33 research outputs found

    Reconstruction 3D personnalisée de la colonne vertébrale à partir d'images radiographiques non-calibrées

    Get PDF
    Les systèmes de reconstruction stéréo-radiographique 3D -- La colonne vertébrale -- La scoliose idiopathique adolescente -- Évolution des systèmes de reconstruction 3D -- Filtres de rehaussement d'images -- Techniques de segmentation -- Les méthodes de calibrage -- Les méthodes de reconstruction 3D -- Problématique, hypothèses, objectifs et méthode générale -- Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar X-ray images -- A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities -- Simulation experiments -- Clinical validation -- A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis -- Auto-calibrage d'un système à rayons-X à partir de primitives de haut niveau -- Segmentation de la colonne vertébrale -- Approche hiérarchique d'auto-calibrage d'un système d'acquisition à rayons-X -- Personalized 3D reconstruction of the scoliotic spine from hybrid statistical and X-ray image-based models -- Validation protocol

    Calibration of bi-planar radiography with minimal phantoms

    Get PDF
    In this paper we propose a method for the geometrical calibration of bi-planar radiography that aims at minimising the impact of calibration phantoms on the content of radiographs. These phantoms are required for determining scale or to estimate the geometrical parameters of the system. Unfortunately, they often overlap anatomical structures. For accomplishing this goal, we propose a small extension to conventional imaging systems: a distance measuring device that enables to estimate some of the geometrical parameters. This leads to a reduction of the search space of solutions, which makes possible reducing requirements of calibration phantoms.The proposed method was tested on 17 pairs of radiographs of a phantom object of known dimensions. For calculating scale, only a reference distance of 40mm was used. Results show a RMS error of 0.36mm with 99% of the errors inferior to 0.85mm. Additionally, the requirements of the calibration phantom are very low when compared with other methods, but experiments with anatomical structures should be conducted to confirm these results

    Reconstruction 3D personnalisée de la cage thoracique pour l'amélioration de la simulation de l'effet de la correction du rachis sur l'apparence externe du tronc

    Get PDF
    Résumé Afin de procéder à une évaluation clinique de la scoliose, les cliniciens se réfèrent souvent à l'angle de Cobb. Celui-ci ne représente malheureusement que la courbure mesurée sur un plan. De plus, les déformations que subit la cage thoracique ne sont pas toujours corrélées à celle de la colonne vertébrale. Plusieurs techniques ont été proposées afin de fournir au clinicien une information quant à la configuration tridimensionnelle de la cage thoracique. Cependant, il doit souvent se limiter à la correction de la colonne vertébrale, ce qui peut entraîner une persistance des gibbosités après l'opération. Un simulateur permettant de prédire l'effet d'une correction du rachis sur l'apparence externe du tronc serait très utile dans la planification de la chirurgie. Le chirurgien pourra ainsi déterminer la stratégie opératoire qui pourra non seulement redresser la colonne mais réduire les gibbosités qui affectent aussi l'apparence externe du patient. Par contre, les modèles tridimensionnels de la cage thoracique existants ne sont pas complètement personnalisés au patient, et donc limitent la précision des résultats de simulation. L'objectif de ce projet est de développer une nouvelle technique de reconstruction 3D personnalisée de la cage thoracique, afin d'améliorer les résultats de simulation de la propagation de l'effet d'une chirurgie du rachis sur l'apparence externe du tronc. Les méthodes actuelles de reconstructions 3D de la cage thoracique ne sont pas précises et n'ont pas été validées avec des modèles représentants fidèlement une cage thoracique en position debout. Dans la littérature, la plupart des modèles de références sont obtenus par tomodensitométrie, qui s'effectue en position couchée. Ces modèles sont donc difficilement recommandables pour une validation clinique des méthodes de reconstruction 3D de la cage thoracique à partir de radiographies acquises en position debout. De plus, ces techniques n'offrent que des reconstructions de cage thoracique par modèles filaires, ou des reconstructions surfaciques par déformation de modèles génériques. Ces modèles ne sont pas adéquats dans un contexte de simulation personnalisée, où le but ultime est de planifier la meilleure stratégie à effectuer afin d'obtenir la meilleure correction à l'interne bien sûr, mais surtout à l'externe puisque c'est un facteur important de satisfaction chez le patient. Une nouvelle méthode a été proposée afin de pallier ces problèmes. Celle-ci se base uniquement sur les radiographies standards, soit la radiographie postéro-antérieure à 0° et la radiographie latérale. Premièrement, une détection semi-automatique des côtes est effectuée sur la radiographie postéro-antérieure, et une identification interactive d'un ensemble de points sur les côtes visibles est faite sur la radiographie latérale. Ensuite, une reconstruction automatique des côtes est réalisée par une mise en correspondance de ces points sur deux vues. De plus, les côtes non détectées sur la radiographie latérale, qui sont en général les côtes de la partie supérieure de la cage thoracique, sont prédites à partir des côtes inférieures, ce qui constitue l'originalité de cette méthode. Finalement, une surface est générée le long de la ligne médiane reconstruite. Cette surface représente l'épaisseur réelle de la côte, et sert de point d'ancrage pour les tissus mous lors des simulations de la correction du rachis. Une validation rigoureuse fut menée, grâce à un modèle de cage thoracique synthétique représentant une vraie cage thoracique en position debout. Cela n'a jamais été fait auparavant. Trois sévérités de déformations ont été considérées, soit 0°, 20° et 40° d'angle de Cobb thoracique droite. Dans chacun des cas, le modèle a été numérisé à l'aide d'un appareil de mesure tridimensionnelle et des radiographies ont été acquises. Des reconstructions effectuées par la nouvelle méthode et l'ancienne méthode de reconstruction de la cage thoracique utilisée à l'hôpital Sainte-Justine ont été comparées aux numérisations du modèle synthétique. La méthode proposée offre une erreur moyenne de 11,95 mm (±6,56 mm), 9,30 mm (±5,86 mm) et 8,27 mm (±5,16 mm), comparativement à l'ancienne méthode qui offre une erreur moyenne de 23,98 mm (±11,09 mm), 11,80 mm (±6,56 mm) et 14,05 mm (±9,59 mm), respectivement pour les configurations à 0°, 20° et 40°. De plus, des simulations ont été effectuées sur trois patients afin de déterminer si la cage thoracique obtenue par la nouvelle méthode améliore les résultats. Les résultats obtenus ont clairement démontré qu'une reconstruction précise de la cage thoracique améliore significativement les résultats de simulation. La principale contribution de ce projet réside dans le fait que la méthode proposée permet de faire une évaluation clinique fiable des déformations de la cage thoracique. L'amélioration de la précision de la reconstruction 3D et la personnalisation plus complète de la cage thoracique permettent non seulement cela, mais ouvrent aussi la voie à différentes opportunités. Notamment, la simulation de la chirurgie des côtes, la reconstruction des poumons ou même l'étude de la corrélation entre la structure osseuse interne et la surface externe du tronc bénéficierait grandement d'une cage thoracique personnalisée. Tous ces projets, globalement, contribuent à diminuer la quantité de radiation infligée aux patients, car ceux-ci auront de moins en moins à subir de radiographies afin de faire un suivi clinique.----------Abstract To evaluate scoliosis severity in the clinical setting, clinicians often refer to the Cobb angle. Unfortunately, this angle only represents a curve on a plane. Furthermore, the deformities sustained by the rib cage are not always correlated to those of the spine. Many techniques have been proposed to help the clinician by providing information about the three dimensional configuration of the rib cage. However, he must sometimes only correct the spine and rib humps may persist. A simulator predicting the effects of a spine correction on the external appearance of the trunk would be useful to plan the surgery. However, three dimensional rib cage models used are not fully personalised to each patient, thus limiting the precision of the results of the simulation. The goal of this project is to develop a new method for personalised 3D reconstruction of the rib cage, in order to improve the results of simulating the propagation of the spinal correction to the external trunk. Current methods of 3D reconstruction of the rib cage are not precise and have not been validated with models that faithfully represent a rib cage in standing position. In the literature, most reference models are obtained by computed tomography (CT) scans, which are acquired in supine position. Such models are thus inappropriate for a clinical assessment of the 3D reconstruction methods based on radiographs acquired in standing position. Furthermore, the existing methods only provide the reconstruction of the rib midlines or complete 3D rib cage models obtained by deforming generic models. These reconstructions are not adequate in the context of personalized simulation, where the ultimate goal is to plan the clinical strategy providing the best correction both of the internal structures and of the external appearance of the trunk, the latter being the main factor contributing to patient satisfaction. We have proposed a new method in order to address these problems. This method is based only on the two standards radiographs, i.e. the postero-anterior view at 0° and the lateral view. First of all, a semi-automatic detection of the ribs is done on the postero-anterior radiograph, followed by an interactive identification of a set of points on the visible ribs in the lateral view. Then, an automatic reconstruction of the ribs is performed by means of stereo matching points. The originality of this method is that it can predict the undetected ribs in the lateral view, which are mostly those of the upper section of the rib cage, based on the reconstruction of the lower ribs. Finally, a surface is generated along the rib's 3D midline. This surface represents the real thickness of the rib and serves as an anchor for the attachment of soft tissues during the simulation of the spine correction's effect on the whole trunk. A thorough validation was conducted with the help of a synthetic rib cage model. This model represents a real rib cage in standing position . This kind of validation has never been done before. Three cases of scoliotic deformation were considered, namely 0°, 20° and 40° of right-thoracic Cobb angle. In each case, the model was digitized with a coordinate measuring machine and radiographed. 3D reconstructions of the rib cage obtained by the proposed method and the existing method used at Sainte-Justine Hospital were compared to the digitized model. The new method yields mean errors of 11,95 mm (±6,56 mm), 9,30 mm (±5,86 mm) and 8,27 mm (±5,16 mm), compared to the old method which yields mean errors of 23,98 mm (±11,09 mm), 11,80 mm (±6,56 mm) and 14,05 mm (±9,59 mm), for the 0°, 20° and 40° deformations, respectively. Furthermore, simulations were performed on three patients to determine if the rib cage produced by the new method improves the results of the simulator. The results clearly demonstrated that a precise reconstruction of the rib cage significantly improves the simulation results. The main contribution of this project lies in the fact that the new method allows a reliable clinical assessment of rib cage deformities. In addition, the enhanced precision of the 3D reconstruction and the more complete personalization of the rib cage model open up new possibilities. In particular, the simulation of other surgical interventions such as rib resection and lung reconstruction, as well as studies on the relationship between internal bone structures and external trunk shape, could all benefit from a personalized rib cage. Globally, all these projects contribute to reducing the amount of radiation inflicted to patients because less radiographs will be required in order to make a clinical follow up

    Reconstruction 3D personnalisée de la cage thoracique pour l'amélioration de la simulation de l'effet de la correction du rachis sur l'apparence externe du tronc

    Get PDF
    Résumé Afin de procéder à une évaluation clinique de la scoliose, les cliniciens se réfèrent souvent à l'angle de Cobb. Celui-ci ne représente malheureusement que la courbure mesurée sur un plan. De plus, les déformations que subit la cage thoracique ne sont pas toujours corrélées à celle de la colonne vertébrale. Plusieurs techniques ont été proposées afin de fournir au clinicien une information quant à la configuration tridimensionnelle de la cage thoracique. Cependant, il doit souvent se limiter à la correction de la colonne vertébrale, ce qui peut entraîner une persistance des gibbosités après l'opération. Un simulateur permettant de prédire l'effet d'une correction du rachis sur l'apparence externe du tronc serait très utile dans la planification de la chirurgie. Le chirurgien pourra ainsi déterminer la stratégie opératoire qui pourra non seulement redresser la colonne mais réduire les gibbosités qui affectent aussi l'apparence externe du patient. Par contre, les modèles tridimensionnels de la cage thoracique existants ne sont pas complètement personnalisés au patient, et donc limitent la précision des résultats de simulation. L'objectif de ce projet est de développer une nouvelle technique de reconstruction 3D personnalisée de la cage thoracique, afin d'améliorer les résultats de simulation de la propagation de l'effet d'une chirurgie du rachis sur l'apparence externe du tronc. Les méthodes actuelles de reconstructions 3D de la cage thoracique ne sont pas précises et n'ont pas été validées avec des modèles représentants fidèlement une cage thoracique en position debout. Dans la littérature, la plupart des modèles de références sont obtenus par tomodensitométrie, qui s'effectue en position couchée. Ces modèles sont donc difficilement recommandables pour une validation clinique des méthodes de reconstruction 3D de la cage thoracique à partir de radiographies acquises en position debout. De plus, ces techniques n'offrent que des reconstructions de cage thoracique par modèles filaires, ou des reconstructions surfaciques par déformation de modèles génériques. Ces modèles ne sont pas adéquats dans un contexte de simulation personnalisée, où le but ultime est de planifier la meilleure stratégie à effectuer afin d'obtenir la meilleure correction à l'interne bien sûr, mais surtout à l'externe puisque c'est un facteur important de satisfaction chez le patient. Une nouvelle méthode a été proposée afin de pallier ces problèmes. Celle-ci se base uniquement sur les radiographies standards, soit la radiographie postéro-antérieure à 0° et la radiographie latérale. Premièrement, une détection semi-automatique des côtes est effectuée sur la radiographie postéro-antérieure, et une identification interactive d'un ensemble de points sur les côtes visibles est faite sur la radiographie latérale. Ensuite, une reconstruction automatique des côtes est réalisée par une mise en correspondance de ces points sur deux vues. De plus, les côtes non détectées sur la radiographie latérale, qui sont en général les côtes de la partie supérieure de la cage thoracique, sont prédites à partir des côtes inférieures, ce qui constitue l'originalité de cette méthode. Finalement, une surface est générée le long de la ligne médiane reconstruite. Cette surface représente l'épaisseur réelle de la côte, et sert de point d'ancrage pour les tissus mous lors des simulations de la correction du rachis. Une validation rigoureuse fut menée, grâce à un modèle de cage thoracique synthétique représentant une vraie cage thoracique en position debout. Cela n'a jamais été fait auparavant. Trois sévérités de déformations ont été considérées, soit 0°, 20° et 40° d'angle de Cobb thoracique droite. Dans chacun des cas, le modèle a été numérisé à l'aide d'un appareil de mesure tridimensionnelle et des radiographies ont été acquises. Des reconstructions effectuées par la nouvelle méthode et l'ancienne méthode de reconstruction de la cage thoracique utilisée à l'hôpital Sainte-Justine ont été comparées aux numérisations du modèle synthétique. La méthode proposée offre une erreur moyenne de 11,95 mm (±6,56 mm), 9,30 mm (±5,86 mm) et 8,27 mm (±5,16 mm), comparativement à l'ancienne méthode qui offre une erreur moyenne de 23,98 mm (±11,09 mm), 11,80 mm (±6,56 mm) et 14,05 mm (±9,59 mm), respectivement pour les configurations à 0°, 20° et 40°. De plus, des simulations ont été effectuées sur trois patients afin de déterminer si la cage thoracique obtenue par la nouvelle méthode améliore les résultats. Les résultats obtenus ont clairement démontré qu'une reconstruction précise de la cage thoracique améliore significativement les résultats de simulation. La principale contribution de ce projet réside dans le fait que la méthode proposée permet de faire une évaluation clinique fiable des déformations de la cage thoracique. L'amélioration de la précision de la reconstruction 3D et la personnalisation plus complète de la cage thoracique permettent non seulement cela, mais ouvrent aussi la voie à différentes opportunités. Notamment, la simulation de la chirurgie des côtes, la reconstruction des poumons ou même l'étude de la corrélation entre la structure osseuse interne et la surface externe du tronc bénéficierait grandement d'une cage thoracique personnalisée. Tous ces projets, globalement, contribuent à diminuer la quantité de radiation infligée aux patients, car ceux-ci auront de moins en moins à subir de radiographies afin de faire un suivi clinique.----------Abstract To evaluate scoliosis severity in the clinical setting, clinicians often refer to the Cobb angle. Unfortunately, this angle only represents a curve on a plane. Furthermore, the deformities sustained by the rib cage are not always correlated to those of the spine. Many techniques have been proposed to help the clinician by providing information about the three dimensional configuration of the rib cage. However, he must sometimes only correct the spine and rib humps may persist. A simulator predicting the effects of a spine correction on the external appearance of the trunk would be useful to plan the surgery. However, three dimensional rib cage models used are not fully personalised to each patient, thus limiting the precision of the results of the simulation. The goal of this project is to develop a new method for personalised 3D reconstruction of the rib cage, in order to improve the results of simulating the propagation of the spinal correction to the external trunk. Current methods of 3D reconstruction of the rib cage are not precise and have not been validated with models that faithfully represent a rib cage in standing position. In the literature, most reference models are obtained by computed tomography (CT) scans, which are acquired in supine position. Such models are thus inappropriate for a clinical assessment of the 3D reconstruction methods based on radiographs acquired in standing position. Furthermore, the existing methods only provide the reconstruction of the rib midlines or complete 3D rib cage models obtained by deforming generic models. These reconstructions are not adequate in the context of personalized simulation, where the ultimate goal is to plan the clinical strategy providing the best correction both of the internal structures and of the external appearance of the trunk, the latter being the main factor contributing to patient satisfaction. We have proposed a new method in order to address these problems. This method is based only on the two standards radiographs, i.e. the postero-anterior view at 0° and the lateral view. First of all, a semi-automatic detection of the ribs is done on the postero-anterior radiograph, followed by an interactive identification of a set of points on the visible ribs in the lateral view. Then, an automatic reconstruction of the ribs is performed by means of stereo matching points. The originality of this method is that it can predict the undetected ribs in the lateral view, which are mostly those of the upper section of the rib cage, based on the reconstruction of the lower ribs. Finally, a surface is generated along the rib's 3D midline. This surface represents the real thickness of the rib and serves as an anchor for the attachment of soft tissues during the simulation of the spine correction's effect on the whole trunk. A thorough validation was conducted with the help of a synthetic rib cage model. This model represents a real rib cage in standing position . This kind of validation has never been done before. Three cases of scoliotic deformation were considered, namely 0°, 20° and 40° of right-thoracic Cobb angle. In each case, the model was digitized with a coordinate measuring machine and radiographed. 3D reconstructions of the rib cage obtained by the proposed method and the existing method used at Sainte-Justine Hospital were compared to the digitized model. The new method yields mean errors of 11,95 mm (±6,56 mm), 9,30 mm (±5,86 mm) and 8,27 mm (±5,16 mm), compared to the old method which yields mean errors of 23,98 mm (±11,09 mm), 11,80 mm (±6,56 mm) and 14,05 mm (±9,59 mm), for the 0°, 20° and 40° deformations, respectively. Furthermore, simulations were performed on three patients to determine if the rib cage produced by the new method improves the results of the simulator. The results clearly demonstrated that a precise reconstruction of the rib cage significantly improves the simulation results. The main contribution of this project lies in the fact that the new method allows a reliable clinical assessment of rib cage deformities. In addition, the enhanced precision of the 3D reconstruction and the more complete personalization of the rib cage model open up new possibilities. In particular, the simulation of other surgical interventions such as rib resection and lung reconstruction, as well as studies on the relationship between internal bone structures and external trunk shape, could all benefit from a personalized rib cage. Globally, all these projects contribute to reducing the amount of radiation inflicted to patients because less radiographs will be required in order to make a clinical follow up

    Patient-specific model of a scoliotic torso for surgical planning

    Get PDF
    A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter- patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model’s MRIs in prone position and the test patient’s X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0.975 ± 0.012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0.976 ± 0.009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.Canadian Institute of Health Research (CIHR

    Three-Dimensional Biplanar Reconstruction of the Scoliotic Spine for Standard Clinical Setup

    Get PDF
    Tese de Doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Reconstruction simplifiée du tronc pour le traitement de la scoliose idiopathique par corset

    Get PDF
    RÉSUMÉ La scoliose idiopathique de l’adolescent (SIA) est une déformation tridimensionnelle de la colonne vertébrale, de la cage thoracique et du bassin qui apparaît lors de la croissance. Des déformations de la colonne vertébrale avec des courbes de 10° ou plus nécessitant un suivi ou un traitement affectent 0,23 % de la population. L’incidence est plus élevée chez les filles. Pour les patients en croissance avec des courbes entre 25° et 45°, le traitement prescrit habituellement est le corset orthopédique. En Amérique du Nord, le type le plus utilisé est le corset de Boston. Autrefois fabriqué avec des moules de plâtre, la production du corset a fortement été améliorée par l’ajout de technologies permettant la conception et fabrication assistées par ordinateur (CFAO). Ces nouvelles techniques de production incluent entre autres l’acquisition numérique de la forme externe du tronc du patient par topographie de surface et la modification de celle-ci à l’aide de logiciels de CFAO destinés à la fabrication d’orthèses. La conception des corsets repose par contre sur des processus empiriques et, de manière générale, les spécialistes n’arrivent pas à un consensus sur le design optimal. Afin d’améliorer l’efficacité du corset par la vérification de son effet immédiat avant que celui-ci ne soit fabriqué et porté par le patient, un outil de simulation exploitant une méthode de simulation par éléments finis des corrections du corset sur le tronc du patient a été développé. Plusieurs travaux de recherche utilisant cet outil de simulation ont été réalisés par le groupe du CHU Sainte-Justine et de l’École Polytechnique. Les résultats d’une étude clinique ont montré que la méthode de simulation du corset prédisait avec une précision de 5° d'angle de Cobb les corrections obtenues avec les corsets fabriqués par CFAO portés par les patients. Récemment, une étude par essai randomisé contrôlé a montré que l’ajout des simulations numériques par éléments finis du corset au processus de conception et fabrication assistées par ordinateur permettait d’obtenir des corsets plus légers et offrant une meilleure correction. L’outil de simulation requiert une reconstruction personnalisée du tronc du patient dont la modélisation des structures osseuses internes est obtenue minimalement à partir de radiographies coronale et latérale calibrées du patient. Cependant, plusieurs centres n’effectuent pas de calibrage des radiographies ou n’effectuent pas de radiographie latérale, ce qui limite l’utilisation de l’outil de simulation.----------ABSTRACT Adolescent idiopathic scoliosis (SIA) is a three-dimensional deformity of the spine, rib cage and pelvis occurring during growth. 0.23% of the population, mostly girls, is affected by progressing spinal curves of 10° or more. For growing patients with curves between 25° and 45 °, orthopedic brace is the treatment usually prescribed. In North America, the most common type is the Boston brace. Formerly made from plaster molds, the braces’ production efficiency has been greatly improved by adding computer-aided design and manufacturing (CAD / CAM) technologies. These new production techniques include the numerical acquisition of the external shape of the patient's trunk and the modification of the latter with a CAD / CAM software for orthosis production. However, braces’ design is the result of an empirical process and, in general, experts do not reach a consensus on the optimal design. In order to improve the effectiveness of the brace by testing its immediate effect before being manufactured and worn by the patient, a simulation tool using a finite element simulation method of the installation of the brace on a personalized patient’s trunk model was developed. Several research studies using this simulation tool were done by the CHU Sainte-Justine and Polytechnique group. Results of a clinical study showed that the brace simulation method predicted corrections obtained with the brace made by CAD/CAM and worn by the patient within 5° Cobb angle accuracy. Recently, a randomized controlled trial study demonstrated that adding finite element numerical simulations to computer-aided design and fabrication process provided lighter braces and achieved better correction by the brace. The simulation tool requires a personalized reconstruction of the patient's trunk which the internal bone structures’ modeling is obtained minimally from a coronal and a lateral calibrated X-rays of the patient. However, several healthcare centers do not calibrate the radiographs or do not perform lateral X-rays, which limits the use of the simulation tool. To undertake this need, the aim of this Master's project was to develop a simplified 3D reconstruction method of the patient's trunk with only a postero-anterior radiograph and a trunk surface scan. Clinical measurements differences were obtained before and after simulation of the installation of the brace on the finite elements model reconstructed with the simplified method and obtained with the reference method which included a lateral X-ray

    Porcine Spine Finite Element Model of Progressive Experimental Scoliosis and Assessment of a New Dual-Epiphyseal Growth Modulating Implant

    Get PDF
    RÉSUMÉ La scoliose est une déformation tridimensionnelle de la colonne vertébrale dont l’étiologie reste encore à élucider. Il est généralement admis que la progression de la déformation scoliotique pédiatrique est liée au principe d’Hueter-Volkmann qui stipule une réduction de la croissance suite à des contraintes en compression excessives au niveau de la concavité de la courbure scoliotique vs. sa convexité. Les stratégies de traitement des courbures sont difficiles, surtout chez les jeunes enfants. Typiquement, une intervention chirurgicale avec une instrumentation rachidienne accompagnée d’une arthrodèse segmentaire est nécessaire pour des courbures progressant au-delà de 40° d’angle de Cobb. De nouveaux dispositifs visent à manipuler la croissance vertébrale en exploitant le principe d’Hueter-Volkmann pour contrôler la progression de et corriger la courbure. Ces implants sans fusion exploitent la croissance vertébrale résiduelle en manipulant des gradients de croissance pour localement inverser la cunéiformisation vertébrale et, au fil du temps, réaligner la colonne vertébrale globalement. Des essais cliniques ont démontré une correction prometteuse pour les courbures généralement inférieures à 45°; cependant, les dispositifs actuels chevauchent l’espace du disque intervertébral et le compriment augmentant les risques de dégénérescence du disque à long terme. Par ailleurs, les implants nouvellement conçus sont généralement testés en utilisant des modèles animaux équivalents pour évaluer leur efficacité à corriger des déformations par l'intermédiaire de l’approche inverse (création d'une déformation) ou l’approche à 2- étapes (création d'une déformation suivie d’une correction). Néanmoins, une plate-forme de conception efficace est nécessaire pour évaluer la manipulation de la croissance à court et long termes par de nouveaux implants et de raccourcir le transfert de connaissances vers des applications cliniques. L’objectif général de cette thèse était de développer et de vérifier un modèle par éléments finis porcin (MEFp) unique en tant qu’une plateforme alternative pour la simulation de scolioses expérimentales progressives et des implants sans fusion, et d’évaluer un nouvel implant double-épiphysaire local ne chevauchant pas l’espace du disque sur des porcs immatures. Ainsi, les objectifs spécifiques suivants ont été complétés : 1) développer et----------ABSTRACT Scoliosis is a complex three-dimensional deformity of the spine whose etiology is yet to be elucidated. The pathomechanism of scoliosis progression is believed to be linked to the Hueter-Volkmann principle, by which growth is reduced due to increased growth plate compression, with the inverse also valid. Treatment strategies are challenging, especially in young children. Curves progressing beyond 40° Cobb angle are typically treated via invasive surgical interventions requiring spinal instrumentation accompanied by segmental spinal arthrodesis, impairing spinal mobility. New devices aim at manipulating vertebral growth by exploiting the Hueter-Volkmann principle to control curvature progression. These fusionless implants harness remaining vertebral growth by manipulating growth gradients to reverse vertebral wedging locally and, over time, globally realign the spine. Clinical trials have demonstrated promising deformity correction for curves generally below 45°; however, current devices bridge the intervertebral disc gap and predominantly compress the disc increasing the risks of longterm disc degeneration. Moreover, in a time-consuming manner, newly designed implants are commonly tested using equivalent animal models to assess their efficacy in correcting spinal deformities via the inverse (creation of a deformity) or the 2-step approaches (creation of a deformity followed by its subsequent correction). Nevertheless, a solid design platform is required to evaluate the short- and long-term growth manipulating efficacy of new implant designs and shorten knowledge transfer to clinical applications. The general objective of this thesis was to develop and verify a unique porcine spine finite element model (pFEM) as an alternative testing platform for the simulation of progressive experimental scoliosis and fusionless implants, and assess a new localized dualepiphyseal implant on immature pigs. Thus, specific objectives were devised as follows: 1) develop and verify a distinctive pFEM of the spine and ribcage, 2) develop and test, in vivo, a dual-epiphyseal implant incorporating a custom expansion mechanism, 3) exploit the developed pFEM to investigate differences between the inverse and 2-step fusionless implant testing approaches, and 4) exploit the pFEM to evaluate the biomechanical contribution of the ribcage in fusionless scoliosis surgery

    Étude biomécanique de la spondylolyse et du spondylolisthésis chez l'enfant : étude de cas

    Get PDF
    Anatomie descriptive et fonctionnelle et aspects biomécaniques du tronc -- Le spondylolisthésis -- Revue des différentes approches de modélisation par éléments finis du spondylolisthésis -- Méthodes de modélisation développées à l'École Polytechnique de Montréal et au CHU Sainte-Justine -- Problématique, hypothèses et objectifs -- Biomechanical evaluation of pediatric low-grade isthmic spondylolisthesis using a personalized finite element model -- Discussion complémentaire de l'article -- Aspects méthodologiques -- Résultats

    Méthode de mesure automatique intraopératoire des déformations du rachis scoliotique

    Get PDF
    RÉSUMÉ La scoliose idiopathique de l'adolescence est une pathologie complexe et évolutive entraînant une déformation tridimensionnelle du rachis, de la cage thoracique et du bassin. Cette pathologie affecte 2 à 4% de la population adolescente. Dans le cas de scolioses sévères, un traitement chirurgical est recommandé. L’imagerie radiographique est la technique la plus répandue pour le diagnostic et le suivi des effets de cette pathologie. De plus, des outils de reconstruction 3D du rachis à partir de radiographies du patient sont actuellement disponibles avant la chirurgie pour permettre une caractérisation bi- et tridimensionnelle des déformations scoliotiques ainsi que la planification des manoeuvres d'instrumentation. Les modèles 3D préopératoires ne sont pas directement utilisables pendant la chirurgie puisqu'il y existe un changement des courbures scoliotiques dû à la position allongée, à l'exposition chirurgicale et à l'anesthésie. Plusieurs systèmes de suivi ont été testés pour suivre le changement de forme du rachis et le mouvement des vertèbres en intraopératoire : mécaniques, optoélectroniques, électromagnétiques, ultrasons, radiographiques. Ces systèmes permettent de détecter la position des vertèbres pendant la chirurgie et peuvent être utilisés pour la mise à jour de modèles 3D préopératoires. Pour ce faire, ils requièrent l'installation de marqueurs sur les vertèbres ou l'identification manuelle de points anatomiques pendant la chirurgie, ce qui peut interférer avec la procédure chirurgicale. Ainsi, des systèmes d'imagerie et de navigation intraopératoires sont actuellement disponibles pour visualiser les déformations 3D du rachis et guider les manoeuvres d'instrumentation de façon sûre et précise. Cependant, à partir de ces systèmes, il n'est pas encore possible de quantifier en intraopératoire les déformations scoliotiques et la correction résultant des manoeuvres d'instrumentation. Ce projet de maîtrise visait à développer une technique permettant la mesure intraopératoire automatique des déformations scoliotiques afin de fournir au chirurgien des données quantitatives exploitables pour évaluer et améliorer la stratégie chirurgicale. Globalement, le calcul des déformations scoliotiques 3D a été effectué grâce à la mise à jour d'un modèle géométrique préopératoire à partir d'images fluoroscopiques 3D intraopératoires. De façon plus précise, un modèle géométrique préopératoire a été construit à partir de 28 repères anatomiques vertébraux identifiés manuellement par un opérateur sur des radiographies biplanaires en position érigée avant la chirurgie. Ces points ont été utilisés pour obtenir un modèle----------ABSTRACT Adolescent idiopathic scoliosis (AIS) is a complex and progressive pathology leading to threedimensional deformities of the spine, rib cage and pelvis. This pathology affects 2 to 4% of the adolescent population. In the case of severe scoliosis, a surgical treatment is required. Radiographic imaging is mostly used for the diagnosis and the monitoring of scoliosis. 3D reconstruction of the spine from patient’s radiographs is currently available to enable the twoand three-dimensional characterization of scoliotic deformities and planning of the instrumentation maneuvers. The 3D preoperative models can’t be directly used during surgery since there is a change in the scoliotic curvature caused by the prone positioning, the surgical exposure and the anesthesia. Several tracking systems have been tested to monitor the spinal shape changes and follow the intraoperative motion of the vertebrae: optoelectronics or electromagnetics systems, ultrasounds, radiographs. These systems enable the tracking of the intraoperative positioning of the vertebrae, and can be used to update 3D preoperative models. This requires the installation of external markers on vertebrae or the manual identification of anatomic points during surgery, which can interfere with the surgical procedure. Imaging and navigation systems are then currently available to visualize the 3D deformities of the spine and to safely and precisely guide the instrumentation maneuvers. Nevertheless, these systems do not enable the quantification of the intraoperative scoliotic deformities and the correction resulting from instrumentation maneuvers. This project aimed to develop a technique that enables the automatic intraoperative measurement of the scoliotic deformities, in order to provide the surgeon with quantitative feedback to evaluate and improve the surgical strategy. The 3D scoliotic deformities were computed by registering a preoperative geometric model with intraoperative 3D fluoroscopic images of the spine. More precisely, a preoperative geometric model was constructed from 28 vertebral landmarks manually identified by an operator on biplanar radiographs acquired preoperatively in standing position. These landmarks were used to obtain a surface model of each vertebra though a dual kriging interpolation technique. The intraoperative model was computed by the registration between this preoperative geometric model and the intraoperative data, composed of a voxelized model obtained from 3D fluoroscopic images. Each vertebra of the voxelized model was segmented and manually identified on intraoperative 3D fluoroscopic images. A rigid registratio
    corecore