-queue replacement algorithm for
second level buffe. In Proceedings of Annual USENIX Technical Conference, pages
91-104, 2001.

[83] Q. Z h u , F. M. D a v id , C. F. D e v a r a j , Z. L i, Y. Z h o u , a n d P. C a o . Reducing
energy consumption of disk storage using power-aware cache management. In Pro
ceedings of the International Symposium on High Performance Computer Architecture,
pages 118-129, 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIO G RAPH Y 181

[84] Y . Z h u a n d Y . H u . Can large disk b u ilt-in caches really im prove system perform ance?
In Proceedings o f AC M SIG M ETRICS Conference on Measuring and Modeling of Com
puter Systems, p ages 284-285 , 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Song Jiang

Song Jiang was born in Hefei, Anhui, China on October of 1969. He graduated from Hefei

No. 8 High School in July of 1988. Song Jiang received his B.S. at University of Science

and Technology of China (USTC) in 1993 with a degree in Computer Science, where he

also received his M.E. in 1996 with a degree in Computer Science. After that he worked

as a lecturer in the Department of Computer and Technology of the university for another

three years.

In August of 1999, he entered the College of William and Mary as a Ph.D student in

the Computer Science Department.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Efficient caching algorithms for memory management in computer systems
	Recommended Citation

	tmp.1539734415.pdf.eA7bH

