968 research outputs found

    Technical Research Priorities for Big Data

    Get PDF
    To drive innovation and competitiveness, organisations need to foster the development and broad adoption of data technologies, value-adding use cases and sustainable business models. Enabling an effective data ecosystem requires overcoming several technical challenges associated with the cost and complexity of management, processing, analysis and utilisation of data. This chapter details a community-driven initiative to identify and characterise the key technical research priorities for research and development in data technologies. The chapter examines the systemic and structured methodology used to gather inputs from over 200 stakeholder organisations. The result of the process identified five key technical research priorities in the areas of data management, data processing, data analytics, data visualisation and user interactions, and data protection, together with 28 sub-level challenges. The process also highlighted the important role of data standardisation, data engineering and DevOps for Big Data

    LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely.</p> <p>Results</p> <p>To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment.</p> <p>Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks roughly 27,000 assay runs, 860,000 specimen vials and 1,300,000 vial transfers.</p> <p>Conclusions</p> <p>Sharing data, analysis tools and infrastructure can speed the efforts of large research consortia by enhancing efficiency and enabling new insights. The Atlas installation of LabKey Server demonstrates the utility of the LabKey platform for collaborative research. Stable, supported builds of LabKey Server are freely available for download at <url>http://www.labkey.org</url>. Documentation and source code are available under the Apache License 2.0.</p

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Doctor of Philosophy

    Get PDF
    dissertationBiomedical data are a rich source of information and knowledge. Not only are they useful for direct patient care, but they may also offer answers to important population-based questions. Creating an environment where advanced analytics can be performed against biomedical data is nontrivial, however. Biomedical data are currently scattered across multiple systems with heterogeneous data, and integrating these data is a bigger task than humans can realistically do by hand; therefore, automatic biomedical data integration is highly desirable but has never been fully achieved. This dissertation introduces new algorithms that were devised to support automatic and semiautomatic integration of heterogeneous biomedical data. The new algorithms incorporate both data mining and biomedical informatics techniques to create "concept bags" that are used to compute similarity between data elements in the same way that "word bags" are compared in data mining. Concept bags are composed of controlled medical vocabulary concept codes that are extracted from text using named-entity recognition software. To test the new algorithm, three biomedical text similarity use cases were examined: automatically aligning data elements between heterogeneous data sets, determining degrees of similarity between medical terms using a published benchmark, and determining similarity between ICU discharge summaries. The method is highly configurable and 5 different versions were tested. The concept bag method performed particularly well aligning data elements and outperformed the compared algorithms by iv more than 5%. Another configuration that included hierarchical semantics performed particularly well at matching medical terms, meeting or exceeding 30 of 31 other published results using the same benchmark. Results for the third scenario of computing ICU discharge summary similarity were less successful. Correlations between multiple methods were low, including between terminologists. The concept bag algorithms performed consistently and comparatively well and appear to be viable options for multiple scenarios. New applications of the method and ideas for improving the algorithm are being discussed for future work, including several performance enhancements, configuration-based enhancements, and concept vector weighting using the TF-IDF formulas

    Improving privacy preserving in modern applications

    Full text link
    The thesis studies the privacy problems in various modern applications, such as recommendation system, Internet of Things, location-based service and crowdsourcing system. The corresponding solutions are proposed, and the proposed solutions not only protect the data privacy with guaranteed privacy level, but also enhancing the data utility

    Sharing and viewing segments of electronic patient records service (SVSEPRS) using multidimensional database model

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The concentration on healthcare information technology has never been determined than it is today. This awareness arises from the efforts to accomplish the extreme utilization of Electronic Health Record (EHR). Due to the greater mobility of the population, EHR will be constructed and continuously updated from the contribution of one or many EPRs that are created and stored at different healthcare locations such as acute Hospitals, community services, Mental Health and Social Services. The challenge is to provide healthcare professionals, remotely among heterogeneous interoperable systems, with a complete view of the selective relevant and vital EPRs fragments of each patient during their care. Obtaining extensive EPRs at the point of delivery, together with ability to search for and view vital, valuable, accurate and relevant EPRs fragments can be still challenging. It is needed to reduce redundancy, enhance the quality of medical decision making, decrease the time needed to navigate through very high number of EPRs, which consequently promote the workflow and ease the extra work needed by clinicians. These demands was evaluated through introducing a system model named SVSEPRS (Searching and Viewing Segments of Electronic Patient Records Service) to enable healthcare providers supply high quality and more efficient services, redundant clinical diagnostic tests. Also inappropriate medical decision making process should be avoided via allowing all patients‟ previous clinical tests and healthcare information to be shared between various healthcare organizations. Multidimensional data model, which lie at the core of On-Line Analytical Processing (OLAP) systems can handle the duplication of healthcare services. This is done by allowing quick search and access to vital and relevant fragments from scattered EPRs to view more comprehensive picture and promote advances in the diagnosis and treatment of illnesses. SVSEPRS is a web based system model that helps participant to search for and view virtual EPR segments, using an endowed and well structured Centralised Multidimensional Search Mapping (CMDSM). This defines different quantitative values (measures), and descriptive categories (dimensions) allows clinicians to slice and dice or drill down to more detailed levels or roll up to higher levels to meet clinicians required fragment
    corecore