7 research outputs found

    Mist Data: Leveraging Mist Computing for Secure and Scalable Architecture for Smart and Connected Health

    Get PDF
    The smart health paradigms employ Internet-connected wearables for tele-monitoring, diagnosis providing inexpensive healthcare solutions. Mist computing reduces latency and increases throughput by processing data near the edge of the network. In the present paper, we proposed a secure mist Computing architecture that is validated on recently released public geospatial health dataset. Results and discussion support the efficacy of proposed architecture for smart geospatial health applications. The present research paper proposed SoA-Mist i.e. a three-tier secure framework for efficient management of geospatial health data with the use of mist devices. It proposed the security aspects in client layer, mist layer, fog layer and cloud layer. It has defined the prototype development by using win-win spiral model with use case and sequence diagram. Overlay analysis has been performed with the developed framework on malaria vector borne disease positive maps of Maharastra state in India from 2011 to 2014 in mobile clients as test case. Finally, It concludes with the comparison analysis of cloud based framework and proposed SoA-Mist framework

    Mitigating Security Threats for Digital Twin Platform: A Systematic Review with Future Scope and Research Challenges

    Get PDF
    In Industry 4.0, the digital twin (DT) enables users to simulate future states and configurations for prediction, optimization, and estimation. Although the potential of digital twin technology has been demonstrated by its proliferation in traditional industrial sectors, including construction, manufacturing, transportation, supply chain, healthcare, and agriculture, the risks involved with their integration have frequently been overlooked. Moreover, as a digital approach, it is intuitive to believe it is susceptible to adversarial attacks. This issue necessitates research into the multitude of attacks that the digital twin may face. This study enumerates various probable operation-specific attacks against digital twin platforms. Also, a comprehensive review of different existing techniques has been carried out to combat these attacks. A comparison of these strategies is provided to shed light on their efficacy against various attacks. Finally, future directions and research issues are highlighted that will help researchers expand the digital twin platform

    An opportunistic resource management model to overcome resource‐constraint in the Internet of Things

    Get PDF
    This is an accepted manuscript of an article published by Wiley in Concurrency and Computation: Practice and Experience, available online: https://doi.org/10.1002/cpe.5014 The accepted version of the publication may differ from the final published version.Experts believe that the Internet of Things (IoT) is a new revolution in technology and has brought many advantages for our society. However, there are serious challenges in terms of information security and privacy protection. Smart objects usually do not have malware detection due to resource limitations and their intrusion detection work on a particular network. Low computation power, low bandwidth, low battery, storage, and memory contribute to a resource-constrained effect on information security and privacy protection in the domain of IoT. The capacity of fog and cloud computing such as efficient computing, data access, network and storage, supporting mobility, location awareness, heterogeneity, scalability, and low latency in secure communication positively influence information security and privacy protection in IoT. This study illustrates the positive effect of fog and cloud computing on the security of IoT systems and presents a decision-making model based on the object's characteristics such as computational power, storage, memory, energy consumption, bandwidth, packet delivery, hop-count, etc. This helps an IoT system choose the best nodes for creating the fog that we need in the IoT system. Our experiment shows that the proposed approach has less computational, communicational cost, and more productivity in compare with the situation that we choose the smart objects randomly to create a fog.Published versio

    Towards Secure Fog Computing: A Survey on Trust Management, Privacy, Authentication, Threats and Access Control

    Get PDF
    Fog computing is an emerging computing paradigm that has come into consideration for the deployment of Internet of Things (IoT) applications amongst researchers and technology industries over the last few years. Fog is highly distributed and consists of a wide number of autonomous end devices, which contribute to the processing. However, the variety of devices offered across different users are not audited. Hence, the security of Fog devices is a major concern that should come into consideration. Therefore, to provide the necessary security for Fog devices, there is a need to understand what the security concerns are with regards to Fog. All aspects of Fog security, which have not been covered by other literature works, need to be identified and aggregated. On the other hand, privacy preservation for user’s data in Fog devices and application data processed in Fog devices is another concern. To provide the appropriate level of trust and privacy, there is a need to focus on authentication, threats and access control mechanisms as well as privacy protection techniques in Fog computing. In this paper, a survey along with a taxonomy is proposed, which presents an overview of existing security concerns in the context of the Fog computing paradigm. Moreover, the Blockchain-based solutions towards a secure Fog computing environment is presented and various research challenges and directions for future research are discussed
    corecore