400 research outputs found

    Live-Migration in Cloud Computing Environment

    Get PDF
    O tráfego global de IP aumentou cinco vezes nos últimos cinco anos, e prevê-se que crescerá três vezes nos próximos cinco. Já para o período de 2013 a 2018, anteviu-se que o total do tráfego de IP iria aumentar a sua taxa composta de crescimento anual (CAGR) em, aproximadamente, 3.9 vezes. Assim, os Prestadores de Serviços estão a sofrer com este acréscimo exponencial, que é proveniente do número abismal de dispositivos e utilizadores que estão ligados à Internet, bem como das suas exigências por vários recursos e serviços de rede (como por exemplo, distribuição de conteúdo multimédia, segurança, mobilidade, etc.). Mais especificamente, estes estão com dificuldades em: introduzir novos serviços geradores de receitas; e otimizar e adaptar as suas infraestruturas mais caras, centros de processamento de dados, e redes empresariais e de longa distância (COMpuTIN, 2015). Estas redes continuam a ter sérios problemas (no que toca a agilidade, gestão, mobilidade e no tempo despendido para se adaptarem), que não foram corrigidos até ao momento. Portanto, foram propostos novos modelos de Virtualização de Funções da Rede (NFV) e tecnologias de Redes de Software Definidos (SDN) para solucionar gastos operacionais e de capital não otimizado, e limitações das redes (Lopez, 2014, Hakiri and Berthou, 2015). Para se ultrapassar tais adversidades, o Instituto Europeu de Normas de Telecomunicações (ETSI) e outras organizações propuseram novas arquiteturas de rede. De acordo com o ETSI, a NFV é uma técnica emergente e poderosa, com grande aplicabilidade, e com o objetivo de transformar a maneira como os operadores desenham as redes. Isto é alcançado pela evolução da tecnologia padrão de virtualização TI, de forma a consolidar vários tipos de equipamentos de redes como: servidores de grande volume, routers, switches e armazenamento (Xilouris et al., 2014). Nesta dissertação, foram usadas as soluções mais atuais de SDN e NFV, de forma a produzir um caso de uso que possa solucionar o crescimento do tráfego de rede e a excedência da sua capacidade máxima. Para o desenvolvimento e avalização da solução, foi instalada a plataforma de computação na nuvem OpenStack, de modo a implementar, gerir e testar um caso de uso de Live Migration.Global IP traffic has increased fivefold over the past five years, and will continue increasing threefold over the next five years. The overall IP traffic will grow at a compound annual growth rate (CAGR) nearly 3.9-fold from 2013 to 2018. Service Providers are experiencing the exponential growth of IP traffic that comes from the incredible increased number of devices and users who are connected to the internet along with their demands for various resources and network services like multimedia content distribution, security, mobility and else. Therefore, Service Providers are finding difficult to introduce new revenue generating services, optimize and adapt their expensive infrastructures, data centers, wide-area networks and enterprise networks (COMpuTIN, 2015). The networks continue to have serious known problems, such as, agility, manageability, mobility and time-to-application that have not been successfully addressed so far. Thus, novel Network Function Virtualization (NFV) models and Software-defined Networking (SDN) technologies have been proposed to solve the non-optimal capital and operational expenditures and network’s limitations (Lopez, 2014, Hakiri and Berthou, 2015). In order to solve these issues, the European Telecommunications Standards Institute (ETSI) and other standard organizations are proposing new network architecture approaches. According to ETSI, The Network Functions Virtualization is a powerful emerging technique with widespread applicability, aiming to transform the way that network operators design networks by evolving standard IT virtualization technology to consolidate many network equipment types: high volume servers, routers, switches and storage (Xilouris et al., 2014). In this thesis, the current Software-Defined Networking (SDN) and Network Function Virtualization (NFV) solutions were used in order to make a use case that can address the increasing of network traffic and exceeding its maximum capacity. To develop and evaluate the solution, OpenStack cloud computing platform was installed in order to deploy, manage and test a Live-Migration use-case

    Cloud Services Procurement Roadmap for Public Research Organisations

    Get PDF
    This Roadmap is a major product of the PICSE project. It provides a description of the landscape of cloud procurement in the European public research sector and documents existing challenges, barriers and trends. Based on world-wide procurement best practices it explains how cloud computing is disrupting the way IT resources are provisioned for research communities. In particular, 20 recommendations for improving procurement of cloud services for public research organisations in Europe must address the fact that procurement practices are changing significantly. This Roadmap for Cloud Service Procurement includes a significant Call for Action for the three major stakeholder groups who can be found at regional, national and European levels

    Cloud computing with an emphasis on PaaS and Google app engine

    Get PDF
    Thesis on cloud with an emphasis on PaaS and Google App Engin

    Cloud computing models

    Get PDF
    Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 79-80).Information Technology has always been considered a major pain point of enterprise organizations, from the perspectives of both cost and management. However, the information technology industry has experienced a dramatic shift in the past decade - factors such as hardware commoditization, open-source software, virtualization, workforce globalization, and agile IT processes have supported the development of new technology and business models. Cloud computing now offers organizations more choices regarding how to run infrastructures, save costs, and delegate liabilities to third-party providers. It has become an integral part of technology and business models, and has forced businesses to adapt to new technology strategies. Accordingly, the demand for cloud computing has forced the development of new market offerings, representing various cloud service and delivery models. These models significantly expand the range of available options, and task organizations with dilemmas over which cloud computing model to employ. This thesis poses analysis of available cloud computing models and potential future cloud computing trends. Comparative analysis includes cloud services delivery (SaaS, PaaS, IaaS) and deployment models (private, public, and hybrid). Cloud computing paradigms are discussed in the context of technical, business, and human factors, analyzing how business and technology strategy could be impacted by the following aspects of cloud computing: --Architecture --Security --Costs --Hardware/software trends (commodity vs. brands, open vs. closed-source) --Organizational/human Factors To provide a systematic approach to the research presented in this paper, cloud taxonomy is introduced to classify and compare the available cloud service offerings. In particular, this thesis focuses on the services of a few major cloud providers. Amazon Web Services (AWS) will be used as a base in many examples because this cloud provider represents approximately 70% of the current public cloud services market. Amazon's AWS has become a cloud services trend-setter, and a reference point for other cloud service providers. The analysis of cloud computing models has shown that public cloud deployment model is likely to stay dominant and keep expanding further. Private and Hybrid deployment models are going to stay for years ahead but their market share is going to continuously drop. In the long-term private and Hybrid cloud models most probably will be used only for specific business cases. IaaS service delivery model is likely to keep losing market share to PaaS and SaaS models because companies realize more value and resource-savings from software and platform services rather than infrastructure. In the near future we can expect significant number of market consolidations with few large players retaining market control at the end.by Eugene Gorelik.S.M.in Engineering and Managemen

    When to Utilize Software as a Service

    Get PDF
    Cloud computing enables on-demand network access to shared resources (e.g., computation, networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort. Cloud computing refers to both the applications delivered as services over the Internet and the hardware and system software in the data centers. Software as a service (SaaS) is part of cloud computing. It is one of the cloud service models. SaaS is software deployed as a hosted service and accessed over the Internet. In SaaS, the consumer uses the provider‘s applications running in the cloud. SaaS separates the possession and ownership of software from its use. The applications can be accessed from any device through a thin client interface. A typical SaaS application is used with a web browser based on monthly pricing. In this thesis, the characteristics of cloud computing and SaaS are presented. Also, a few implementation platforms for SaaS are discussed. Then, four different SaaS implementation cases and one transformation case are deliberated. The pros and cons of SaaS are studied. This is done based on literature references and analysis of the SaaS implementations and the transformation case. The analysis is done both from the customer‘s and service provider‘s point of view. In addition, the pros and cons of on-premises software are listed. The purpose of this thesis is to find when SaaS should be utilized and when it is better to choose a traditional on-premises software. The qualities of SaaS bring many benefits both for the customer as well as the provider. A customer should utilize SaaS when it provides cost savings, ease, and scalability over on-premises software. SaaS is reasonable when the customer does not need tailoring, but he only needs a simple, general-purpose service, and the application supports customer‘s core business. A provider should utilize SaaS when it offers cost savings, scalability, faster development, and wider customer base over on-premises software. It is wise to choose SaaS when the application is cheap, aimed at mass market, needs frequent updating, needs high performance computing, needs storing large amounts of data, or there is some other direct value from the cloud infrastructure.Siirretty Doriast

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions
    • …
    corecore