2,790 research outputs found

    Towards optimal kernel for connected vertex cover in planar graphs

    Full text link
    We study the parameterized complexity of the connected version of the vertex cover problem, where the solution set has to induce a connected subgraph. Although this problem does not admit a polynomial kernel for general graphs (unless NP is a subset of coNP/poly), for planar graphs Guo and Niedermeier [ICALP'08] showed a kernel with at most 14k vertices, subsequently improved by Wang et al. [MFCS'11] to 4k. The constant 4 here is so small that a natural question arises: could it be already an optimal value for this problem? In this paper we answer this quesion in negative: we show a (11/3)k-vertex kernel for Connected Vertex Cover in planar graphs. We believe that this result will motivate further study in search for an optimal kernel

    The Minimum Shared Edges Problem on Grid-like Graphs

    Full text link
    We study the NP-hard Minimum Shared Edges (MSE) problem on graphs: decide whether it is possible to route pp paths from a start vertex to a target vertex in a given graph while using at most kk edges more than once. We show that MSE can be decided on bounded (i.e. finite) grids in linear time when both dimensions are either small or large compared to the number pp of paths. On the contrary, we show that MSE remains NP-hard on subgraphs of bounded grids. Finally, we study MSE from a parametrised complexity point of view. It is known that MSE is fixed-parameter tractable with respect to the number pp of paths. We show that, under standard complexity-theoretical assumptions, the problem parametrised by the combined parameter kk, pp, maximum degree, diameter, and treewidth does not admit a polynomial-size problem kernel, even when restricted to planar graphs

    Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that approximating within any function of the studied parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree, but a PSAKS does not. We also prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.Comment: 23 pages, 6 figures An extended abstract appeared in proceedings of STACS 201

    Hitting forbidden minors: Approximation and Kernelization

    Get PDF
    We study a general class of problems called F-deletion problems. In an F-deletion problem, we are asked whether a subset of at most kk vertices can be deleted from a graph GG such that the resulting graph does not contain as a minor any graph from the family F of forbidden minors. We obtain a number of algorithmic results on the F-deletion problem when F contains a planar graph. We give (1) a linear vertex kernel on graphs excluding tt-claw K1,tK_{1,t}, the star with tt leves, as an induced subgraph, where tt is a fixed integer. (2) an approximation algorithm achieving an approximation ratio of O(log3/2OPT)O(\log^{3/2} OPT), where OPTOPT is the size of an optimal solution on general undirected graphs. Finally, we obtain polynomial kernels for the case when F contains graph θc\theta_c as a minor for a fixed integer cc. The graph θc\theta_c consists of two vertices connected by cc parallel edges. Even though this may appear to be a very restricted class of problems it already encompasses well-studied problems such as {\sc Vertex Cover}, {\sc Feedback Vertex Set} and Diamond Hitting Set. The generic kernelization algorithm is based on a non-trivial application of protrusion techniques, previously used only for problems on topological graph classes

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set FE(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and E(T)|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in C|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution
    corecore