1,077 research outputs found

    Test Cases Evolution of Mobile Applications: Model Driven Approach

    Get PDF
    AELOS_HCERES2020 , NAOMOD_HCERES2020Mobile Applications Developers, with large freedom given to them, focus on satisfying market requirements and on pleasing consumer’s desires. They are forced to be creative and productive in a short period of time. As a result, billions of powerful mobile applications are displayed every day. Therefore, every mobile application needs to continually change and make an incremental evolution in order to survive and preserve its ranking among the top applications in the market. Mobile apps Testers hold a heavy responsibility on their shoulders, the intrinsic nature of agile swift change of mobile apps pushes them to be meticulous, to be aware that things can be different at any time, and to be prepared for unpredicted crashes. Therefore, starting the generation or the creation of test cases from scratch and selecting each time the overridden or the overloaded test cases is a tedious operation. In software testing the time allocated for testing and correcting defects is important for every software development (regularly half the time). This time can be reduced by the introduction of tools and the adoption of new testing methods. In the field of mobile development, new concerns should be taken into account; among the most important ones are the heterogeneity of execution environments and the fragmentation of terminals which have different impacts on the functionality, performance, and connectivity. This project studies the evolution of mobile applications and its impact on the evolution of test cases from their creation until their expiration stage. A detailed case study of a native open source Android application is provided; describing many aspects of design, development, testing in addition to the analysis of the process of mobile apps evolution. This project based on model driven engineering approach where the models are serialized using the standard XMI. It presents a protocol for the adaptation of test cases under certain restrictions

    Interactive design activism

    Get PDF

    An Agent-Based Approach for a Smart Transport System

    Get PDF
    This paper presents a proposal for a Smart Transport System which is an application that facilitates the interconnection between people (citizens, tourists) and transport providers (Bus, metro, trains, trams), defining the services that everyone can request or offer. The system has been defined as a virtual organization where agents (representing actors of the transport system) can enter or leave into the system consuming or offering services. Due to the fact that modern urban public transport is increasingly an important service used by citizens in current cities, the proposed system will improve the use of resources while also ensuring time flexible mobility solutions for citizens

    Towards a network management solution for vehicular delay-tolerant networks

    Get PDF
    Vehicular networks appeared as a new communication solution where vehicles act as a communication infrastructure, providing data communications through vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications. Vehicular Delay-Tolerant Networks (VDTNs) are a new disruptive network architecture assuming delay tolerant networking paradigm where there are no end-to-end connectivity. In this case the incial node transmits the data to a closed node, the data will be carried by vehicles, hop to hop until the destination. This dissertation focuses on a proposal of a network management solution, based standard protocol Simple Network Management Protocol (SNMP) to VDTN networks. The developed solution allows control a VDTN netowork through a Network Management System (NMS) with the objective to detect and, if it’s possible, anticipate, possible errors on network. The research methodology used was the prototyping. So, it was built a network management module to the laboratorial prototype, called VDTN@Lab. The system built include a MIB (Management Information Base) placed in all vehicular network nodes. The solution was built, demonstrated, validated and evaluated their performance, being ready for use.As redes veiculares foram desenhadas para permitir que os veículos possam transportar dados criando assim um novo tipo de redes, caracterizando-se por dois tipos de comunicação: comunicações veículo-para-veículo (V2V) ou comunicações veículo-parainfra-estrutura (V2I). Redes veiculares intermitentes (do Inglês Vehicular Delay-Tolerant Networks - VDTNs) surgiram como uma nova arquitectura de rede de dados onde os veículos são utilizados como infra-estruturas de comunicação. As VDTNs caracterizam-se por serem redes veiculares baseadas no paradigma de comunicações intermitentes. Nas redes VDTN não existe uma ligação permanente extremo a extremo entre o emissor e o receptor. Neste caso, o nó inicial transmite os dados para um nó que esteja junto dele e assim sucessivamente, os dados vão sendo transportados pelos veículos, salto a salto até ao destinatário final. Esta dissertação centra-se na proposta de uma solução de gestão de rede, baseada no protocolo estandardizado Simple Network Management Protocol (SNMP) para redes VDTN. A solução construída permite controlar uma rede VDTN através de um sistema de gestão de rede (do Inglês Network Management System - NMS) com o objectivo de detectar e, se possível antecipar, possíveis erros na rede. A metodologia de investigação utilizada foi a prototipagem. Assim, foi construído um módulo de gestão de redes para o protótipo laboratorial, chamado VDTN@Lab. O sistema construído inclui uma MIB (Management Information Base) que é colocada em todos os nós de uma rede veicular, tanto fixos como móveis. A solução foi construída, demonstrada, validade e avaliado o seu desempenho, estando assim pronta para ser utilizada

    Survey of End-to-End Mobile Network Measurement Testbeds, Tools, and Services

    Full text link
    Mobile (cellular) networks enable innovation, but can also stifle it and lead to user frustration when network performance falls below expectations. As mobile networks become the predominant method of Internet access, developer, research, network operator, and regulatory communities have taken an increased interest in measuring end-to-end mobile network performance to, among other goals, minimize negative impact on application responsiveness. In this survey we examine current approaches to end-to-end mobile network performance measurement, diagnosis, and application prototyping. We compare available tools and their shortcomings with respect to the needs of researchers, developers, regulators, and the public. We intend for this survey to provide a comprehensive view of currently active efforts and some auspicious directions for future work in mobile network measurement and mobile application performance evaluation.Comment: Submitted to IEEE Communications Surveys and Tutorials. arXiv does not format the URL references correctly. For a correctly formatted version of this paper go to http://www.cs.montana.edu/mwittie/publications/Goel14Survey.pd
    corecore